1 /* 2 * SD Association Host Standard Specification v2.0 controller emulation 3 * 4 * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf 5 * 6 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 7 * Mitsyanko Igor <i.mitsyanko@samsung.com> 8 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com> 9 * 10 * Based on MMC controller for Samsung S5PC1xx-based board emulation 11 * by Alexey Merkulov and Vladimir Monakhov. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the 15 * Free Software Foundation; either version 2 of the License, or (at your 16 * option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * See the GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License along 24 * with this program; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/units.h" 29 #include "qemu/error-report.h" 30 #include "qapi/error.h" 31 #include "hw/irq.h" 32 #include "hw/qdev-properties.h" 33 #include "sysemu/dma.h" 34 #include "qemu/timer.h" 35 #include "qemu/bitops.h" 36 #include "hw/sd/sdhci.h" 37 #include "migration/vmstate.h" 38 #include "sdhci-internal.h" 39 #include "qemu/log.h" 40 #include "qemu/module.h" 41 #include "trace.h" 42 #include "qom/object.h" 43 44 #define TYPE_SDHCI_BUS "sdhci-bus" 45 /* This is reusing the SDBus typedef from SD_BUS */ 46 DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS, 47 TYPE_SDHCI_BUS) 48 49 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val)) 50 51 static inline unsigned int sdhci_get_fifolen(SDHCIState *s) 52 { 53 return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH)); 54 } 55 56 /* return true on error */ 57 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc, 58 uint8_t freq, Error **errp) 59 { 60 if (s->sd_spec_version >= 3) { 61 return false; 62 } 63 switch (freq) { 64 case 0: 65 case 10 ... 63: 66 break; 67 default: 68 error_setg(errp, "SD %s clock frequency can have value" 69 "in range 0-63 only", desc); 70 return true; 71 } 72 return false; 73 } 74 75 static void sdhci_check_capareg(SDHCIState *s, Error **errp) 76 { 77 uint64_t msk = s->capareg; 78 uint32_t val; 79 bool y; 80 81 switch (s->sd_spec_version) { 82 case 4: 83 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4); 84 trace_sdhci_capareg("64-bit system bus (v4)", val); 85 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0); 86 87 val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II); 88 trace_sdhci_capareg("UHS-II", val); 89 msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0); 90 91 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3); 92 trace_sdhci_capareg("ADMA3", val); 93 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0); 94 95 /* fallthrough */ 96 case 3: 97 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT); 98 trace_sdhci_capareg("async interrupt", val); 99 msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0); 100 101 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE); 102 if (val) { 103 error_setg(errp, "slot-type not supported"); 104 return; 105 } 106 trace_sdhci_capareg("slot type", val); 107 msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0); 108 109 if (val != 2) { 110 val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT); 111 trace_sdhci_capareg("8-bit bus", val); 112 } 113 msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0); 114 115 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED); 116 trace_sdhci_capareg("bus speed mask", val); 117 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0); 118 119 val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH); 120 trace_sdhci_capareg("driver strength mask", val); 121 msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0); 122 123 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING); 124 trace_sdhci_capareg("timer re-tuning", val); 125 msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0); 126 127 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING); 128 trace_sdhci_capareg("use SDR50 tuning", val); 129 msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0); 130 131 val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE); 132 trace_sdhci_capareg("re-tuning mode", val); 133 msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0); 134 135 val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT); 136 trace_sdhci_capareg("clock multiplier", val); 137 msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0); 138 139 /* fallthrough */ 140 case 2: /* default version */ 141 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2); 142 trace_sdhci_capareg("ADMA2", val); 143 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0); 144 145 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1); 146 trace_sdhci_capareg("ADMA1", val); 147 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0); 148 149 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT); 150 trace_sdhci_capareg("64-bit system bus (v3)", val); 151 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0); 152 153 /* fallthrough */ 154 case 1: 155 y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT); 156 msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0); 157 158 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ); 159 trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val); 160 if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) { 161 return; 162 } 163 msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0); 164 165 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ); 166 trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val); 167 if (sdhci_check_capab_freq_range(s, "base", val, errp)) { 168 return; 169 } 170 msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0); 171 172 val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH); 173 if (val >= 3) { 174 error_setg(errp, "block size can be 512, 1024 or 2048 only"); 175 return; 176 } 177 trace_sdhci_capareg("max block length", sdhci_get_fifolen(s)); 178 msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0); 179 180 val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED); 181 trace_sdhci_capareg("high speed", val); 182 msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0); 183 184 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA); 185 trace_sdhci_capareg("SDMA", val); 186 msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0); 187 188 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME); 189 trace_sdhci_capareg("suspend/resume", val); 190 msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0); 191 192 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33); 193 trace_sdhci_capareg("3.3v", val); 194 msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0); 195 196 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30); 197 trace_sdhci_capareg("3.0v", val); 198 msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0); 199 200 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18); 201 trace_sdhci_capareg("1.8v", val); 202 msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0); 203 break; 204 205 default: 206 error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version); 207 } 208 if (msk) { 209 qemu_log_mask(LOG_UNIMP, 210 "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk); 211 } 212 } 213 214 static uint8_t sdhci_slotint(SDHCIState *s) 215 { 216 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) || 217 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) || 218 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV)); 219 } 220 221 /* Return true if IRQ was pending and delivered */ 222 static bool sdhci_update_irq(SDHCIState *s) 223 { 224 bool pending = sdhci_slotint(s); 225 226 qemu_set_irq(s->irq, pending); 227 228 return pending; 229 } 230 231 static void sdhci_raise_insertion_irq(void *opaque) 232 { 233 SDHCIState *s = (SDHCIState *)opaque; 234 235 if (s->norintsts & SDHC_NIS_REMOVE) { 236 timer_mod(s->insert_timer, 237 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY); 238 } else { 239 s->prnsts = 0x1ff0000; 240 if (s->norintstsen & SDHC_NISEN_INSERT) { 241 s->norintsts |= SDHC_NIS_INSERT; 242 } 243 sdhci_update_irq(s); 244 } 245 } 246 247 static void sdhci_set_inserted(DeviceState *dev, bool level) 248 { 249 SDHCIState *s = (SDHCIState *)dev; 250 251 trace_sdhci_set_inserted(level ? "insert" : "eject"); 252 if ((s->norintsts & SDHC_NIS_REMOVE) && level) { 253 /* Give target some time to notice card ejection */ 254 timer_mod(s->insert_timer, 255 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY); 256 } else { 257 if (level) { 258 s->prnsts = 0x1ff0000; 259 if (s->norintstsen & SDHC_NISEN_INSERT) { 260 s->norintsts |= SDHC_NIS_INSERT; 261 } 262 } else { 263 s->prnsts = 0x1fa0000; 264 s->pwrcon &= ~SDHC_POWER_ON; 265 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN; 266 if (s->norintstsen & SDHC_NISEN_REMOVE) { 267 s->norintsts |= SDHC_NIS_REMOVE; 268 } 269 } 270 sdhci_update_irq(s); 271 } 272 } 273 274 static void sdhci_set_readonly(DeviceState *dev, bool level) 275 { 276 SDHCIState *s = (SDHCIState *)dev; 277 278 if (level) { 279 s->prnsts &= ~SDHC_WRITE_PROTECT; 280 } else { 281 /* Write enabled */ 282 s->prnsts |= SDHC_WRITE_PROTECT; 283 } 284 } 285 286 static void sdhci_reset(SDHCIState *s) 287 { 288 DeviceState *dev = DEVICE(s); 289 290 timer_del(s->insert_timer); 291 timer_del(s->transfer_timer); 292 293 /* Set all registers to 0. Capabilities/Version registers are not cleared 294 * and assumed to always preserve their value, given to them during 295 * initialization */ 296 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad); 297 298 /* Reset other state based on current card insertion/readonly status */ 299 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus)); 300 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus)); 301 302 s->data_count = 0; 303 s->stopped_state = sdhc_not_stopped; 304 s->pending_insert_state = false; 305 } 306 307 static void sdhci_poweron_reset(DeviceState *dev) 308 { 309 /* QOM (ie power-on) reset. This is identical to reset 310 * commanded via device register apart from handling of the 311 * 'pending insert on powerup' quirk. 312 */ 313 SDHCIState *s = (SDHCIState *)dev; 314 315 sdhci_reset(s); 316 317 if (s->pending_insert_quirk) { 318 s->pending_insert_state = true; 319 } 320 } 321 322 static void sdhci_data_transfer(void *opaque); 323 324 static void sdhci_send_command(SDHCIState *s) 325 { 326 SDRequest request; 327 uint8_t response[16]; 328 int rlen; 329 bool timeout = false; 330 331 s->errintsts = 0; 332 s->acmd12errsts = 0; 333 request.cmd = s->cmdreg >> 8; 334 request.arg = s->argument; 335 336 trace_sdhci_send_command(request.cmd, request.arg); 337 rlen = sdbus_do_command(&s->sdbus, &request, response); 338 339 if (s->cmdreg & SDHC_CMD_RESPONSE) { 340 if (rlen == 4) { 341 s->rspreg[0] = ldl_be_p(response); 342 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0; 343 trace_sdhci_response4(s->rspreg[0]); 344 } else if (rlen == 16) { 345 s->rspreg[0] = ldl_be_p(&response[11]); 346 s->rspreg[1] = ldl_be_p(&response[7]); 347 s->rspreg[2] = ldl_be_p(&response[3]); 348 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) | 349 response[2]; 350 trace_sdhci_response16(s->rspreg[3], s->rspreg[2], 351 s->rspreg[1], s->rspreg[0]); 352 } else { 353 timeout = true; 354 trace_sdhci_error("timeout waiting for command response"); 355 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) { 356 s->errintsts |= SDHC_EIS_CMDTIMEOUT; 357 s->norintsts |= SDHC_NIS_ERR; 358 } 359 } 360 361 if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) && 362 (s->norintstsen & SDHC_NISEN_TRSCMP) && 363 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) { 364 s->norintsts |= SDHC_NIS_TRSCMP; 365 } 366 } 367 368 if (s->norintstsen & SDHC_NISEN_CMDCMP) { 369 s->norintsts |= SDHC_NIS_CMDCMP; 370 } 371 372 sdhci_update_irq(s); 373 374 if (!timeout && s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) { 375 s->data_count = 0; 376 sdhci_data_transfer(s); 377 } 378 } 379 380 static void sdhci_end_transfer(SDHCIState *s) 381 { 382 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */ 383 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) { 384 SDRequest request; 385 uint8_t response[16]; 386 387 request.cmd = 0x0C; 388 request.arg = 0; 389 trace_sdhci_end_transfer(request.cmd, request.arg); 390 sdbus_do_command(&s->sdbus, &request, response); 391 /* Auto CMD12 response goes to the upper Response register */ 392 s->rspreg[3] = ldl_be_p(response); 393 } 394 395 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE | 396 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT | 397 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE); 398 399 if (s->norintstsen & SDHC_NISEN_TRSCMP) { 400 s->norintsts |= SDHC_NIS_TRSCMP; 401 } 402 403 sdhci_update_irq(s); 404 } 405 406 /* 407 * Programmed i/o data transfer 408 */ 409 #define BLOCK_SIZE_MASK (4 * KiB - 1) 410 411 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */ 412 static void sdhci_read_block_from_card(SDHCIState *s) 413 { 414 const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK; 415 416 if ((s->trnmod & SDHC_TRNS_MULTI) && 417 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) { 418 return; 419 } 420 421 if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) { 422 /* Device is not in tuning */ 423 sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size); 424 } 425 426 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) { 427 /* Device is in tuning */ 428 s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK; 429 s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK; 430 s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ | 431 SDHC_DATA_INHIBIT); 432 goto read_done; 433 } 434 435 /* New data now available for READ through Buffer Port Register */ 436 s->prnsts |= SDHC_DATA_AVAILABLE; 437 if (s->norintstsen & SDHC_NISEN_RBUFRDY) { 438 s->norintsts |= SDHC_NIS_RBUFRDY; 439 } 440 441 /* Clear DAT line active status if that was the last block */ 442 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 443 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) { 444 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 445 } 446 447 /* If stop at block gap request was set and it's not the last block of 448 * data - generate Block Event interrupt */ 449 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) && 450 s->blkcnt != 1) { 451 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 452 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 453 s->norintsts |= SDHC_EIS_BLKGAP; 454 } 455 } 456 457 read_done: 458 sdhci_update_irq(s); 459 } 460 461 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */ 462 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size) 463 { 464 uint32_t value = 0; 465 int i; 466 467 /* first check that a valid data exists in host controller input buffer */ 468 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) { 469 trace_sdhci_error("read from empty buffer"); 470 return 0; 471 } 472 473 for (i = 0; i < size; i++) { 474 value |= s->fifo_buffer[s->data_count] << i * 8; 475 s->data_count++; 476 /* check if we've read all valid data (blksize bytes) from buffer */ 477 if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) { 478 trace_sdhci_read_dataport(s->data_count); 479 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */ 480 s->data_count = 0; /* next buff read must start at position [0] */ 481 482 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 483 s->blkcnt--; 484 } 485 486 /* if that was the last block of data */ 487 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 488 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) || 489 /* stop at gap request */ 490 (s->stopped_state == sdhc_gap_read && 491 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) { 492 sdhci_end_transfer(s); 493 } else { /* if there are more data, read next block from card */ 494 sdhci_read_block_from_card(s); 495 } 496 break; 497 } 498 } 499 500 return value; 501 } 502 503 /* Write data from host controller FIFO to card */ 504 static void sdhci_write_block_to_card(SDHCIState *s) 505 { 506 if (s->prnsts & SDHC_SPACE_AVAILABLE) { 507 if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 508 s->norintsts |= SDHC_NIS_WBUFRDY; 509 } 510 sdhci_update_irq(s); 511 return; 512 } 513 514 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 515 if (s->blkcnt == 0) { 516 return; 517 } else { 518 s->blkcnt--; 519 } 520 } 521 522 sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK); 523 524 /* Next data can be written through BUFFER DATORT register */ 525 s->prnsts |= SDHC_SPACE_AVAILABLE; 526 527 /* Finish transfer if that was the last block of data */ 528 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 529 ((s->trnmod & SDHC_TRNS_MULTI) && 530 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) { 531 sdhci_end_transfer(s); 532 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 533 s->norintsts |= SDHC_NIS_WBUFRDY; 534 } 535 536 /* Generate Block Gap Event if requested and if not the last block */ 537 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) && 538 s->blkcnt > 0) { 539 s->prnsts &= ~SDHC_DOING_WRITE; 540 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 541 s->norintsts |= SDHC_EIS_BLKGAP; 542 } 543 sdhci_end_transfer(s); 544 } 545 546 sdhci_update_irq(s); 547 } 548 549 /* Write @size bytes of @value data to host controller @s Buffer Data Port 550 * register */ 551 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size) 552 { 553 unsigned i; 554 555 /* Check that there is free space left in a buffer */ 556 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) { 557 trace_sdhci_error("Can't write to data buffer: buffer full"); 558 return; 559 } 560 561 for (i = 0; i < size; i++) { 562 s->fifo_buffer[s->data_count] = value & 0xFF; 563 s->data_count++; 564 value >>= 8; 565 if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) { 566 trace_sdhci_write_dataport(s->data_count); 567 s->data_count = 0; 568 s->prnsts &= ~SDHC_SPACE_AVAILABLE; 569 if (s->prnsts & SDHC_DOING_WRITE) { 570 sdhci_write_block_to_card(s); 571 } 572 } 573 } 574 } 575 576 /* 577 * Single DMA data transfer 578 */ 579 580 /* Multi block SDMA transfer */ 581 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s) 582 { 583 bool page_aligned = false; 584 unsigned int begin; 585 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK; 586 uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12); 587 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk); 588 589 if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) { 590 qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n"); 591 return; 592 } 593 594 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for 595 * possible stop at page boundary if initial address is not page aligned, 596 * allow them to work properly */ 597 if ((s->sdmasysad % boundary_chk) == 0) { 598 page_aligned = true; 599 } 600 601 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; 602 if (s->trnmod & SDHC_TRNS_READ) { 603 s->prnsts |= SDHC_DOING_READ; 604 while (s->blkcnt) { 605 if (s->data_count == 0) { 606 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size); 607 } 608 begin = s->data_count; 609 if (((boundary_count + begin) < block_size) && page_aligned) { 610 s->data_count = boundary_count + begin; 611 boundary_count = 0; 612 } else { 613 s->data_count = block_size; 614 boundary_count -= block_size - begin; 615 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 616 s->blkcnt--; 617 } 618 } 619 dma_memory_write(s->dma_as, s->sdmasysad, 620 &s->fifo_buffer[begin], s->data_count - begin); 621 s->sdmasysad += s->data_count - begin; 622 if (s->data_count == block_size) { 623 s->data_count = 0; 624 } 625 if (page_aligned && boundary_count == 0) { 626 break; 627 } 628 } 629 } else { 630 s->prnsts |= SDHC_DOING_WRITE; 631 while (s->blkcnt) { 632 begin = s->data_count; 633 if (((boundary_count + begin) < block_size) && page_aligned) { 634 s->data_count = boundary_count + begin; 635 boundary_count = 0; 636 } else { 637 s->data_count = block_size; 638 boundary_count -= block_size - begin; 639 } 640 dma_memory_read(s->dma_as, s->sdmasysad, 641 &s->fifo_buffer[begin], s->data_count - begin); 642 s->sdmasysad += s->data_count - begin; 643 if (s->data_count == block_size) { 644 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size); 645 s->data_count = 0; 646 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 647 s->blkcnt--; 648 } 649 } 650 if (page_aligned && boundary_count == 0) { 651 break; 652 } 653 } 654 } 655 656 if (s->blkcnt == 0) { 657 sdhci_end_transfer(s); 658 } else { 659 if (s->norintstsen & SDHC_NISEN_DMA) { 660 s->norintsts |= SDHC_NIS_DMA; 661 } 662 sdhci_update_irq(s); 663 } 664 } 665 666 /* single block SDMA transfer */ 667 static void sdhci_sdma_transfer_single_block(SDHCIState *s) 668 { 669 uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK; 670 671 if (s->trnmod & SDHC_TRNS_READ) { 672 sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt); 673 dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt); 674 } else { 675 dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt); 676 sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt); 677 } 678 s->blkcnt--; 679 680 sdhci_end_transfer(s); 681 } 682 683 typedef struct ADMADescr { 684 hwaddr addr; 685 uint16_t length; 686 uint8_t attr; 687 uint8_t incr; 688 } ADMADescr; 689 690 static void get_adma_description(SDHCIState *s, ADMADescr *dscr) 691 { 692 uint32_t adma1 = 0; 693 uint64_t adma2 = 0; 694 hwaddr entry_addr = (hwaddr)s->admasysaddr; 695 switch (SDHC_DMA_TYPE(s->hostctl1)) { 696 case SDHC_CTRL_ADMA2_32: 697 dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2)); 698 adma2 = le64_to_cpu(adma2); 699 /* The spec does not specify endianness of descriptor table. 700 * We currently assume that it is LE. 701 */ 702 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull; 703 dscr->length = (uint16_t)extract64(adma2, 16, 16); 704 dscr->attr = (uint8_t)extract64(adma2, 0, 7); 705 dscr->incr = 8; 706 break; 707 case SDHC_CTRL_ADMA1_32: 708 dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1)); 709 adma1 = le32_to_cpu(adma1); 710 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000); 711 dscr->attr = (uint8_t)extract32(adma1, 0, 7); 712 dscr->incr = 4; 713 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) { 714 dscr->length = (uint16_t)extract32(adma1, 12, 16); 715 } else { 716 dscr->length = 4 * KiB; 717 } 718 break; 719 case SDHC_CTRL_ADMA2_64: 720 dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1); 721 dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2); 722 dscr->length = le16_to_cpu(dscr->length); 723 dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8); 724 dscr->addr = le64_to_cpu(dscr->addr); 725 dscr->attr &= (uint8_t) ~0xC0; 726 dscr->incr = 12; 727 break; 728 } 729 } 730 731 /* Advanced DMA data transfer */ 732 733 static void sdhci_do_adma(SDHCIState *s) 734 { 735 unsigned int begin, length; 736 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK; 737 ADMADescr dscr = {}; 738 int i; 739 740 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) { 741 /* Stop Multiple Transfer */ 742 sdhci_end_transfer(s); 743 return; 744 } 745 746 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) { 747 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH; 748 749 get_adma_description(s, &dscr); 750 trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr); 751 752 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) { 753 /* Indicate that error occurred in ST_FDS state */ 754 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK; 755 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS; 756 757 /* Generate ADMA error interrupt */ 758 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 759 s->errintsts |= SDHC_EIS_ADMAERR; 760 s->norintsts |= SDHC_NIS_ERR; 761 } 762 763 sdhci_update_irq(s); 764 return; 765 } 766 767 length = dscr.length ? dscr.length : 64 * KiB; 768 769 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) { 770 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */ 771 s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE; 772 if (s->trnmod & SDHC_TRNS_READ) { 773 s->prnsts |= SDHC_DOING_READ; 774 while (length) { 775 if (s->data_count == 0) { 776 sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size); 777 } 778 begin = s->data_count; 779 if ((length + begin) < block_size) { 780 s->data_count = length + begin; 781 length = 0; 782 } else { 783 s->data_count = block_size; 784 length -= block_size - begin; 785 } 786 dma_memory_write(s->dma_as, dscr.addr, 787 &s->fifo_buffer[begin], 788 s->data_count - begin); 789 dscr.addr += s->data_count - begin; 790 if (s->data_count == block_size) { 791 s->data_count = 0; 792 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 793 s->blkcnt--; 794 if (s->blkcnt == 0) { 795 break; 796 } 797 } 798 } 799 } 800 } else { 801 s->prnsts |= SDHC_DOING_WRITE; 802 while (length) { 803 begin = s->data_count; 804 if ((length + begin) < block_size) { 805 s->data_count = length + begin; 806 length = 0; 807 } else { 808 s->data_count = block_size; 809 length -= block_size - begin; 810 } 811 dma_memory_read(s->dma_as, dscr.addr, 812 &s->fifo_buffer[begin], 813 s->data_count - begin); 814 dscr.addr += s->data_count - begin; 815 if (s->data_count == block_size) { 816 sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size); 817 s->data_count = 0; 818 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 819 s->blkcnt--; 820 if (s->blkcnt == 0) { 821 break; 822 } 823 } 824 } 825 } 826 } 827 s->admasysaddr += dscr.incr; 828 break; 829 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */ 830 s->admasysaddr = dscr.addr; 831 trace_sdhci_adma("link", s->admasysaddr); 832 break; 833 default: 834 s->admasysaddr += dscr.incr; 835 break; 836 } 837 838 if (dscr.attr & SDHC_ADMA_ATTR_INT) { 839 trace_sdhci_adma("interrupt", s->admasysaddr); 840 if (s->norintstsen & SDHC_NISEN_DMA) { 841 s->norintsts |= SDHC_NIS_DMA; 842 } 843 844 if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) { 845 /* IRQ delivered, reschedule current transfer */ 846 break; 847 } 848 } 849 850 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */ 851 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 852 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) { 853 trace_sdhci_adma_transfer_completed(); 854 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) && 855 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 856 s->blkcnt != 0)) { 857 trace_sdhci_error("SD/MMC host ADMA length mismatch"); 858 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH | 859 SDHC_ADMAERR_STATE_ST_TFR; 860 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 861 trace_sdhci_error("Set ADMA error flag"); 862 s->errintsts |= SDHC_EIS_ADMAERR; 863 s->norintsts |= SDHC_NIS_ERR; 864 } 865 866 sdhci_update_irq(s); 867 } 868 sdhci_end_transfer(s); 869 return; 870 } 871 872 } 873 874 /* we have unfinished business - reschedule to continue ADMA */ 875 timer_mod(s->transfer_timer, 876 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY); 877 } 878 879 /* Perform data transfer according to controller configuration */ 880 881 static void sdhci_data_transfer(void *opaque) 882 { 883 SDHCIState *s = (SDHCIState *)opaque; 884 885 if (s->trnmod & SDHC_TRNS_DMA) { 886 switch (SDHC_DMA_TYPE(s->hostctl1)) { 887 case SDHC_CTRL_SDMA: 888 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) { 889 sdhci_sdma_transfer_single_block(s); 890 } else { 891 sdhci_sdma_transfer_multi_blocks(s); 892 } 893 894 break; 895 case SDHC_CTRL_ADMA1_32: 896 if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) { 897 trace_sdhci_error("ADMA1 not supported"); 898 break; 899 } 900 901 sdhci_do_adma(s); 902 break; 903 case SDHC_CTRL_ADMA2_32: 904 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) { 905 trace_sdhci_error("ADMA2 not supported"); 906 break; 907 } 908 909 sdhci_do_adma(s); 910 break; 911 case SDHC_CTRL_ADMA2_64: 912 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) || 913 !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) { 914 trace_sdhci_error("64 bit ADMA not supported"); 915 break; 916 } 917 918 sdhci_do_adma(s); 919 break; 920 default: 921 trace_sdhci_error("Unsupported DMA type"); 922 break; 923 } 924 } else { 925 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) { 926 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | 927 SDHC_DAT_LINE_ACTIVE; 928 sdhci_read_block_from_card(s); 929 } else { 930 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | 931 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT; 932 sdhci_write_block_to_card(s); 933 } 934 } 935 } 936 937 static bool sdhci_can_issue_command(SDHCIState *s) 938 { 939 if (!SDHC_CLOCK_IS_ON(s->clkcon) || 940 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) && 941 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) || 942 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY && 943 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) { 944 return false; 945 } 946 947 return true; 948 } 949 950 /* The Buffer Data Port register must be accessed in sequential and 951 * continuous manner */ 952 static inline bool 953 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num) 954 { 955 if ((s->data_count & 0x3) != byte_num) { 956 trace_sdhci_error("Non-sequential access to Buffer Data Port register" 957 "is prohibited\n"); 958 return false; 959 } 960 return true; 961 } 962 963 static void sdhci_resume_pending_transfer(SDHCIState *s) 964 { 965 timer_del(s->transfer_timer); 966 sdhci_data_transfer(s); 967 } 968 969 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size) 970 { 971 SDHCIState *s = (SDHCIState *)opaque; 972 uint32_t ret = 0; 973 974 if (timer_pending(s->transfer_timer)) { 975 sdhci_resume_pending_transfer(s); 976 } 977 978 switch (offset & ~0x3) { 979 case SDHC_SYSAD: 980 ret = s->sdmasysad; 981 break; 982 case SDHC_BLKSIZE: 983 ret = s->blksize | (s->blkcnt << 16); 984 break; 985 case SDHC_ARGUMENT: 986 ret = s->argument; 987 break; 988 case SDHC_TRNMOD: 989 ret = s->trnmod | (s->cmdreg << 16); 990 break; 991 case SDHC_RSPREG0 ... SDHC_RSPREG3: 992 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2]; 993 break; 994 case SDHC_BDATA: 995 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 996 ret = sdhci_read_dataport(s, size); 997 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret); 998 return ret; 999 } 1000 break; 1001 case SDHC_PRNSTS: 1002 ret = s->prnsts; 1003 ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL, 1004 sdbus_get_dat_lines(&s->sdbus)); 1005 ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL, 1006 sdbus_get_cmd_line(&s->sdbus)); 1007 break; 1008 case SDHC_HOSTCTL: 1009 ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) | 1010 (s->wakcon << 24); 1011 break; 1012 case SDHC_CLKCON: 1013 ret = s->clkcon | (s->timeoutcon << 16); 1014 break; 1015 case SDHC_NORINTSTS: 1016 ret = s->norintsts | (s->errintsts << 16); 1017 break; 1018 case SDHC_NORINTSTSEN: 1019 ret = s->norintstsen | (s->errintstsen << 16); 1020 break; 1021 case SDHC_NORINTSIGEN: 1022 ret = s->norintsigen | (s->errintsigen << 16); 1023 break; 1024 case SDHC_ACMD12ERRSTS: 1025 ret = s->acmd12errsts | (s->hostctl2 << 16); 1026 break; 1027 case SDHC_CAPAB: 1028 ret = (uint32_t)s->capareg; 1029 break; 1030 case SDHC_CAPAB + 4: 1031 ret = (uint32_t)(s->capareg >> 32); 1032 break; 1033 case SDHC_MAXCURR: 1034 ret = (uint32_t)s->maxcurr; 1035 break; 1036 case SDHC_MAXCURR + 4: 1037 ret = (uint32_t)(s->maxcurr >> 32); 1038 break; 1039 case SDHC_ADMAERR: 1040 ret = s->admaerr; 1041 break; 1042 case SDHC_ADMASYSADDR: 1043 ret = (uint32_t)s->admasysaddr; 1044 break; 1045 case SDHC_ADMASYSADDR + 4: 1046 ret = (uint32_t)(s->admasysaddr >> 32); 1047 break; 1048 case SDHC_SLOT_INT_STATUS: 1049 ret = (s->version << 16) | sdhci_slotint(s); 1050 break; 1051 default: 1052 qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " " 1053 "not implemented\n", size, offset); 1054 break; 1055 } 1056 1057 ret >>= (offset & 0x3) * 8; 1058 ret &= (1ULL << (size * 8)) - 1; 1059 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret); 1060 return ret; 1061 } 1062 1063 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value) 1064 { 1065 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) { 1066 return; 1067 } 1068 s->blkgap = value & SDHC_STOP_AT_GAP_REQ; 1069 1070 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state && 1071 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) { 1072 if (s->stopped_state == sdhc_gap_read) { 1073 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ; 1074 sdhci_read_block_from_card(s); 1075 } else { 1076 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE; 1077 sdhci_write_block_to_card(s); 1078 } 1079 s->stopped_state = sdhc_not_stopped; 1080 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) { 1081 if (s->prnsts & SDHC_DOING_READ) { 1082 s->stopped_state = sdhc_gap_read; 1083 } else if (s->prnsts & SDHC_DOING_WRITE) { 1084 s->stopped_state = sdhc_gap_write; 1085 } 1086 } 1087 } 1088 1089 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value) 1090 { 1091 switch (value) { 1092 case SDHC_RESET_ALL: 1093 sdhci_reset(s); 1094 break; 1095 case SDHC_RESET_CMD: 1096 s->prnsts &= ~SDHC_CMD_INHIBIT; 1097 s->norintsts &= ~SDHC_NIS_CMDCMP; 1098 break; 1099 case SDHC_RESET_DATA: 1100 s->data_count = 0; 1101 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE | 1102 SDHC_DOING_READ | SDHC_DOING_WRITE | 1103 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE); 1104 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ); 1105 s->stopped_state = sdhc_not_stopped; 1106 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY | 1107 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP); 1108 break; 1109 } 1110 } 1111 1112 static void 1113 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) 1114 { 1115 SDHCIState *s = (SDHCIState *)opaque; 1116 unsigned shift = 8 * (offset & 0x3); 1117 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift); 1118 uint32_t value = val; 1119 value <<= shift; 1120 1121 if (timer_pending(s->transfer_timer)) { 1122 sdhci_resume_pending_transfer(s); 1123 } 1124 1125 switch (offset & ~0x3) { 1126 case SDHC_SYSAD: 1127 if (!TRANSFERRING_DATA(s->prnsts)) { 1128 s->sdmasysad = (s->sdmasysad & mask) | value; 1129 MASKED_WRITE(s->sdmasysad, mask, value); 1130 /* Writing to last byte of sdmasysad might trigger transfer */ 1131 if (!(mask & 0xFF000000) && s->blkcnt && s->blksize && 1132 SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) { 1133 if (s->trnmod & SDHC_TRNS_MULTI) { 1134 sdhci_sdma_transfer_multi_blocks(s); 1135 } else { 1136 sdhci_sdma_transfer_single_block(s); 1137 } 1138 } 1139 } 1140 break; 1141 case SDHC_BLKSIZE: 1142 if (!TRANSFERRING_DATA(s->prnsts)) { 1143 uint16_t blksize = s->blksize; 1144 1145 MASKED_WRITE(s->blksize, mask, extract32(value, 0, 12)); 1146 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16); 1147 1148 /* Limit block size to the maximum buffer size */ 1149 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) { 1150 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " 1151 "the maximum buffer 0x%x\n", __func__, s->blksize, 1152 s->buf_maxsz); 1153 1154 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz); 1155 } 1156 1157 /* 1158 * If the block size is programmed to a different value from 1159 * the previous one, reset the data pointer of s->fifo_buffer[] 1160 * so that s->fifo_buffer[] can be filled in using the new block 1161 * size in the next transfer. 1162 */ 1163 if (blksize != s->blksize) { 1164 s->data_count = 0; 1165 } 1166 } 1167 1168 break; 1169 case SDHC_ARGUMENT: 1170 MASKED_WRITE(s->argument, mask, value); 1171 break; 1172 case SDHC_TRNMOD: 1173 /* DMA can be enabled only if it is supported as indicated by 1174 * capabilities register */ 1175 if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) { 1176 value &= ~SDHC_TRNS_DMA; 1177 } 1178 MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK); 1179 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16); 1180 1181 /* Writing to the upper byte of CMDREG triggers SD command generation */ 1182 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) { 1183 break; 1184 } 1185 1186 sdhci_send_command(s); 1187 break; 1188 case SDHC_BDATA: 1189 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 1190 sdhci_write_dataport(s, value >> shift, size); 1191 } 1192 break; 1193 case SDHC_HOSTCTL: 1194 if (!(mask & 0xFF0000)) { 1195 sdhci_blkgap_write(s, value >> 16); 1196 } 1197 MASKED_WRITE(s->hostctl1, mask, value); 1198 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8); 1199 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24); 1200 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 || 1201 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) { 1202 s->pwrcon &= ~SDHC_POWER_ON; 1203 } 1204 break; 1205 case SDHC_CLKCON: 1206 if (!(mask & 0xFF000000)) { 1207 sdhci_reset_write(s, value >> 24); 1208 } 1209 MASKED_WRITE(s->clkcon, mask, value); 1210 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16); 1211 if (s->clkcon & SDHC_CLOCK_INT_EN) { 1212 s->clkcon |= SDHC_CLOCK_INT_STABLE; 1213 } else { 1214 s->clkcon &= ~SDHC_CLOCK_INT_STABLE; 1215 } 1216 break; 1217 case SDHC_NORINTSTS: 1218 if (s->norintstsen & SDHC_NISEN_CARDINT) { 1219 value &= ~SDHC_NIS_CARDINT; 1220 } 1221 s->norintsts &= mask | ~value; 1222 s->errintsts &= (mask >> 16) | ~(value >> 16); 1223 if (s->errintsts) { 1224 s->norintsts |= SDHC_NIS_ERR; 1225 } else { 1226 s->norintsts &= ~SDHC_NIS_ERR; 1227 } 1228 sdhci_update_irq(s); 1229 break; 1230 case SDHC_NORINTSTSEN: 1231 MASKED_WRITE(s->norintstsen, mask, value); 1232 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16); 1233 s->norintsts &= s->norintstsen; 1234 s->errintsts &= s->errintstsen; 1235 if (s->errintsts) { 1236 s->norintsts |= SDHC_NIS_ERR; 1237 } else { 1238 s->norintsts &= ~SDHC_NIS_ERR; 1239 } 1240 /* Quirk for Raspberry Pi: pending card insert interrupt 1241 * appears when first enabled after power on */ 1242 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) { 1243 assert(s->pending_insert_quirk); 1244 s->norintsts |= SDHC_NIS_INSERT; 1245 s->pending_insert_state = false; 1246 } 1247 sdhci_update_irq(s); 1248 break; 1249 case SDHC_NORINTSIGEN: 1250 MASKED_WRITE(s->norintsigen, mask, value); 1251 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16); 1252 sdhci_update_irq(s); 1253 break; 1254 case SDHC_ADMAERR: 1255 MASKED_WRITE(s->admaerr, mask, value); 1256 break; 1257 case SDHC_ADMASYSADDR: 1258 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL | 1259 (uint64_t)mask)) | (uint64_t)value; 1260 break; 1261 case SDHC_ADMASYSADDR + 4: 1262 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL | 1263 ((uint64_t)mask << 32))) | ((uint64_t)value << 32); 1264 break; 1265 case SDHC_FEAER: 1266 s->acmd12errsts |= value; 1267 s->errintsts |= (value >> 16) & s->errintstsen; 1268 if (s->acmd12errsts) { 1269 s->errintsts |= SDHC_EIS_CMD12ERR; 1270 } 1271 if (s->errintsts) { 1272 s->norintsts |= SDHC_NIS_ERR; 1273 } 1274 sdhci_update_irq(s); 1275 break; 1276 case SDHC_ACMD12ERRSTS: 1277 MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX); 1278 if (s->uhs_mode >= UHS_I) { 1279 MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16); 1280 1281 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) { 1282 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V); 1283 } else { 1284 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V); 1285 } 1286 } 1287 break; 1288 1289 case SDHC_CAPAB: 1290 case SDHC_CAPAB + 4: 1291 case SDHC_MAXCURR: 1292 case SDHC_MAXCURR + 4: 1293 qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx 1294 " <- 0x%08x read-only\n", size, offset, value >> shift); 1295 break; 1296 1297 default: 1298 qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x " 1299 "not implemented\n", size, offset, value >> shift); 1300 break; 1301 } 1302 trace_sdhci_access("wr", size << 3, offset, "<-", 1303 value >> shift, value >> shift); 1304 } 1305 1306 static const MemoryRegionOps sdhci_mmio_ops = { 1307 .read = sdhci_read, 1308 .write = sdhci_write, 1309 .valid = { 1310 .min_access_size = 1, 1311 .max_access_size = 4, 1312 .unaligned = false 1313 }, 1314 .endianness = DEVICE_LITTLE_ENDIAN, 1315 }; 1316 1317 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp) 1318 { 1319 ERRP_GUARD(); 1320 1321 switch (s->sd_spec_version) { 1322 case 2 ... 3: 1323 break; 1324 default: 1325 error_setg(errp, "Only Spec v2/v3 are supported"); 1326 return; 1327 } 1328 s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1); 1329 1330 sdhci_check_capareg(s, errp); 1331 if (*errp) { 1332 return; 1333 } 1334 } 1335 1336 /* --- qdev common --- */ 1337 1338 void sdhci_initfn(SDHCIState *s) 1339 { 1340 qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus"); 1341 1342 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s); 1343 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s); 1344 1345 s->io_ops = &sdhci_mmio_ops; 1346 } 1347 1348 void sdhci_uninitfn(SDHCIState *s) 1349 { 1350 timer_free(s->insert_timer); 1351 timer_free(s->transfer_timer); 1352 1353 g_free(s->fifo_buffer); 1354 s->fifo_buffer = NULL; 1355 } 1356 1357 void sdhci_common_realize(SDHCIState *s, Error **errp) 1358 { 1359 ERRP_GUARD(); 1360 1361 sdhci_init_readonly_registers(s, errp); 1362 if (*errp) { 1363 return; 1364 } 1365 s->buf_maxsz = sdhci_get_fifolen(s); 1366 s->fifo_buffer = g_malloc0(s->buf_maxsz); 1367 1368 memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci", 1369 SDHC_REGISTERS_MAP_SIZE); 1370 } 1371 1372 void sdhci_common_unrealize(SDHCIState *s) 1373 { 1374 /* This function is expected to be called only once for each class: 1375 * - SysBus: via DeviceClass->unrealize(), 1376 * - PCI: via PCIDeviceClass->exit(). 1377 * However to avoid double-free and/or use-after-free we still nullify 1378 * this variable (better safe than sorry!). */ 1379 g_free(s->fifo_buffer); 1380 s->fifo_buffer = NULL; 1381 } 1382 1383 static bool sdhci_pending_insert_vmstate_needed(void *opaque) 1384 { 1385 SDHCIState *s = opaque; 1386 1387 return s->pending_insert_state; 1388 } 1389 1390 static const VMStateDescription sdhci_pending_insert_vmstate = { 1391 .name = "sdhci/pending-insert", 1392 .version_id = 1, 1393 .minimum_version_id = 1, 1394 .needed = sdhci_pending_insert_vmstate_needed, 1395 .fields = (VMStateField[]) { 1396 VMSTATE_BOOL(pending_insert_state, SDHCIState), 1397 VMSTATE_END_OF_LIST() 1398 }, 1399 }; 1400 1401 const VMStateDescription sdhci_vmstate = { 1402 .name = "sdhci", 1403 .version_id = 1, 1404 .minimum_version_id = 1, 1405 .fields = (VMStateField[]) { 1406 VMSTATE_UINT32(sdmasysad, SDHCIState), 1407 VMSTATE_UINT16(blksize, SDHCIState), 1408 VMSTATE_UINT16(blkcnt, SDHCIState), 1409 VMSTATE_UINT32(argument, SDHCIState), 1410 VMSTATE_UINT16(trnmod, SDHCIState), 1411 VMSTATE_UINT16(cmdreg, SDHCIState), 1412 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4), 1413 VMSTATE_UINT32(prnsts, SDHCIState), 1414 VMSTATE_UINT8(hostctl1, SDHCIState), 1415 VMSTATE_UINT8(pwrcon, SDHCIState), 1416 VMSTATE_UINT8(blkgap, SDHCIState), 1417 VMSTATE_UINT8(wakcon, SDHCIState), 1418 VMSTATE_UINT16(clkcon, SDHCIState), 1419 VMSTATE_UINT8(timeoutcon, SDHCIState), 1420 VMSTATE_UINT8(admaerr, SDHCIState), 1421 VMSTATE_UINT16(norintsts, SDHCIState), 1422 VMSTATE_UINT16(errintsts, SDHCIState), 1423 VMSTATE_UINT16(norintstsen, SDHCIState), 1424 VMSTATE_UINT16(errintstsen, SDHCIState), 1425 VMSTATE_UINT16(norintsigen, SDHCIState), 1426 VMSTATE_UINT16(errintsigen, SDHCIState), 1427 VMSTATE_UINT16(acmd12errsts, SDHCIState), 1428 VMSTATE_UINT16(data_count, SDHCIState), 1429 VMSTATE_UINT64(admasysaddr, SDHCIState), 1430 VMSTATE_UINT8(stopped_state, SDHCIState), 1431 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz), 1432 VMSTATE_TIMER_PTR(insert_timer, SDHCIState), 1433 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState), 1434 VMSTATE_END_OF_LIST() 1435 }, 1436 .subsections = (const VMStateDescription*[]) { 1437 &sdhci_pending_insert_vmstate, 1438 NULL 1439 }, 1440 }; 1441 1442 void sdhci_common_class_init(ObjectClass *klass, void *data) 1443 { 1444 DeviceClass *dc = DEVICE_CLASS(klass); 1445 1446 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 1447 dc->vmsd = &sdhci_vmstate; 1448 dc->reset = sdhci_poweron_reset; 1449 } 1450 1451 /* --- qdev SysBus --- */ 1452 1453 static Property sdhci_sysbus_properties[] = { 1454 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState), 1455 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk, 1456 false), 1457 DEFINE_PROP_LINK("dma", SDHCIState, 1458 dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), 1459 DEFINE_PROP_END_OF_LIST(), 1460 }; 1461 1462 static void sdhci_sysbus_init(Object *obj) 1463 { 1464 SDHCIState *s = SYSBUS_SDHCI(obj); 1465 1466 sdhci_initfn(s); 1467 } 1468 1469 static void sdhci_sysbus_finalize(Object *obj) 1470 { 1471 SDHCIState *s = SYSBUS_SDHCI(obj); 1472 1473 if (s->dma_mr) { 1474 object_unparent(OBJECT(s->dma_mr)); 1475 } 1476 1477 sdhci_uninitfn(s); 1478 } 1479 1480 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp) 1481 { 1482 ERRP_GUARD(); 1483 SDHCIState *s = SYSBUS_SDHCI(dev); 1484 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1485 1486 sdhci_common_realize(s, errp); 1487 if (*errp) { 1488 return; 1489 } 1490 1491 if (s->dma_mr) { 1492 s->dma_as = &s->sysbus_dma_as; 1493 address_space_init(s->dma_as, s->dma_mr, "sdhci-dma"); 1494 } else { 1495 /* use system_memory() if property "dma" not set */ 1496 s->dma_as = &address_space_memory; 1497 } 1498 1499 sysbus_init_irq(sbd, &s->irq); 1500 1501 sysbus_init_mmio(sbd, &s->iomem); 1502 } 1503 1504 static void sdhci_sysbus_unrealize(DeviceState *dev) 1505 { 1506 SDHCIState *s = SYSBUS_SDHCI(dev); 1507 1508 sdhci_common_unrealize(s); 1509 1510 if (s->dma_mr) { 1511 address_space_destroy(s->dma_as); 1512 } 1513 } 1514 1515 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data) 1516 { 1517 DeviceClass *dc = DEVICE_CLASS(klass); 1518 1519 device_class_set_props(dc, sdhci_sysbus_properties); 1520 dc->realize = sdhci_sysbus_realize; 1521 dc->unrealize = sdhci_sysbus_unrealize; 1522 1523 sdhci_common_class_init(klass, data); 1524 } 1525 1526 static const TypeInfo sdhci_sysbus_info = { 1527 .name = TYPE_SYSBUS_SDHCI, 1528 .parent = TYPE_SYS_BUS_DEVICE, 1529 .instance_size = sizeof(SDHCIState), 1530 .instance_init = sdhci_sysbus_init, 1531 .instance_finalize = sdhci_sysbus_finalize, 1532 .class_init = sdhci_sysbus_class_init, 1533 }; 1534 1535 /* --- qdev bus master --- */ 1536 1537 static void sdhci_bus_class_init(ObjectClass *klass, void *data) 1538 { 1539 SDBusClass *sbc = SD_BUS_CLASS(klass); 1540 1541 sbc->set_inserted = sdhci_set_inserted; 1542 sbc->set_readonly = sdhci_set_readonly; 1543 } 1544 1545 static const TypeInfo sdhci_bus_info = { 1546 .name = TYPE_SDHCI_BUS, 1547 .parent = TYPE_SD_BUS, 1548 .instance_size = sizeof(SDBus), 1549 .class_init = sdhci_bus_class_init, 1550 }; 1551 1552 /* --- qdev i.MX eSDHC --- */ 1553 1554 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size) 1555 { 1556 SDHCIState *s = SYSBUS_SDHCI(opaque); 1557 uint32_t ret; 1558 uint16_t hostctl1; 1559 1560 switch (offset) { 1561 default: 1562 return sdhci_read(opaque, offset, size); 1563 1564 case SDHC_HOSTCTL: 1565 /* 1566 * For a detailed explanation on the following bit 1567 * manipulation code see comments in a similar part of 1568 * usdhc_write() 1569 */ 1570 hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3); 1571 1572 if (s->hostctl1 & SDHC_CTRL_8BITBUS) { 1573 hostctl1 |= ESDHC_CTRL_8BITBUS; 1574 } 1575 1576 if (s->hostctl1 & SDHC_CTRL_4BITBUS) { 1577 hostctl1 |= ESDHC_CTRL_4BITBUS; 1578 } 1579 1580 ret = hostctl1; 1581 ret |= (uint32_t)s->blkgap << 16; 1582 ret |= (uint32_t)s->wakcon << 24; 1583 1584 break; 1585 1586 case SDHC_PRNSTS: 1587 /* Add SDSTB (SD Clock Stable) bit to PRNSTS */ 1588 ret = sdhci_read(opaque, offset, size) & ~ESDHC_PRNSTS_SDSTB; 1589 if (s->clkcon & SDHC_CLOCK_INT_STABLE) { 1590 ret |= ESDHC_PRNSTS_SDSTB; 1591 } 1592 break; 1593 1594 case ESDHC_VENDOR_SPEC: 1595 ret = s->vendor_spec; 1596 break; 1597 case ESDHC_DLL_CTRL: 1598 case ESDHC_TUNE_CTRL_STATUS: 1599 case ESDHC_UNDOCUMENTED_REG27: 1600 case ESDHC_TUNING_CTRL: 1601 case ESDHC_MIX_CTRL: 1602 case ESDHC_WTMK_LVL: 1603 ret = 0; 1604 break; 1605 } 1606 1607 return ret; 1608 } 1609 1610 static void 1611 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) 1612 { 1613 SDHCIState *s = SYSBUS_SDHCI(opaque); 1614 uint8_t hostctl1; 1615 uint32_t value = (uint32_t)val; 1616 1617 switch (offset) { 1618 case ESDHC_DLL_CTRL: 1619 case ESDHC_TUNE_CTRL_STATUS: 1620 case ESDHC_UNDOCUMENTED_REG27: 1621 case ESDHC_TUNING_CTRL: 1622 case ESDHC_WTMK_LVL: 1623 break; 1624 1625 case ESDHC_VENDOR_SPEC: 1626 s->vendor_spec = value; 1627 switch (s->vendor) { 1628 case SDHCI_VENDOR_IMX: 1629 if (value & ESDHC_IMX_FRC_SDCLK_ON) { 1630 s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF; 1631 } else { 1632 s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF; 1633 } 1634 break; 1635 default: 1636 break; 1637 } 1638 break; 1639 1640 case SDHC_HOSTCTL: 1641 /* 1642 * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL) 1643 * 1644 * 7 6 5 4 3 2 1 0 1645 * |-----------+--------+--------+-----------+----------+---------| 1646 * | Card | Card | Endian | DATA3 | Data | Led | 1647 * | Detect | Detect | Mode | as Card | Transfer | Control | 1648 * | Signal | Test | | Detection | Width | | 1649 * | Selection | Level | | Pin | | | 1650 * |-----------+--------+--------+-----------+----------+---------| 1651 * 1652 * and 0x29 1653 * 1654 * 15 10 9 8 1655 * |----------+------| 1656 * | Reserved | DMA | 1657 * | | Sel. | 1658 * | | | 1659 * |----------+------| 1660 * 1661 * and here's what SDCHI spec expects those offsets to be: 1662 * 1663 * 0x28 (Host Control Register) 1664 * 1665 * 7 6 5 4 3 2 1 0 1666 * |--------+--------+----------+------+--------+----------+---------| 1667 * | Card | Card | Extended | DMA | High | Data | LED | 1668 * | Detect | Detect | Data | Sel. | Speed | Transfer | Control | 1669 * | Signal | Test | Transfer | | Enable | Width | | 1670 * | Sel. | Level | Width | | | | | 1671 * |--------+--------+----------+------+--------+----------+---------| 1672 * 1673 * and 0x29 (Power Control Register) 1674 * 1675 * |----------------------------------| 1676 * | Power Control Register | 1677 * | | 1678 * | Description omitted, | 1679 * | since it has no analog in ESDHCI | 1680 * | | 1681 * |----------------------------------| 1682 * 1683 * Since offsets 0x2A and 0x2B should be compatible between 1684 * both IP specs we only need to reconcile least 16-bit of the 1685 * word we've been given. 1686 */ 1687 1688 /* 1689 * First, save bits 7 6 and 0 since they are identical 1690 */ 1691 hostctl1 = value & (SDHC_CTRL_LED | 1692 SDHC_CTRL_CDTEST_INS | 1693 SDHC_CTRL_CDTEST_EN); 1694 /* 1695 * Second, split "Data Transfer Width" from bits 2 and 1 in to 1696 * bits 5 and 1 1697 */ 1698 if (value & ESDHC_CTRL_8BITBUS) { 1699 hostctl1 |= SDHC_CTRL_8BITBUS; 1700 } 1701 1702 if (value & ESDHC_CTRL_4BITBUS) { 1703 hostctl1 |= ESDHC_CTRL_4BITBUS; 1704 } 1705 1706 /* 1707 * Third, move DMA select from bits 9 and 8 to bits 4 and 3 1708 */ 1709 hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3)); 1710 1711 /* 1712 * Now place the corrected value into low 16-bit of the value 1713 * we are going to give standard SDHCI write function 1714 * 1715 * NOTE: This transformation should be the inverse of what can 1716 * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux 1717 * kernel 1718 */ 1719 value &= ~UINT16_MAX; 1720 value |= hostctl1; 1721 value |= (uint16_t)s->pwrcon << 8; 1722 1723 sdhci_write(opaque, offset, value, size); 1724 break; 1725 1726 case ESDHC_MIX_CTRL: 1727 /* 1728 * So, when SD/MMC stack in Linux tries to write to "Transfer 1729 * Mode Register", ESDHC i.MX quirk code will translate it 1730 * into a write to ESDHC_MIX_CTRL, so we do the opposite in 1731 * order to get where we started 1732 * 1733 * Note that Auto CMD23 Enable bit is located in a wrong place 1734 * on i.MX, but since it is not used by QEMU we do not care. 1735 * 1736 * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...) 1737 * here becuase it will result in a call to 1738 * sdhci_send_command(s) which we don't want. 1739 * 1740 */ 1741 s->trnmod = value & UINT16_MAX; 1742 break; 1743 case SDHC_TRNMOD: 1744 /* 1745 * Similar to above, but this time a write to "Command 1746 * Register" will be translated into a 4-byte write to 1747 * "Transfer Mode register" where lower 16-bit of value would 1748 * be set to zero. So what we do is fill those bits with 1749 * cached value from s->trnmod and let the SDHCI 1750 * infrastructure handle the rest 1751 */ 1752 sdhci_write(opaque, offset, val | s->trnmod, size); 1753 break; 1754 case SDHC_BLKSIZE: 1755 /* 1756 * ESDHCI does not implement "Host SDMA Buffer Boundary", and 1757 * Linux driver will try to zero this field out which will 1758 * break the rest of SDHCI emulation. 1759 * 1760 * Linux defaults to maximum possible setting (512K boundary) 1761 * and it seems to be the only option that i.MX IP implements, 1762 * so we artificially set it to that value. 1763 */ 1764 val |= 0x7 << 12; 1765 /* FALLTHROUGH */ 1766 default: 1767 sdhci_write(opaque, offset, val, size); 1768 break; 1769 } 1770 } 1771 1772 static const MemoryRegionOps usdhc_mmio_ops = { 1773 .read = usdhc_read, 1774 .write = usdhc_write, 1775 .valid = { 1776 .min_access_size = 1, 1777 .max_access_size = 4, 1778 .unaligned = false 1779 }, 1780 .endianness = DEVICE_LITTLE_ENDIAN, 1781 }; 1782 1783 static void imx_usdhc_init(Object *obj) 1784 { 1785 SDHCIState *s = SYSBUS_SDHCI(obj); 1786 1787 s->io_ops = &usdhc_mmio_ops; 1788 s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ; 1789 } 1790 1791 static const TypeInfo imx_usdhc_info = { 1792 .name = TYPE_IMX_USDHC, 1793 .parent = TYPE_SYSBUS_SDHCI, 1794 .instance_init = imx_usdhc_init, 1795 }; 1796 1797 /* --- qdev Samsung s3c --- */ 1798 1799 #define S3C_SDHCI_CONTROL2 0x80 1800 #define S3C_SDHCI_CONTROL3 0x84 1801 #define S3C_SDHCI_CONTROL4 0x8c 1802 1803 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size) 1804 { 1805 uint64_t ret; 1806 1807 switch (offset) { 1808 case S3C_SDHCI_CONTROL2: 1809 case S3C_SDHCI_CONTROL3: 1810 case S3C_SDHCI_CONTROL4: 1811 /* ignore */ 1812 ret = 0; 1813 break; 1814 default: 1815 ret = sdhci_read(opaque, offset, size); 1816 break; 1817 } 1818 1819 return ret; 1820 } 1821 1822 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val, 1823 unsigned size) 1824 { 1825 switch (offset) { 1826 case S3C_SDHCI_CONTROL2: 1827 case S3C_SDHCI_CONTROL3: 1828 case S3C_SDHCI_CONTROL4: 1829 /* ignore */ 1830 break; 1831 default: 1832 sdhci_write(opaque, offset, val, size); 1833 break; 1834 } 1835 } 1836 1837 static const MemoryRegionOps sdhci_s3c_mmio_ops = { 1838 .read = sdhci_s3c_read, 1839 .write = sdhci_s3c_write, 1840 .valid = { 1841 .min_access_size = 1, 1842 .max_access_size = 4, 1843 .unaligned = false 1844 }, 1845 .endianness = DEVICE_LITTLE_ENDIAN, 1846 }; 1847 1848 static void sdhci_s3c_init(Object *obj) 1849 { 1850 SDHCIState *s = SYSBUS_SDHCI(obj); 1851 1852 s->io_ops = &sdhci_s3c_mmio_ops; 1853 } 1854 1855 static const TypeInfo sdhci_s3c_info = { 1856 .name = TYPE_S3C_SDHCI , 1857 .parent = TYPE_SYSBUS_SDHCI, 1858 .instance_init = sdhci_s3c_init, 1859 }; 1860 1861 static void sdhci_register_types(void) 1862 { 1863 type_register_static(&sdhci_sysbus_info); 1864 type_register_static(&sdhci_bus_info); 1865 type_register_static(&imx_usdhc_info); 1866 type_register_static(&sdhci_s3c_info); 1867 } 1868 1869 type_init(sdhci_register_types) 1870