xref: /openbmc/qemu/hw/sd/sdhci.c (revision 5e37bc4997c32a1c9a6621a060462c84df9f1b8f)
1  /*
2   * SD Association Host Standard Specification v2.0 controller emulation
3   *
4   * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
5   *
6   * Copyright (c) 2011 Samsung Electronics Co., Ltd.
7   * Mitsyanko Igor <i.mitsyanko@samsung.com>
8   * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
9   *
10   * Based on MMC controller for Samsung S5PC1xx-based board emulation
11   * by Alexey Merkulov and Vladimir Monakhov.
12   *
13   * This program is free software; you can redistribute it and/or modify it
14   * under the terms of the GNU General Public License as published by the
15   * Free Software Foundation; either version 2 of the License, or (at your
16   * option) any later version.
17   *
18   * This program is distributed in the hope that it will be useful,
19   * but WITHOUT ANY WARRANTY; without even the implied warranty of
20   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21   * See the GNU General Public License for more details.
22   *
23   * You should have received a copy of the GNU General Public License along
24   * with this program; if not, see <http://www.gnu.org/licenses/>.
25   */
26  
27  #include "qemu/osdep.h"
28  #include "qemu/units.h"
29  #include "qemu/error-report.h"
30  #include "qapi/error.h"
31  #include "hw/irq.h"
32  #include "hw/qdev-properties.h"
33  #include "sysemu/dma.h"
34  #include "qemu/timer.h"
35  #include "qemu/bitops.h"
36  #include "hw/sd/sdhci.h"
37  #include "migration/vmstate.h"
38  #include "sdhci-internal.h"
39  #include "qemu/log.h"
40  #include "qemu/module.h"
41  #include "trace.h"
42  #include "qom/object.h"
43  
44  #define TYPE_SDHCI_BUS "sdhci-bus"
45  /* This is reusing the SDBus typedef from SD_BUS */
46  DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
47                           TYPE_SDHCI_BUS)
48  
49  #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
50  
51  static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
52  {
53      return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
54  }
55  
56  /* return true on error */
57  static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
58                                           uint8_t freq, Error **errp)
59  {
60      if (s->sd_spec_version >= 3) {
61          return false;
62      }
63      switch (freq) {
64      case 0:
65      case 10 ... 63:
66          break;
67      default:
68          error_setg(errp, "SD %s clock frequency can have value"
69                     "in range 0-63 only", desc);
70          return true;
71      }
72      return false;
73  }
74  
75  static void sdhci_check_capareg(SDHCIState *s, Error **errp)
76  {
77      uint64_t msk = s->capareg;
78      uint32_t val;
79      bool y;
80  
81      switch (s->sd_spec_version) {
82      case 4:
83          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
84          trace_sdhci_capareg("64-bit system bus (v4)", val);
85          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
86  
87          val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
88          trace_sdhci_capareg("UHS-II", val);
89          msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
90  
91          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
92          trace_sdhci_capareg("ADMA3", val);
93          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
94  
95      /* fallthrough */
96      case 3:
97          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
98          trace_sdhci_capareg("async interrupt", val);
99          msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
100  
101          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
102          if (val) {
103              error_setg(errp, "slot-type not supported");
104              return;
105          }
106          trace_sdhci_capareg("slot type", val);
107          msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
108  
109          if (val != 2) {
110              val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
111              trace_sdhci_capareg("8-bit bus", val);
112          }
113          msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
114  
115          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
116          trace_sdhci_capareg("bus speed mask", val);
117          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
118  
119          val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
120          trace_sdhci_capareg("driver strength mask", val);
121          msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
122  
123          val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
124          trace_sdhci_capareg("timer re-tuning", val);
125          msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
126  
127          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
128          trace_sdhci_capareg("use SDR50 tuning", val);
129          msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
130  
131          val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
132          trace_sdhci_capareg("re-tuning mode", val);
133          msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
134  
135          val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
136          trace_sdhci_capareg("clock multiplier", val);
137          msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
138  
139      /* fallthrough */
140      case 2: /* default version */
141          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
142          trace_sdhci_capareg("ADMA2", val);
143          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
144  
145          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
146          trace_sdhci_capareg("ADMA1", val);
147          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
148  
149          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
150          trace_sdhci_capareg("64-bit system bus (v3)", val);
151          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
152  
153      /* fallthrough */
154      case 1:
155          y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
156          msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
157  
158          val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
159          trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
160          if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
161              return;
162          }
163          msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
164  
165          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
166          trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
167          if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
168              return;
169          }
170          msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
171  
172          val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
173          if (val >= 3) {
174              error_setg(errp, "block size can be 512, 1024 or 2048 only");
175              return;
176          }
177          trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
178          msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
179  
180          val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
181          trace_sdhci_capareg("high speed", val);
182          msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
183  
184          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
185          trace_sdhci_capareg("SDMA", val);
186          msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
187  
188          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
189          trace_sdhci_capareg("suspend/resume", val);
190          msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
191  
192          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
193          trace_sdhci_capareg("3.3v", val);
194          msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
195  
196          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
197          trace_sdhci_capareg("3.0v", val);
198          msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
199  
200          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
201          trace_sdhci_capareg("1.8v", val);
202          msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
203          break;
204  
205      default:
206          error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
207      }
208      if (msk) {
209          qemu_log_mask(LOG_UNIMP,
210                        "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
211      }
212  }
213  
214  static uint8_t sdhci_slotint(SDHCIState *s)
215  {
216      return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
217           ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
218           ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
219  }
220  
221  /* Return true if IRQ was pending and delivered */
222  static bool sdhci_update_irq(SDHCIState *s)
223  {
224      bool pending = sdhci_slotint(s);
225  
226      qemu_set_irq(s->irq, pending);
227  
228      return pending;
229  }
230  
231  static void sdhci_raise_insertion_irq(void *opaque)
232  {
233      SDHCIState *s = (SDHCIState *)opaque;
234  
235      if (s->norintsts & SDHC_NIS_REMOVE) {
236          timer_mod(s->insert_timer,
237                         qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
238      } else {
239          s->prnsts = 0x1ff0000;
240          if (s->norintstsen & SDHC_NISEN_INSERT) {
241              s->norintsts |= SDHC_NIS_INSERT;
242          }
243          sdhci_update_irq(s);
244      }
245  }
246  
247  static void sdhci_set_inserted(DeviceState *dev, bool level)
248  {
249      SDHCIState *s = (SDHCIState *)dev;
250  
251      trace_sdhci_set_inserted(level ? "insert" : "eject");
252      if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
253          /* Give target some time to notice card ejection */
254          timer_mod(s->insert_timer,
255                         qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
256      } else {
257          if (level) {
258              s->prnsts = 0x1ff0000;
259              if (s->norintstsen & SDHC_NISEN_INSERT) {
260                  s->norintsts |= SDHC_NIS_INSERT;
261              }
262          } else {
263              s->prnsts = 0x1fa0000;
264              s->pwrcon &= ~SDHC_POWER_ON;
265              s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
266              if (s->norintstsen & SDHC_NISEN_REMOVE) {
267                  s->norintsts |= SDHC_NIS_REMOVE;
268              }
269          }
270          sdhci_update_irq(s);
271      }
272  }
273  
274  static void sdhci_set_readonly(DeviceState *dev, bool level)
275  {
276      SDHCIState *s = (SDHCIState *)dev;
277  
278      if (level) {
279          s->prnsts &= ~SDHC_WRITE_PROTECT;
280      } else {
281          /* Write enabled */
282          s->prnsts |= SDHC_WRITE_PROTECT;
283      }
284  }
285  
286  static void sdhci_reset(SDHCIState *s)
287  {
288      DeviceState *dev = DEVICE(s);
289  
290      timer_del(s->insert_timer);
291      timer_del(s->transfer_timer);
292  
293      /* Set all registers to 0. Capabilities/Version registers are not cleared
294       * and assumed to always preserve their value, given to them during
295       * initialization */
296      memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
297  
298      /* Reset other state based on current card insertion/readonly status */
299      sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
300      sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
301  
302      s->data_count = 0;
303      s->stopped_state = sdhc_not_stopped;
304      s->pending_insert_state = false;
305  }
306  
307  static void sdhci_poweron_reset(DeviceState *dev)
308  {
309      /* QOM (ie power-on) reset. This is identical to reset
310       * commanded via device register apart from handling of the
311       * 'pending insert on powerup' quirk.
312       */
313      SDHCIState *s = (SDHCIState *)dev;
314  
315      sdhci_reset(s);
316  
317      if (s->pending_insert_quirk) {
318          s->pending_insert_state = true;
319      }
320  }
321  
322  static void sdhci_data_transfer(void *opaque);
323  
324  #define BLOCK_SIZE_MASK (4 * KiB - 1)
325  
326  static void sdhci_send_command(SDHCIState *s)
327  {
328      SDRequest request;
329      uint8_t response[16];
330      int rlen;
331      bool timeout = false;
332  
333      s->errintsts = 0;
334      s->acmd12errsts = 0;
335      request.cmd = s->cmdreg >> 8;
336      request.arg = s->argument;
337  
338      trace_sdhci_send_command(request.cmd, request.arg);
339      rlen = sdbus_do_command(&s->sdbus, &request, response);
340  
341      if (s->cmdreg & SDHC_CMD_RESPONSE) {
342          if (rlen == 4) {
343              s->rspreg[0] = ldl_be_p(response);
344              s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
345              trace_sdhci_response4(s->rspreg[0]);
346          } else if (rlen == 16) {
347              s->rspreg[0] = ldl_be_p(&response[11]);
348              s->rspreg[1] = ldl_be_p(&response[7]);
349              s->rspreg[2] = ldl_be_p(&response[3]);
350              s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
351                              response[2];
352              trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
353                                     s->rspreg[1], s->rspreg[0]);
354          } else {
355              timeout = true;
356              trace_sdhci_error("timeout waiting for command response");
357              if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
358                  s->errintsts |= SDHC_EIS_CMDTIMEOUT;
359                  s->norintsts |= SDHC_NIS_ERR;
360              }
361          }
362  
363          if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
364              (s->norintstsen & SDHC_NISEN_TRSCMP) &&
365              (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
366              s->norintsts |= SDHC_NIS_TRSCMP;
367          }
368      }
369  
370      if (s->norintstsen & SDHC_NISEN_CMDCMP) {
371          s->norintsts |= SDHC_NIS_CMDCMP;
372      }
373  
374      sdhci_update_irq(s);
375  
376      if (!timeout && (s->blksize & BLOCK_SIZE_MASK) &&
377          (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
378          s->data_count = 0;
379          sdhci_data_transfer(s);
380      }
381  }
382  
383  static void sdhci_end_transfer(SDHCIState *s)
384  {
385      /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
386      if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
387          SDRequest request;
388          uint8_t response[16];
389  
390          request.cmd = 0x0C;
391          request.arg = 0;
392          trace_sdhci_end_transfer(request.cmd, request.arg);
393          sdbus_do_command(&s->sdbus, &request, response);
394          /* Auto CMD12 response goes to the upper Response register */
395          s->rspreg[3] = ldl_be_p(response);
396      }
397  
398      s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
399              SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
400              SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
401  
402      if (s->norintstsen & SDHC_NISEN_TRSCMP) {
403          s->norintsts |= SDHC_NIS_TRSCMP;
404      }
405  
406      sdhci_update_irq(s);
407  }
408  
409  /*
410   * Programmed i/o data transfer
411   */
412  
413  /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
414  static void sdhci_read_block_from_card(SDHCIState *s)
415  {
416      const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
417  
418      if ((s->trnmod & SDHC_TRNS_MULTI) &&
419              (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
420          return;
421      }
422  
423      if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
424          /* Device is not in tuning */
425          sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
426      }
427  
428      if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
429          /* Device is in tuning */
430          s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
431          s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
432          s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
433                         SDHC_DATA_INHIBIT);
434          goto read_done;
435      }
436  
437      /* New data now available for READ through Buffer Port Register */
438      s->prnsts |= SDHC_DATA_AVAILABLE;
439      if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
440          s->norintsts |= SDHC_NIS_RBUFRDY;
441      }
442  
443      /* Clear DAT line active status if that was the last block */
444      if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
445              ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
446          s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
447      }
448  
449      /* If stop at block gap request was set and it's not the last block of
450       * data - generate Block Event interrupt */
451      if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
452              s->blkcnt != 1)    {
453          s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
454          if (s->norintstsen & SDHC_EISEN_BLKGAP) {
455              s->norintsts |= SDHC_EIS_BLKGAP;
456          }
457      }
458  
459  read_done:
460      sdhci_update_irq(s);
461  }
462  
463  /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
464  static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
465  {
466      uint32_t value = 0;
467      int i;
468  
469      /* first check that a valid data exists in host controller input buffer */
470      if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
471          trace_sdhci_error("read from empty buffer");
472          return 0;
473      }
474  
475      for (i = 0; i < size; i++) {
476          value |= s->fifo_buffer[s->data_count] << i * 8;
477          s->data_count++;
478          /* check if we've read all valid data (blksize bytes) from buffer */
479          if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
480              trace_sdhci_read_dataport(s->data_count);
481              s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
482              s->data_count = 0;  /* next buff read must start at position [0] */
483  
484              if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
485                  s->blkcnt--;
486              }
487  
488              /* if that was the last block of data */
489              if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
490                  ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
491                   /* stop at gap request */
492                  (s->stopped_state == sdhc_gap_read &&
493                   !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
494                  sdhci_end_transfer(s);
495              } else { /* if there are more data, read next block from card */
496                  sdhci_read_block_from_card(s);
497              }
498              break;
499          }
500      }
501  
502      return value;
503  }
504  
505  /* Write data from host controller FIFO to card */
506  static void sdhci_write_block_to_card(SDHCIState *s)
507  {
508      if (s->prnsts & SDHC_SPACE_AVAILABLE) {
509          if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
510              s->norintsts |= SDHC_NIS_WBUFRDY;
511          }
512          sdhci_update_irq(s);
513          return;
514      }
515  
516      if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
517          if (s->blkcnt == 0) {
518              return;
519          } else {
520              s->blkcnt--;
521          }
522      }
523  
524      sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
525  
526      /* Next data can be written through BUFFER DATORT register */
527      s->prnsts |= SDHC_SPACE_AVAILABLE;
528  
529      /* Finish transfer if that was the last block of data */
530      if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
531              ((s->trnmod & SDHC_TRNS_MULTI) &&
532              (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
533          sdhci_end_transfer(s);
534      } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
535          s->norintsts |= SDHC_NIS_WBUFRDY;
536      }
537  
538      /* Generate Block Gap Event if requested and if not the last block */
539      if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
540              s->blkcnt > 0) {
541          s->prnsts &= ~SDHC_DOING_WRITE;
542          if (s->norintstsen & SDHC_EISEN_BLKGAP) {
543              s->norintsts |= SDHC_EIS_BLKGAP;
544          }
545          sdhci_end_transfer(s);
546      }
547  
548      sdhci_update_irq(s);
549  }
550  
551  /* Write @size bytes of @value data to host controller @s Buffer Data Port
552   * register */
553  static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
554  {
555      unsigned i;
556  
557      /* Check that there is free space left in a buffer */
558      if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
559          trace_sdhci_error("Can't write to data buffer: buffer full");
560          return;
561      }
562  
563      for (i = 0; i < size; i++) {
564          s->fifo_buffer[s->data_count] = value & 0xFF;
565          s->data_count++;
566          value >>= 8;
567          if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
568              trace_sdhci_write_dataport(s->data_count);
569              s->data_count = 0;
570              s->prnsts &= ~SDHC_SPACE_AVAILABLE;
571              if (s->prnsts & SDHC_DOING_WRITE) {
572                  sdhci_write_block_to_card(s);
573              }
574          }
575      }
576  }
577  
578  /*
579   * Single DMA data transfer
580   */
581  
582  /* Multi block SDMA transfer */
583  static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
584  {
585      bool page_aligned = false;
586      unsigned int begin;
587      const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
588      uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
589      uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
590  
591      if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
592          qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
593          return;
594      }
595  
596      /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
597       * possible stop at page boundary if initial address is not page aligned,
598       * allow them to work properly */
599      if ((s->sdmasysad % boundary_chk) == 0) {
600          page_aligned = true;
601      }
602  
603      s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
604      if (s->trnmod & SDHC_TRNS_READ) {
605          s->prnsts |= SDHC_DOING_READ;
606          while (s->blkcnt) {
607              if (s->data_count == 0) {
608                  sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
609              }
610              begin = s->data_count;
611              if (((boundary_count + begin) < block_size) && page_aligned) {
612                  s->data_count = boundary_count + begin;
613                  boundary_count = 0;
614               } else {
615                  s->data_count = block_size;
616                  boundary_count -= block_size - begin;
617                  if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
618                      s->blkcnt--;
619                  }
620              }
621              dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
622                               s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
623              s->sdmasysad += s->data_count - begin;
624              if (s->data_count == block_size) {
625                  s->data_count = 0;
626              }
627              if (page_aligned && boundary_count == 0) {
628                  break;
629              }
630          }
631      } else {
632          s->prnsts |= SDHC_DOING_WRITE;
633          while (s->blkcnt) {
634              begin = s->data_count;
635              if (((boundary_count + begin) < block_size) && page_aligned) {
636                  s->data_count = boundary_count + begin;
637                  boundary_count = 0;
638               } else {
639                  s->data_count = block_size;
640                  boundary_count -= block_size - begin;
641              }
642              dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
643                              s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
644              s->sdmasysad += s->data_count - begin;
645              if (s->data_count == block_size) {
646                  sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
647                  s->data_count = 0;
648                  if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
649                      s->blkcnt--;
650                  }
651              }
652              if (page_aligned && boundary_count == 0) {
653                  break;
654              }
655          }
656      }
657  
658      if (s->blkcnt == 0) {
659          sdhci_end_transfer(s);
660      } else {
661          if (s->norintstsen & SDHC_NISEN_DMA) {
662              s->norintsts |= SDHC_NIS_DMA;
663          }
664          sdhci_update_irq(s);
665      }
666  }
667  
668  /* single block SDMA transfer */
669  static void sdhci_sdma_transfer_single_block(SDHCIState *s)
670  {
671      uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
672  
673      if (s->trnmod & SDHC_TRNS_READ) {
674          sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
675          dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
676                           MEMTXATTRS_UNSPECIFIED);
677      } else {
678          dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
679                          MEMTXATTRS_UNSPECIFIED);
680          sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
681      }
682      s->blkcnt--;
683  
684      sdhci_end_transfer(s);
685  }
686  
687  typedef struct ADMADescr {
688      hwaddr addr;
689      uint16_t length;
690      uint8_t attr;
691      uint8_t incr;
692  } ADMADescr;
693  
694  static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
695  {
696      uint32_t adma1 = 0;
697      uint64_t adma2 = 0;
698      hwaddr entry_addr = (hwaddr)s->admasysaddr;
699      switch (SDHC_DMA_TYPE(s->hostctl1)) {
700      case SDHC_CTRL_ADMA2_32:
701          dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
702                          MEMTXATTRS_UNSPECIFIED);
703          adma2 = le64_to_cpu(adma2);
704          /* The spec does not specify endianness of descriptor table.
705           * We currently assume that it is LE.
706           */
707          dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
708          dscr->length = (uint16_t)extract64(adma2, 16, 16);
709          dscr->attr = (uint8_t)extract64(adma2, 0, 7);
710          dscr->incr = 8;
711          break;
712      case SDHC_CTRL_ADMA1_32:
713          dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
714                          MEMTXATTRS_UNSPECIFIED);
715          adma1 = le32_to_cpu(adma1);
716          dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
717          dscr->attr = (uint8_t)extract32(adma1, 0, 7);
718          dscr->incr = 4;
719          if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
720              dscr->length = (uint16_t)extract32(adma1, 12, 16);
721          } else {
722              dscr->length = 4 * KiB;
723          }
724          break;
725      case SDHC_CTRL_ADMA2_64:
726          dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
727                          MEMTXATTRS_UNSPECIFIED);
728          dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
729                          MEMTXATTRS_UNSPECIFIED);
730          dscr->length = le16_to_cpu(dscr->length);
731          dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
732                          MEMTXATTRS_UNSPECIFIED);
733          dscr->addr = le64_to_cpu(dscr->addr);
734          dscr->attr &= (uint8_t) ~0xC0;
735          dscr->incr = 12;
736          break;
737      }
738  }
739  
740  /* Advanced DMA data transfer */
741  
742  static void sdhci_do_adma(SDHCIState *s)
743  {
744      unsigned int begin, length;
745      const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
746      const MemTxAttrs attrs = { .memory = true };
747      ADMADescr dscr = {};
748      MemTxResult res;
749      int i;
750  
751      if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
752          /* Stop Multiple Transfer */
753          sdhci_end_transfer(s);
754          return;
755      }
756  
757      for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
758          s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
759  
760          get_adma_description(s, &dscr);
761          trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
762  
763          if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
764              /* Indicate that error occurred in ST_FDS state */
765              s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
766              s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
767  
768              /* Generate ADMA error interrupt */
769              if (s->errintstsen & SDHC_EISEN_ADMAERR) {
770                  s->errintsts |= SDHC_EIS_ADMAERR;
771                  s->norintsts |= SDHC_NIS_ERR;
772              }
773  
774              sdhci_update_irq(s);
775              return;
776          }
777  
778          length = dscr.length ? dscr.length : 64 * KiB;
779  
780          switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
781          case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
782              s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
783              if (s->trnmod & SDHC_TRNS_READ) {
784                  s->prnsts |= SDHC_DOING_READ;
785                  while (length) {
786                      if (s->data_count == 0) {
787                          sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
788                      }
789                      begin = s->data_count;
790                      if ((length + begin) < block_size) {
791                          s->data_count = length + begin;
792                          length = 0;
793                       } else {
794                          s->data_count = block_size;
795                          length -= block_size - begin;
796                      }
797                      res = dma_memory_write(s->dma_as, dscr.addr,
798                                             &s->fifo_buffer[begin],
799                                             s->data_count - begin,
800                                             attrs);
801                      if (res != MEMTX_OK) {
802                          break;
803                      }
804                      dscr.addr += s->data_count - begin;
805                      if (s->data_count == block_size) {
806                          s->data_count = 0;
807                          if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
808                              s->blkcnt--;
809                              if (s->blkcnt == 0) {
810                                  break;
811                              }
812                          }
813                      }
814                  }
815              } else {
816                  s->prnsts |= SDHC_DOING_WRITE;
817                  while (length) {
818                      begin = s->data_count;
819                      if ((length + begin) < block_size) {
820                          s->data_count = length + begin;
821                          length = 0;
822                       } else {
823                          s->data_count = block_size;
824                          length -= block_size - begin;
825                      }
826                      res = dma_memory_read(s->dma_as, dscr.addr,
827                                            &s->fifo_buffer[begin],
828                                            s->data_count - begin,
829                                            attrs);
830                      if (res != MEMTX_OK) {
831                          break;
832                      }
833                      dscr.addr += s->data_count - begin;
834                      if (s->data_count == block_size) {
835                          sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
836                          s->data_count = 0;
837                          if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
838                              s->blkcnt--;
839                              if (s->blkcnt == 0) {
840                                  break;
841                              }
842                          }
843                      }
844                  }
845              }
846              if (res != MEMTX_OK) {
847                  if (s->errintstsen & SDHC_EISEN_ADMAERR) {
848                      trace_sdhci_error("Set ADMA error flag");
849                      s->errintsts |= SDHC_EIS_ADMAERR;
850                      s->norintsts |= SDHC_NIS_ERR;
851                  }
852                  sdhci_update_irq(s);
853              } else {
854                  s->admasysaddr += dscr.incr;
855              }
856              break;
857          case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
858              s->admasysaddr = dscr.addr;
859              trace_sdhci_adma("link", s->admasysaddr);
860              break;
861          default:
862              s->admasysaddr += dscr.incr;
863              break;
864          }
865  
866          if (dscr.attr & SDHC_ADMA_ATTR_INT) {
867              trace_sdhci_adma("interrupt", s->admasysaddr);
868              if (s->norintstsen & SDHC_NISEN_DMA) {
869                  s->norintsts |= SDHC_NIS_DMA;
870              }
871  
872              if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
873                  /* IRQ delivered, reschedule current transfer */
874                  break;
875              }
876          }
877  
878          /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
879          if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
880                      (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
881              trace_sdhci_adma_transfer_completed();
882              if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
883                  (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
884                  s->blkcnt != 0)) {
885                  trace_sdhci_error("SD/MMC host ADMA length mismatch");
886                  s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
887                          SDHC_ADMAERR_STATE_ST_TFR;
888                  if (s->errintstsen & SDHC_EISEN_ADMAERR) {
889                      trace_sdhci_error("Set ADMA error flag");
890                      s->errintsts |= SDHC_EIS_ADMAERR;
891                      s->norintsts |= SDHC_NIS_ERR;
892                  }
893  
894                  sdhci_update_irq(s);
895              }
896              sdhci_end_transfer(s);
897              return;
898          }
899  
900      }
901  
902      /* we have unfinished business - reschedule to continue ADMA */
903      timer_mod(s->transfer_timer,
904                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
905  }
906  
907  /* Perform data transfer according to controller configuration */
908  
909  static void sdhci_data_transfer(void *opaque)
910  {
911      SDHCIState *s = (SDHCIState *)opaque;
912  
913      if (s->trnmod & SDHC_TRNS_DMA) {
914          switch (SDHC_DMA_TYPE(s->hostctl1)) {
915          case SDHC_CTRL_SDMA:
916              if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
917                  sdhci_sdma_transfer_single_block(s);
918              } else {
919                  sdhci_sdma_transfer_multi_blocks(s);
920              }
921  
922              break;
923          case SDHC_CTRL_ADMA1_32:
924              if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
925                  trace_sdhci_error("ADMA1 not supported");
926                  break;
927              }
928  
929              sdhci_do_adma(s);
930              break;
931          case SDHC_CTRL_ADMA2_32:
932              if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
933                  trace_sdhci_error("ADMA2 not supported");
934                  break;
935              }
936  
937              sdhci_do_adma(s);
938              break;
939          case SDHC_CTRL_ADMA2_64:
940              if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
941                      !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
942                  trace_sdhci_error("64 bit ADMA not supported");
943                  break;
944              }
945  
946              sdhci_do_adma(s);
947              break;
948          default:
949              trace_sdhci_error("Unsupported DMA type");
950              break;
951          }
952      } else {
953          if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
954              s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
955                      SDHC_DAT_LINE_ACTIVE;
956              sdhci_read_block_from_card(s);
957          } else {
958              s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
959                      SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
960              sdhci_write_block_to_card(s);
961          }
962      }
963  }
964  
965  static bool sdhci_can_issue_command(SDHCIState *s)
966  {
967      if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
968          (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
969          ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
970          ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
971          !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
972          return false;
973      }
974  
975      return true;
976  }
977  
978  /* The Buffer Data Port register must be accessed in sequential and
979   * continuous manner */
980  static inline bool
981  sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
982  {
983      if ((s->data_count & 0x3) != byte_num) {
984          trace_sdhci_error("Non-sequential access to Buffer Data Port register"
985                            "is prohibited\n");
986          return false;
987      }
988      return true;
989  }
990  
991  static void sdhci_resume_pending_transfer(SDHCIState *s)
992  {
993      timer_del(s->transfer_timer);
994      sdhci_data_transfer(s);
995  }
996  
997  static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
998  {
999      SDHCIState *s = (SDHCIState *)opaque;
1000      uint32_t ret = 0;
1001  
1002      if (timer_pending(s->transfer_timer)) {
1003          sdhci_resume_pending_transfer(s);
1004      }
1005  
1006      switch (offset & ~0x3) {
1007      case SDHC_SYSAD:
1008          ret = s->sdmasysad;
1009          break;
1010      case SDHC_BLKSIZE:
1011          ret = s->blksize | (s->blkcnt << 16);
1012          break;
1013      case SDHC_ARGUMENT:
1014          ret = s->argument;
1015          break;
1016      case SDHC_TRNMOD:
1017          ret = s->trnmod | (s->cmdreg << 16);
1018          break;
1019      case SDHC_RSPREG0 ... SDHC_RSPREG3:
1020          ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1021          break;
1022      case  SDHC_BDATA:
1023          if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1024              ret = sdhci_read_dataport(s, size);
1025              trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1026              return ret;
1027          }
1028          break;
1029      case SDHC_PRNSTS:
1030          ret = s->prnsts;
1031          ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1032                           sdbus_get_dat_lines(&s->sdbus));
1033          ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1034                           sdbus_get_cmd_line(&s->sdbus));
1035          break;
1036      case SDHC_HOSTCTL:
1037          ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1038                (s->wakcon << 24);
1039          break;
1040      case SDHC_CLKCON:
1041          ret = s->clkcon | (s->timeoutcon << 16);
1042          break;
1043      case SDHC_NORINTSTS:
1044          ret = s->norintsts | (s->errintsts << 16);
1045          break;
1046      case SDHC_NORINTSTSEN:
1047          ret = s->norintstsen | (s->errintstsen << 16);
1048          break;
1049      case SDHC_NORINTSIGEN:
1050          ret = s->norintsigen | (s->errintsigen << 16);
1051          break;
1052      case SDHC_ACMD12ERRSTS:
1053          ret = s->acmd12errsts | (s->hostctl2 << 16);
1054          break;
1055      case SDHC_CAPAB:
1056          ret = (uint32_t)s->capareg;
1057          break;
1058      case SDHC_CAPAB + 4:
1059          ret = (uint32_t)(s->capareg >> 32);
1060          break;
1061      case SDHC_MAXCURR:
1062          ret = (uint32_t)s->maxcurr;
1063          break;
1064      case SDHC_MAXCURR + 4:
1065          ret = (uint32_t)(s->maxcurr >> 32);
1066          break;
1067      case SDHC_ADMAERR:
1068          ret =  s->admaerr;
1069          break;
1070      case SDHC_ADMASYSADDR:
1071          ret = (uint32_t)s->admasysaddr;
1072          break;
1073      case SDHC_ADMASYSADDR + 4:
1074          ret = (uint32_t)(s->admasysaddr >> 32);
1075          break;
1076      case SDHC_SLOT_INT_STATUS:
1077          ret = (s->version << 16) | sdhci_slotint(s);
1078          break;
1079      default:
1080          qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1081                        "not implemented\n", size, offset);
1082          break;
1083      }
1084  
1085      ret >>= (offset & 0x3) * 8;
1086      ret &= (1ULL << (size * 8)) - 1;
1087      trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1088      return ret;
1089  }
1090  
1091  static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1092  {
1093      if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1094          return;
1095      }
1096      s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1097  
1098      if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1099              (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1100          if (s->stopped_state == sdhc_gap_read) {
1101              s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1102              sdhci_read_block_from_card(s);
1103          } else {
1104              s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1105              sdhci_write_block_to_card(s);
1106          }
1107          s->stopped_state = sdhc_not_stopped;
1108      } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1109          if (s->prnsts & SDHC_DOING_READ) {
1110              s->stopped_state = sdhc_gap_read;
1111          } else if (s->prnsts & SDHC_DOING_WRITE) {
1112              s->stopped_state = sdhc_gap_write;
1113          }
1114      }
1115  }
1116  
1117  static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1118  {
1119      switch (value) {
1120      case SDHC_RESET_ALL:
1121          sdhci_reset(s);
1122          break;
1123      case SDHC_RESET_CMD:
1124          s->prnsts &= ~SDHC_CMD_INHIBIT;
1125          s->norintsts &= ~SDHC_NIS_CMDCMP;
1126          break;
1127      case SDHC_RESET_DATA:
1128          s->data_count = 0;
1129          s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1130                  SDHC_DOING_READ | SDHC_DOING_WRITE |
1131                  SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1132          s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1133          s->stopped_state = sdhc_not_stopped;
1134          s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1135                  SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1136          break;
1137      }
1138  }
1139  
1140  static void
1141  sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1142  {
1143      SDHCIState *s = (SDHCIState *)opaque;
1144      unsigned shift =  8 * (offset & 0x3);
1145      uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1146      uint32_t value = val;
1147      value <<= shift;
1148  
1149      if (timer_pending(s->transfer_timer)) {
1150          sdhci_resume_pending_transfer(s);
1151      }
1152  
1153      switch (offset & ~0x3) {
1154      case SDHC_SYSAD:
1155          if (!TRANSFERRING_DATA(s->prnsts)) {
1156              s->sdmasysad = (s->sdmasysad & mask) | value;
1157              MASKED_WRITE(s->sdmasysad, mask, value);
1158              /* Writing to last byte of sdmasysad might trigger transfer */
1159              if (!(mask & 0xFF000000) && s->blkcnt &&
1160                  (s->blksize & BLOCK_SIZE_MASK) &&
1161                  SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1162                  if (s->trnmod & SDHC_TRNS_MULTI) {
1163                      sdhci_sdma_transfer_multi_blocks(s);
1164                  } else {
1165                      sdhci_sdma_transfer_single_block(s);
1166                  }
1167              }
1168          }
1169          break;
1170      case SDHC_BLKSIZE:
1171          if (!TRANSFERRING_DATA(s->prnsts)) {
1172              uint16_t blksize = s->blksize;
1173  
1174              /*
1175               * [14:12] SDMA Buffer Boundary
1176               * [11:00] Transfer Block Size
1177               */
1178              MASKED_WRITE(s->blksize, mask, extract32(value, 0, 15));
1179              MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1180  
1181              /* Limit block size to the maximum buffer size */
1182              if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1183                  qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
1184                                "the maximum buffer 0x%x\n", __func__, s->blksize,
1185                                s->buf_maxsz);
1186  
1187                  s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1188              }
1189  
1190              /*
1191               * If the block size is programmed to a different value from
1192               * the previous one, reset the data pointer of s->fifo_buffer[]
1193               * so that s->fifo_buffer[] can be filled in using the new block
1194               * size in the next transfer.
1195               */
1196              if (blksize != s->blksize) {
1197                  s->data_count = 0;
1198              }
1199          }
1200  
1201          break;
1202      case SDHC_ARGUMENT:
1203          MASKED_WRITE(s->argument, mask, value);
1204          break;
1205      case SDHC_TRNMOD:
1206          /* DMA can be enabled only if it is supported as indicated by
1207           * capabilities register */
1208          if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1209              value &= ~SDHC_TRNS_DMA;
1210          }
1211          MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1212          MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1213  
1214          /* Writing to the upper byte of CMDREG triggers SD command generation */
1215          if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1216              break;
1217          }
1218  
1219          sdhci_send_command(s);
1220          break;
1221      case  SDHC_BDATA:
1222          if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1223              sdhci_write_dataport(s, value >> shift, size);
1224          }
1225          break;
1226      case SDHC_HOSTCTL:
1227          if (!(mask & 0xFF0000)) {
1228              sdhci_blkgap_write(s, value >> 16);
1229          }
1230          MASKED_WRITE(s->hostctl1, mask, value);
1231          MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1232          MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1233          if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1234                  !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1235              s->pwrcon &= ~SDHC_POWER_ON;
1236          }
1237          break;
1238      case SDHC_CLKCON:
1239          if (!(mask & 0xFF000000)) {
1240              sdhci_reset_write(s, value >> 24);
1241          }
1242          MASKED_WRITE(s->clkcon, mask, value);
1243          MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1244          if (s->clkcon & SDHC_CLOCK_INT_EN) {
1245              s->clkcon |= SDHC_CLOCK_INT_STABLE;
1246          } else {
1247              s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1248          }
1249          break;
1250      case SDHC_NORINTSTS:
1251          if (s->norintstsen & SDHC_NISEN_CARDINT) {
1252              value &= ~SDHC_NIS_CARDINT;
1253          }
1254          s->norintsts &= mask | ~value;
1255          s->errintsts &= (mask >> 16) | ~(value >> 16);
1256          if (s->errintsts) {
1257              s->norintsts |= SDHC_NIS_ERR;
1258          } else {
1259              s->norintsts &= ~SDHC_NIS_ERR;
1260          }
1261          sdhci_update_irq(s);
1262          break;
1263      case SDHC_NORINTSTSEN:
1264          MASKED_WRITE(s->norintstsen, mask, value);
1265          MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1266          s->norintsts &= s->norintstsen;
1267          s->errintsts &= s->errintstsen;
1268          if (s->errintsts) {
1269              s->norintsts |= SDHC_NIS_ERR;
1270          } else {
1271              s->norintsts &= ~SDHC_NIS_ERR;
1272          }
1273          /* Quirk for Raspberry Pi: pending card insert interrupt
1274           * appears when first enabled after power on */
1275          if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1276              assert(s->pending_insert_quirk);
1277              s->norintsts |= SDHC_NIS_INSERT;
1278              s->pending_insert_state = false;
1279          }
1280          sdhci_update_irq(s);
1281          break;
1282      case SDHC_NORINTSIGEN:
1283          MASKED_WRITE(s->norintsigen, mask, value);
1284          MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1285          sdhci_update_irq(s);
1286          break;
1287      case SDHC_ADMAERR:
1288          MASKED_WRITE(s->admaerr, mask, value);
1289          break;
1290      case SDHC_ADMASYSADDR:
1291          s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1292                  (uint64_t)mask)) | (uint64_t)value;
1293          break;
1294      case SDHC_ADMASYSADDR + 4:
1295          s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1296                  ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1297          break;
1298      case SDHC_FEAER:
1299          s->acmd12errsts |= value;
1300          s->errintsts |= (value >> 16) & s->errintstsen;
1301          if (s->acmd12errsts) {
1302              s->errintsts |= SDHC_EIS_CMD12ERR;
1303          }
1304          if (s->errintsts) {
1305              s->norintsts |= SDHC_NIS_ERR;
1306          }
1307          sdhci_update_irq(s);
1308          break;
1309      case SDHC_ACMD12ERRSTS:
1310          MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1311          if (s->uhs_mode >= UHS_I) {
1312              MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1313  
1314              if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1315                  sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1316              } else {
1317                  sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1318              }
1319          }
1320          break;
1321  
1322      case SDHC_CAPAB:
1323      case SDHC_CAPAB + 4:
1324      case SDHC_MAXCURR:
1325      case SDHC_MAXCURR + 4:
1326          qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1327                        " <- 0x%08x read-only\n", size, offset, value >> shift);
1328          break;
1329  
1330      default:
1331          qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1332                        "not implemented\n", size, offset, value >> shift);
1333          break;
1334      }
1335      trace_sdhci_access("wr", size << 3, offset, "<-",
1336                         value >> shift, value >> shift);
1337  }
1338  
1339  static const MemoryRegionOps sdhci_mmio_le_ops = {
1340      .read = sdhci_read,
1341      .write = sdhci_write,
1342      .valid = {
1343          .min_access_size = 1,
1344          .max_access_size = 4,
1345          .unaligned = false
1346      },
1347      .endianness = DEVICE_LITTLE_ENDIAN,
1348  };
1349  
1350  static const MemoryRegionOps sdhci_mmio_be_ops = {
1351      .read = sdhci_read,
1352      .write = sdhci_write,
1353      .impl = {
1354          .min_access_size = 4,
1355          .max_access_size = 4,
1356      },
1357      .valid = {
1358          .min_access_size = 1,
1359          .max_access_size = 4,
1360          .unaligned = false
1361      },
1362      .endianness = DEVICE_BIG_ENDIAN,
1363  };
1364  
1365  static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1366  {
1367      ERRP_GUARD();
1368  
1369      switch (s->sd_spec_version) {
1370      case 2 ... 3:
1371          break;
1372      default:
1373          error_setg(errp, "Only Spec v2/v3 are supported");
1374          return;
1375      }
1376      s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1377  
1378      sdhci_check_capareg(s, errp);
1379      if (*errp) {
1380          return;
1381      }
1382  }
1383  
1384  /* --- qdev common --- */
1385  
1386  void sdhci_initfn(SDHCIState *s)
1387  {
1388      qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1389  
1390      s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1391      s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1392  
1393      s->io_ops = &sdhci_mmio_le_ops;
1394  }
1395  
1396  void sdhci_uninitfn(SDHCIState *s)
1397  {
1398      timer_free(s->insert_timer);
1399      timer_free(s->transfer_timer);
1400  
1401      g_free(s->fifo_buffer);
1402      s->fifo_buffer = NULL;
1403  }
1404  
1405  void sdhci_common_realize(SDHCIState *s, Error **errp)
1406  {
1407      ERRP_GUARD();
1408  
1409      switch (s->endianness) {
1410      case DEVICE_LITTLE_ENDIAN:
1411          /* s->io_ops is little endian by default */
1412          break;
1413      case DEVICE_BIG_ENDIAN:
1414          if (s->io_ops != &sdhci_mmio_le_ops) {
1415              error_setg(errp, "SD controller doesn't support big endianness");
1416              return;
1417          }
1418          s->io_ops = &sdhci_mmio_be_ops;
1419          break;
1420      default:
1421          error_setg(errp, "Incorrect endianness");
1422          return;
1423      }
1424  
1425      sdhci_init_readonly_registers(s, errp);
1426      if (*errp) {
1427          return;
1428      }
1429  
1430      s->buf_maxsz = sdhci_get_fifolen(s);
1431      s->fifo_buffer = g_malloc0(s->buf_maxsz);
1432  
1433      memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1434                            SDHC_REGISTERS_MAP_SIZE);
1435  }
1436  
1437  void sdhci_common_unrealize(SDHCIState *s)
1438  {
1439      /* This function is expected to be called only once for each class:
1440       * - SysBus:    via DeviceClass->unrealize(),
1441       * - PCI:       via PCIDeviceClass->exit().
1442       * However to avoid double-free and/or use-after-free we still nullify
1443       * this variable (better safe than sorry!). */
1444      g_free(s->fifo_buffer);
1445      s->fifo_buffer = NULL;
1446  }
1447  
1448  static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1449  {
1450      SDHCIState *s = opaque;
1451  
1452      return s->pending_insert_state;
1453  }
1454  
1455  static const VMStateDescription sdhci_pending_insert_vmstate = {
1456      .name = "sdhci/pending-insert",
1457      .version_id = 1,
1458      .minimum_version_id = 1,
1459      .needed = sdhci_pending_insert_vmstate_needed,
1460      .fields = (const VMStateField[]) {
1461          VMSTATE_BOOL(pending_insert_state, SDHCIState),
1462          VMSTATE_END_OF_LIST()
1463      },
1464  };
1465  
1466  const VMStateDescription sdhci_vmstate = {
1467      .name = "sdhci",
1468      .version_id = 1,
1469      .minimum_version_id = 1,
1470      .fields = (const VMStateField[]) {
1471          VMSTATE_UINT32(sdmasysad, SDHCIState),
1472          VMSTATE_UINT16(blksize, SDHCIState),
1473          VMSTATE_UINT16(blkcnt, SDHCIState),
1474          VMSTATE_UINT32(argument, SDHCIState),
1475          VMSTATE_UINT16(trnmod, SDHCIState),
1476          VMSTATE_UINT16(cmdreg, SDHCIState),
1477          VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1478          VMSTATE_UINT32(prnsts, SDHCIState),
1479          VMSTATE_UINT8(hostctl1, SDHCIState),
1480          VMSTATE_UINT8(pwrcon, SDHCIState),
1481          VMSTATE_UINT8(blkgap, SDHCIState),
1482          VMSTATE_UINT8(wakcon, SDHCIState),
1483          VMSTATE_UINT16(clkcon, SDHCIState),
1484          VMSTATE_UINT8(timeoutcon, SDHCIState),
1485          VMSTATE_UINT8(admaerr, SDHCIState),
1486          VMSTATE_UINT16(norintsts, SDHCIState),
1487          VMSTATE_UINT16(errintsts, SDHCIState),
1488          VMSTATE_UINT16(norintstsen, SDHCIState),
1489          VMSTATE_UINT16(errintstsen, SDHCIState),
1490          VMSTATE_UINT16(norintsigen, SDHCIState),
1491          VMSTATE_UINT16(errintsigen, SDHCIState),
1492          VMSTATE_UINT16(acmd12errsts, SDHCIState),
1493          VMSTATE_UINT16(data_count, SDHCIState),
1494          VMSTATE_UINT64(admasysaddr, SDHCIState),
1495          VMSTATE_UINT8(stopped_state, SDHCIState),
1496          VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1497          VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1498          VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1499          VMSTATE_END_OF_LIST()
1500      },
1501      .subsections = (const VMStateDescription * const []) {
1502          &sdhci_pending_insert_vmstate,
1503          NULL
1504      },
1505  };
1506  
1507  void sdhci_common_class_init(ObjectClass *klass, void *data)
1508  {
1509      DeviceClass *dc = DEVICE_CLASS(klass);
1510  
1511      set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1512      dc->vmsd = &sdhci_vmstate;
1513      dc->reset = sdhci_poweron_reset;
1514  }
1515  
1516  /* --- qdev SysBus --- */
1517  
1518  static Property sdhci_sysbus_properties[] = {
1519      DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1520      DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1521                       false),
1522      DEFINE_PROP_LINK("dma", SDHCIState,
1523                       dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1524      DEFINE_PROP_END_OF_LIST(),
1525  };
1526  
1527  static void sdhci_sysbus_init(Object *obj)
1528  {
1529      SDHCIState *s = SYSBUS_SDHCI(obj);
1530  
1531      sdhci_initfn(s);
1532  }
1533  
1534  static void sdhci_sysbus_finalize(Object *obj)
1535  {
1536      SDHCIState *s = SYSBUS_SDHCI(obj);
1537  
1538      if (s->dma_mr) {
1539          object_unparent(OBJECT(s->dma_mr));
1540      }
1541  
1542      sdhci_uninitfn(s);
1543  }
1544  
1545  static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1546  {
1547      ERRP_GUARD();
1548      SDHCIState *s = SYSBUS_SDHCI(dev);
1549      SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1550  
1551      sdhci_common_realize(s, errp);
1552      if (*errp) {
1553          return;
1554      }
1555  
1556      if (s->dma_mr) {
1557          s->dma_as = &s->sysbus_dma_as;
1558          address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1559      } else {
1560          /* use system_memory() if property "dma" not set */
1561          s->dma_as = &address_space_memory;
1562      }
1563  
1564      sysbus_init_irq(sbd, &s->irq);
1565  
1566      sysbus_init_mmio(sbd, &s->iomem);
1567  }
1568  
1569  static void sdhci_sysbus_unrealize(DeviceState *dev)
1570  {
1571      SDHCIState *s = SYSBUS_SDHCI(dev);
1572  
1573      sdhci_common_unrealize(s);
1574  
1575       if (s->dma_mr) {
1576          address_space_destroy(s->dma_as);
1577      }
1578  }
1579  
1580  static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1581  {
1582      DeviceClass *dc = DEVICE_CLASS(klass);
1583  
1584      device_class_set_props(dc, sdhci_sysbus_properties);
1585      dc->realize = sdhci_sysbus_realize;
1586      dc->unrealize = sdhci_sysbus_unrealize;
1587  
1588      sdhci_common_class_init(klass, data);
1589  }
1590  
1591  static const TypeInfo sdhci_sysbus_info = {
1592      .name = TYPE_SYSBUS_SDHCI,
1593      .parent = TYPE_SYS_BUS_DEVICE,
1594      .instance_size = sizeof(SDHCIState),
1595      .instance_init = sdhci_sysbus_init,
1596      .instance_finalize = sdhci_sysbus_finalize,
1597      .class_init = sdhci_sysbus_class_init,
1598  };
1599  
1600  /* --- qdev bus master --- */
1601  
1602  static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1603  {
1604      SDBusClass *sbc = SD_BUS_CLASS(klass);
1605  
1606      sbc->set_inserted = sdhci_set_inserted;
1607      sbc->set_readonly = sdhci_set_readonly;
1608  }
1609  
1610  static const TypeInfo sdhci_bus_info = {
1611      .name = TYPE_SDHCI_BUS,
1612      .parent = TYPE_SD_BUS,
1613      .instance_size = sizeof(SDBus),
1614      .class_init = sdhci_bus_class_init,
1615  };
1616  
1617  /* --- qdev i.MX eSDHC --- */
1618  
1619  #define USDHC_MIX_CTRL                  0x48
1620  
1621  #define USDHC_VENDOR_SPEC               0xc0
1622  #define USDHC_IMX_FRC_SDCLK_ON          (1 << 8)
1623  
1624  #define USDHC_DLL_CTRL                  0x60
1625  
1626  #define USDHC_TUNING_CTRL               0xcc
1627  #define USDHC_TUNE_CTRL_STATUS          0x68
1628  #define USDHC_WTMK_LVL                  0x44
1629  
1630  /* Undocumented register used by guests working around erratum ERR004536 */
1631  #define USDHC_UNDOCUMENTED_REG27        0x6c
1632  
1633  #define USDHC_CTRL_4BITBUS              (0x1 << 1)
1634  #define USDHC_CTRL_8BITBUS              (0x2 << 1)
1635  
1636  #define USDHC_PRNSTS_SDSTB              (1 << 3)
1637  
1638  static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1639  {
1640      SDHCIState *s = SYSBUS_SDHCI(opaque);
1641      uint32_t ret;
1642      uint16_t hostctl1;
1643  
1644      switch (offset) {
1645      default:
1646          return sdhci_read(opaque, offset, size);
1647  
1648      case SDHC_HOSTCTL:
1649          /*
1650           * For a detailed explanation on the following bit
1651           * manipulation code see comments in a similar part of
1652           * usdhc_write()
1653           */
1654          hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1655  
1656          if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1657              hostctl1 |= USDHC_CTRL_8BITBUS;
1658          }
1659  
1660          if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1661              hostctl1 |= USDHC_CTRL_4BITBUS;
1662          }
1663  
1664          ret  = hostctl1;
1665          ret |= (uint32_t)s->blkgap << 16;
1666          ret |= (uint32_t)s->wakcon << 24;
1667  
1668          break;
1669  
1670      case SDHC_PRNSTS:
1671          /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1672          ret = sdhci_read(opaque, offset, size) & ~USDHC_PRNSTS_SDSTB;
1673          if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1674              ret |= USDHC_PRNSTS_SDSTB;
1675          }
1676          break;
1677  
1678      case USDHC_VENDOR_SPEC:
1679          ret = s->vendor_spec;
1680          break;
1681      case USDHC_DLL_CTRL:
1682      case USDHC_TUNE_CTRL_STATUS:
1683      case USDHC_UNDOCUMENTED_REG27:
1684      case USDHC_TUNING_CTRL:
1685      case USDHC_MIX_CTRL:
1686      case USDHC_WTMK_LVL:
1687          ret = 0;
1688          break;
1689      }
1690  
1691      return ret;
1692  }
1693  
1694  static void
1695  usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1696  {
1697      SDHCIState *s = SYSBUS_SDHCI(opaque);
1698      uint8_t hostctl1;
1699      uint32_t value = (uint32_t)val;
1700  
1701      switch (offset) {
1702      case USDHC_DLL_CTRL:
1703      case USDHC_TUNE_CTRL_STATUS:
1704      case USDHC_UNDOCUMENTED_REG27:
1705      case USDHC_TUNING_CTRL:
1706      case USDHC_WTMK_LVL:
1707          break;
1708  
1709      case USDHC_VENDOR_SPEC:
1710          s->vendor_spec = value;
1711          switch (s->vendor) {
1712          case SDHCI_VENDOR_IMX:
1713              if (value & USDHC_IMX_FRC_SDCLK_ON) {
1714                  s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
1715              } else {
1716                  s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
1717              }
1718              break;
1719          default:
1720              break;
1721          }
1722          break;
1723  
1724      case SDHC_HOSTCTL:
1725          /*
1726           * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1727           *
1728           *       7         6     5      4      3      2        1      0
1729           * |-----------+--------+--------+-----------+----------+---------|
1730           * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1731           * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1732           * | Signal    | Test   |        | Detection | Width    |         |
1733           * | Selection | Level  |        | Pin       |          |         |
1734           * |-----------+--------+--------+-----------+----------+---------|
1735           *
1736           * and 0x29
1737           *
1738           *  15      10 9    8
1739           * |----------+------|
1740           * | Reserved | DMA  |
1741           * |          | Sel. |
1742           * |          |      |
1743           * |----------+------|
1744           *
1745           * and here's what SDCHI spec expects those offsets to be:
1746           *
1747           * 0x28 (Host Control Register)
1748           *
1749           *     7        6         5       4  3      2         1        0
1750           * |--------+--------+----------+------+--------+----------+---------|
1751           * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1752           * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1753           * | Signal | Test   | Transfer |      | Enable | Width    |         |
1754           * | Sel.   | Level  | Width    |      |        |          |         |
1755           * |--------+--------+----------+------+--------+----------+---------|
1756           *
1757           * and 0x29 (Power Control Register)
1758           *
1759           * |----------------------------------|
1760           * | Power Control Register           |
1761           * |                                  |
1762           * | Description omitted,             |
1763           * | since it has no analog in ESDHCI |
1764           * |                                  |
1765           * |----------------------------------|
1766           *
1767           * Since offsets 0x2A and 0x2B should be compatible between
1768           * both IP specs we only need to reconcile least 16-bit of the
1769           * word we've been given.
1770           */
1771  
1772          /*
1773           * First, save bits 7 6 and 0 since they are identical
1774           */
1775          hostctl1 = value & (SDHC_CTRL_LED |
1776                              SDHC_CTRL_CDTEST_INS |
1777                              SDHC_CTRL_CDTEST_EN);
1778          /*
1779           * Second, split "Data Transfer Width" from bits 2 and 1 in to
1780           * bits 5 and 1
1781           */
1782          if (value & USDHC_CTRL_8BITBUS) {
1783              hostctl1 |= SDHC_CTRL_8BITBUS;
1784          }
1785  
1786          if (value & USDHC_CTRL_4BITBUS) {
1787              hostctl1 |= USDHC_CTRL_4BITBUS;
1788          }
1789  
1790          /*
1791           * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1792           */
1793          hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1794  
1795          /*
1796           * Now place the corrected value into low 16-bit of the value
1797           * we are going to give standard SDHCI write function
1798           *
1799           * NOTE: This transformation should be the inverse of what can
1800           * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1801           * kernel
1802           */
1803          value &= ~UINT16_MAX;
1804          value |= hostctl1;
1805          value |= (uint16_t)s->pwrcon << 8;
1806  
1807          sdhci_write(opaque, offset, value, size);
1808          break;
1809  
1810      case USDHC_MIX_CTRL:
1811          /*
1812           * So, when SD/MMC stack in Linux tries to write to "Transfer
1813           * Mode Register", ESDHC i.MX quirk code will translate it
1814           * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1815           * order to get where we started
1816           *
1817           * Note that Auto CMD23 Enable bit is located in a wrong place
1818           * on i.MX, but since it is not used by QEMU we do not care.
1819           *
1820           * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1821           * here because it will result in a call to
1822           * sdhci_send_command(s) which we don't want.
1823           *
1824           */
1825          s->trnmod = value & UINT16_MAX;
1826          break;
1827      case SDHC_TRNMOD:
1828          /*
1829           * Similar to above, but this time a write to "Command
1830           * Register" will be translated into a 4-byte write to
1831           * "Transfer Mode register" where lower 16-bit of value would
1832           * be set to zero. So what we do is fill those bits with
1833           * cached value from s->trnmod and let the SDHCI
1834           * infrastructure handle the rest
1835           */
1836          sdhci_write(opaque, offset, val | s->trnmod, size);
1837          break;
1838      case SDHC_BLKSIZE:
1839          /*
1840           * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1841           * Linux driver will try to zero this field out which will
1842           * break the rest of SDHCI emulation.
1843           *
1844           * Linux defaults to maximum possible setting (512K boundary)
1845           * and it seems to be the only option that i.MX IP implements,
1846           * so we artificially set it to that value.
1847           */
1848          val |= 0x7 << 12;
1849          /* FALLTHROUGH */
1850      default:
1851          sdhci_write(opaque, offset, val, size);
1852          break;
1853      }
1854  }
1855  
1856  static const MemoryRegionOps usdhc_mmio_ops = {
1857      .read = usdhc_read,
1858      .write = usdhc_write,
1859      .valid = {
1860          .min_access_size = 1,
1861          .max_access_size = 4,
1862          .unaligned = false
1863      },
1864      .endianness = DEVICE_LITTLE_ENDIAN,
1865  };
1866  
1867  static void imx_usdhc_init(Object *obj)
1868  {
1869      SDHCIState *s = SYSBUS_SDHCI(obj);
1870  
1871      s->io_ops = &usdhc_mmio_ops;
1872      s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1873  }
1874  
1875  static const TypeInfo imx_usdhc_info = {
1876      .name = TYPE_IMX_USDHC,
1877      .parent = TYPE_SYSBUS_SDHCI,
1878      .instance_init = imx_usdhc_init,
1879  };
1880  
1881  /* --- qdev Samsung s3c --- */
1882  
1883  #define S3C_SDHCI_CONTROL2      0x80
1884  #define S3C_SDHCI_CONTROL3      0x84
1885  #define S3C_SDHCI_CONTROL4      0x8c
1886  
1887  static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1888  {
1889      uint64_t ret;
1890  
1891      switch (offset) {
1892      case S3C_SDHCI_CONTROL2:
1893      case S3C_SDHCI_CONTROL3:
1894      case S3C_SDHCI_CONTROL4:
1895          /* ignore */
1896          ret = 0;
1897          break;
1898      default:
1899          ret = sdhci_read(opaque, offset, size);
1900          break;
1901      }
1902  
1903      return ret;
1904  }
1905  
1906  static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1907                              unsigned size)
1908  {
1909      switch (offset) {
1910      case S3C_SDHCI_CONTROL2:
1911      case S3C_SDHCI_CONTROL3:
1912      case S3C_SDHCI_CONTROL4:
1913          /* ignore */
1914          break;
1915      default:
1916          sdhci_write(opaque, offset, val, size);
1917          break;
1918      }
1919  }
1920  
1921  static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1922      .read = sdhci_s3c_read,
1923      .write = sdhci_s3c_write,
1924      .valid = {
1925          .min_access_size = 1,
1926          .max_access_size = 4,
1927          .unaligned = false
1928      },
1929      .endianness = DEVICE_LITTLE_ENDIAN,
1930  };
1931  
1932  static void sdhci_s3c_init(Object *obj)
1933  {
1934      SDHCIState *s = SYSBUS_SDHCI(obj);
1935  
1936      s->io_ops = &sdhci_s3c_mmio_ops;
1937  }
1938  
1939  static const TypeInfo sdhci_s3c_info = {
1940      .name = TYPE_S3C_SDHCI  ,
1941      .parent = TYPE_SYSBUS_SDHCI,
1942      .instance_init = sdhci_s3c_init,
1943  };
1944  
1945  static void sdhci_register_types(void)
1946  {
1947      type_register_static(&sdhci_sysbus_info);
1948      type_register_static(&sdhci_bus_info);
1949      type_register_static(&imx_usdhc_info);
1950      type_register_static(&sdhci_s3c_info);
1951  }
1952  
1953  type_init(sdhci_register_types)
1954