xref: /openbmc/qemu/hw/sd/sdhci.c (revision 56c39a41adadfc567e1ac22089670bfde6b35365)
1  /*
2   * SD Association Host Standard Specification v2.0 controller emulation
3   *
4   * Datasheet: PartA2_SD_Host_Controller_Simplified_Specification_Ver2.00.pdf
5   *
6   * Copyright (c) 2011 Samsung Electronics Co., Ltd.
7   * Mitsyanko Igor <i.mitsyanko@samsung.com>
8   * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
9   *
10   * Based on MMC controller for Samsung S5PC1xx-based board emulation
11   * by Alexey Merkulov and Vladimir Monakhov.
12   *
13   * This program is free software; you can redistribute it and/or modify it
14   * under the terms of the GNU General Public License as published by the
15   * Free Software Foundation; either version 2 of the License, or (at your
16   * option) any later version.
17   *
18   * This program is distributed in the hope that it will be useful,
19   * but WITHOUT ANY WARRANTY; without even the implied warranty of
20   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21   * See the GNU General Public License for more details.
22   *
23   * You should have received a copy of the GNU General Public License along
24   * with this program; if not, see <http://www.gnu.org/licenses/>.
25   */
26  
27  #include "qemu/osdep.h"
28  #include "qemu/units.h"
29  #include "qemu/error-report.h"
30  #include "qapi/error.h"
31  #include "hw/irq.h"
32  #include "hw/qdev-properties.h"
33  #include "sysemu/dma.h"
34  #include "qemu/timer.h"
35  #include "qemu/bitops.h"
36  #include "hw/sd/sdhci.h"
37  #include "migration/vmstate.h"
38  #include "sdhci-internal.h"
39  #include "qemu/log.h"
40  #include "qemu/module.h"
41  #include "trace.h"
42  #include "qom/object.h"
43  
44  #define TYPE_SDHCI_BUS "sdhci-bus"
45  /* This is reusing the SDBus typedef from SD_BUS */
46  DECLARE_INSTANCE_CHECKER(SDBus, SDHCI_BUS,
47                           TYPE_SDHCI_BUS)
48  
49  #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
50  
51  static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
52  {
53      return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
54  }
55  
56  /* return true on error */
57  static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
58                                           uint8_t freq, Error **errp)
59  {
60      if (s->sd_spec_version >= 3) {
61          return false;
62      }
63      switch (freq) {
64      case 0:
65      case 10 ... 63:
66          break;
67      default:
68          error_setg(errp, "SD %s clock frequency can have value"
69                     "in range 0-63 only", desc);
70          return true;
71      }
72      return false;
73  }
74  
75  static void sdhci_check_capareg(SDHCIState *s, Error **errp)
76  {
77      uint64_t msk = s->capareg;
78      uint32_t val;
79      bool y;
80  
81      switch (s->sd_spec_version) {
82      case 4:
83          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
84          trace_sdhci_capareg("64-bit system bus (v4)", val);
85          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
86  
87          val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
88          trace_sdhci_capareg("UHS-II", val);
89          msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
90  
91          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
92          trace_sdhci_capareg("ADMA3", val);
93          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
94  
95      /* fallthrough */
96      case 3:
97          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
98          trace_sdhci_capareg("async interrupt", val);
99          msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
100  
101          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
102          if (val) {
103              error_setg(errp, "slot-type not supported");
104              return;
105          }
106          trace_sdhci_capareg("slot type", val);
107          msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
108  
109          if (val != 2) {
110              val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
111              trace_sdhci_capareg("8-bit bus", val);
112          }
113          msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
114  
115          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
116          trace_sdhci_capareg("bus speed mask", val);
117          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
118  
119          val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
120          trace_sdhci_capareg("driver strength mask", val);
121          msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
122  
123          val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
124          trace_sdhci_capareg("timer re-tuning", val);
125          msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
126  
127          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
128          trace_sdhci_capareg("use SDR50 tuning", val);
129          msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
130  
131          val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
132          trace_sdhci_capareg("re-tuning mode", val);
133          msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
134  
135          val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
136          trace_sdhci_capareg("clock multiplier", val);
137          msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
138  
139      /* fallthrough */
140      case 2: /* default version */
141          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
142          trace_sdhci_capareg("ADMA2", val);
143          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
144  
145          val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
146          trace_sdhci_capareg("ADMA1", val);
147          msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
148  
149          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
150          trace_sdhci_capareg("64-bit system bus (v3)", val);
151          msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
152  
153      /* fallthrough */
154      case 1:
155          y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
156          msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
157  
158          val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
159          trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
160          if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
161              return;
162          }
163          msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
164  
165          val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
166          trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
167          if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
168              return;
169          }
170          msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
171  
172          val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
173          if (val >= 3) {
174              error_setg(errp, "block size can be 512, 1024 or 2048 only");
175              return;
176          }
177          trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
178          msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
179  
180          val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
181          trace_sdhci_capareg("high speed", val);
182          msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
183  
184          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
185          trace_sdhci_capareg("SDMA", val);
186          msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
187  
188          val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
189          trace_sdhci_capareg("suspend/resume", val);
190          msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
191  
192          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
193          trace_sdhci_capareg("3.3v", val);
194          msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
195  
196          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
197          trace_sdhci_capareg("3.0v", val);
198          msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
199  
200          val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
201          trace_sdhci_capareg("1.8v", val);
202          msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
203          break;
204  
205      default:
206          error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
207      }
208      if (msk) {
209          qemu_log_mask(LOG_UNIMP,
210                        "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
211      }
212  }
213  
214  static uint8_t sdhci_slotint(SDHCIState *s)
215  {
216      return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
217           ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
218           ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
219  }
220  
221  /* Return true if IRQ was pending and delivered */
222  static bool sdhci_update_irq(SDHCIState *s)
223  {
224      bool pending = sdhci_slotint(s);
225  
226      qemu_set_irq(s->irq, pending);
227  
228      return pending;
229  }
230  
231  static void sdhci_raise_insertion_irq(void *opaque)
232  {
233      SDHCIState *s = (SDHCIState *)opaque;
234  
235      if (s->norintsts & SDHC_NIS_REMOVE) {
236          timer_mod(s->insert_timer,
237                         qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
238      } else {
239          s->prnsts = 0x1ff0000;
240          if (s->norintstsen & SDHC_NISEN_INSERT) {
241              s->norintsts |= SDHC_NIS_INSERT;
242          }
243          sdhci_update_irq(s);
244      }
245  }
246  
247  static void sdhci_set_inserted(DeviceState *dev, bool level)
248  {
249      SDHCIState *s = (SDHCIState *)dev;
250  
251      trace_sdhci_set_inserted(level ? "insert" : "eject");
252      if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
253          /* Give target some time to notice card ejection */
254          timer_mod(s->insert_timer,
255                         qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
256      } else {
257          if (level) {
258              s->prnsts = 0x1ff0000;
259              if (s->norintstsen & SDHC_NISEN_INSERT) {
260                  s->norintsts |= SDHC_NIS_INSERT;
261              }
262          } else {
263              s->prnsts = 0x1fa0000;
264              s->pwrcon &= ~SDHC_POWER_ON;
265              s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
266              if (s->norintstsen & SDHC_NISEN_REMOVE) {
267                  s->norintsts |= SDHC_NIS_REMOVE;
268              }
269          }
270          sdhci_update_irq(s);
271      }
272  }
273  
274  static void sdhci_set_readonly(DeviceState *dev, bool level)
275  {
276      SDHCIState *s = (SDHCIState *)dev;
277  
278      if (level) {
279          s->prnsts &= ~SDHC_WRITE_PROTECT;
280      } else {
281          /* Write enabled */
282          s->prnsts |= SDHC_WRITE_PROTECT;
283      }
284  }
285  
286  static void sdhci_reset(SDHCIState *s)
287  {
288      DeviceState *dev = DEVICE(s);
289  
290      timer_del(s->insert_timer);
291      timer_del(s->transfer_timer);
292  
293      /* Set all registers to 0. Capabilities/Version registers are not cleared
294       * and assumed to always preserve their value, given to them during
295       * initialization */
296      memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
297  
298      /* Reset other state based on current card insertion/readonly status */
299      sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
300      sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
301  
302      s->data_count = 0;
303      s->stopped_state = sdhc_not_stopped;
304      s->pending_insert_state = false;
305  }
306  
307  static void sdhci_poweron_reset(DeviceState *dev)
308  {
309      /* QOM (ie power-on) reset. This is identical to reset
310       * commanded via device register apart from handling of the
311       * 'pending insert on powerup' quirk.
312       */
313      SDHCIState *s = (SDHCIState *)dev;
314  
315      sdhci_reset(s);
316  
317      if (s->pending_insert_quirk) {
318          s->pending_insert_state = true;
319      }
320  }
321  
322  static void sdhci_data_transfer(void *opaque);
323  
324  static void sdhci_send_command(SDHCIState *s)
325  {
326      SDRequest request;
327      uint8_t response[16];
328      int rlen;
329      bool timeout = false;
330  
331      s->errintsts = 0;
332      s->acmd12errsts = 0;
333      request.cmd = s->cmdreg >> 8;
334      request.arg = s->argument;
335  
336      trace_sdhci_send_command(request.cmd, request.arg);
337      rlen = sdbus_do_command(&s->sdbus, &request, response);
338  
339      if (s->cmdreg & SDHC_CMD_RESPONSE) {
340          if (rlen == 4) {
341              s->rspreg[0] = ldl_be_p(response);
342              s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
343              trace_sdhci_response4(s->rspreg[0]);
344          } else if (rlen == 16) {
345              s->rspreg[0] = ldl_be_p(&response[11]);
346              s->rspreg[1] = ldl_be_p(&response[7]);
347              s->rspreg[2] = ldl_be_p(&response[3]);
348              s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
349                              response[2];
350              trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
351                                     s->rspreg[1], s->rspreg[0]);
352          } else {
353              timeout = true;
354              trace_sdhci_error("timeout waiting for command response");
355              if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
356                  s->errintsts |= SDHC_EIS_CMDTIMEOUT;
357                  s->norintsts |= SDHC_NIS_ERR;
358              }
359          }
360  
361          if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
362              (s->norintstsen & SDHC_NISEN_TRSCMP) &&
363              (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
364              s->norintsts |= SDHC_NIS_TRSCMP;
365          }
366      }
367  
368      if (s->norintstsen & SDHC_NISEN_CMDCMP) {
369          s->norintsts |= SDHC_NIS_CMDCMP;
370      }
371  
372      sdhci_update_irq(s);
373  
374      if (!timeout && s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
375          s->data_count = 0;
376          sdhci_data_transfer(s);
377      }
378  }
379  
380  static void sdhci_end_transfer(SDHCIState *s)
381  {
382      /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
383      if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
384          SDRequest request;
385          uint8_t response[16];
386  
387          request.cmd = 0x0C;
388          request.arg = 0;
389          trace_sdhci_end_transfer(request.cmd, request.arg);
390          sdbus_do_command(&s->sdbus, &request, response);
391          /* Auto CMD12 response goes to the upper Response register */
392          s->rspreg[3] = ldl_be_p(response);
393      }
394  
395      s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
396              SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
397              SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
398  
399      if (s->norintstsen & SDHC_NISEN_TRSCMP) {
400          s->norintsts |= SDHC_NIS_TRSCMP;
401      }
402  
403      sdhci_update_irq(s);
404  }
405  
406  /*
407   * Programmed i/o data transfer
408   */
409  #define BLOCK_SIZE_MASK (4 * KiB - 1)
410  
411  /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
412  static void sdhci_read_block_from_card(SDHCIState *s)
413  {
414      const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
415  
416      if ((s->trnmod & SDHC_TRNS_MULTI) &&
417              (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
418          return;
419      }
420  
421      if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
422          /* Device is not in tuning */
423          sdbus_read_data(&s->sdbus, s->fifo_buffer, blk_size);
424      }
425  
426      if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
427          /* Device is in tuning */
428          s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
429          s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
430          s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
431                         SDHC_DATA_INHIBIT);
432          goto read_done;
433      }
434  
435      /* New data now available for READ through Buffer Port Register */
436      s->prnsts |= SDHC_DATA_AVAILABLE;
437      if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
438          s->norintsts |= SDHC_NIS_RBUFRDY;
439      }
440  
441      /* Clear DAT line active status if that was the last block */
442      if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
443              ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
444          s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
445      }
446  
447      /* If stop at block gap request was set and it's not the last block of
448       * data - generate Block Event interrupt */
449      if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
450              s->blkcnt != 1)    {
451          s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
452          if (s->norintstsen & SDHC_EISEN_BLKGAP) {
453              s->norintsts |= SDHC_EIS_BLKGAP;
454          }
455      }
456  
457  read_done:
458      sdhci_update_irq(s);
459  }
460  
461  /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
462  static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
463  {
464      uint32_t value = 0;
465      int i;
466  
467      /* first check that a valid data exists in host controller input buffer */
468      if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
469          trace_sdhci_error("read from empty buffer");
470          return 0;
471      }
472  
473      for (i = 0; i < size; i++) {
474          value |= s->fifo_buffer[s->data_count] << i * 8;
475          s->data_count++;
476          /* check if we've read all valid data (blksize bytes) from buffer */
477          if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
478              trace_sdhci_read_dataport(s->data_count);
479              s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
480              s->data_count = 0;  /* next buff read must start at position [0] */
481  
482              if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
483                  s->blkcnt--;
484              }
485  
486              /* if that was the last block of data */
487              if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
488                  ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
489                   /* stop at gap request */
490                  (s->stopped_state == sdhc_gap_read &&
491                   !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
492                  sdhci_end_transfer(s);
493              } else { /* if there are more data, read next block from card */
494                  sdhci_read_block_from_card(s);
495              }
496              break;
497          }
498      }
499  
500      return value;
501  }
502  
503  /* Write data from host controller FIFO to card */
504  static void sdhci_write_block_to_card(SDHCIState *s)
505  {
506      if (s->prnsts & SDHC_SPACE_AVAILABLE) {
507          if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
508              s->norintsts |= SDHC_NIS_WBUFRDY;
509          }
510          sdhci_update_irq(s);
511          return;
512      }
513  
514      if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
515          if (s->blkcnt == 0) {
516              return;
517          } else {
518              s->blkcnt--;
519          }
520      }
521  
522      sdbus_write_data(&s->sdbus, s->fifo_buffer, s->blksize & BLOCK_SIZE_MASK);
523  
524      /* Next data can be written through BUFFER DATORT register */
525      s->prnsts |= SDHC_SPACE_AVAILABLE;
526  
527      /* Finish transfer if that was the last block of data */
528      if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
529              ((s->trnmod & SDHC_TRNS_MULTI) &&
530              (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
531          sdhci_end_transfer(s);
532      } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
533          s->norintsts |= SDHC_NIS_WBUFRDY;
534      }
535  
536      /* Generate Block Gap Event if requested and if not the last block */
537      if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
538              s->blkcnt > 0) {
539          s->prnsts &= ~SDHC_DOING_WRITE;
540          if (s->norintstsen & SDHC_EISEN_BLKGAP) {
541              s->norintsts |= SDHC_EIS_BLKGAP;
542          }
543          sdhci_end_transfer(s);
544      }
545  
546      sdhci_update_irq(s);
547  }
548  
549  /* Write @size bytes of @value data to host controller @s Buffer Data Port
550   * register */
551  static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
552  {
553      unsigned i;
554  
555      /* Check that there is free space left in a buffer */
556      if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
557          trace_sdhci_error("Can't write to data buffer: buffer full");
558          return;
559      }
560  
561      for (i = 0; i < size; i++) {
562          s->fifo_buffer[s->data_count] = value & 0xFF;
563          s->data_count++;
564          value >>= 8;
565          if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
566              trace_sdhci_write_dataport(s->data_count);
567              s->data_count = 0;
568              s->prnsts &= ~SDHC_SPACE_AVAILABLE;
569              if (s->prnsts & SDHC_DOING_WRITE) {
570                  sdhci_write_block_to_card(s);
571              }
572          }
573      }
574  }
575  
576  /*
577   * Single DMA data transfer
578   */
579  
580  /* Multi block SDMA transfer */
581  static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
582  {
583      bool page_aligned = false;
584      unsigned int begin;
585      const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
586      uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
587      uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
588  
589      if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
590          qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
591          return;
592      }
593  
594      /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
595       * possible stop at page boundary if initial address is not page aligned,
596       * allow them to work properly */
597      if ((s->sdmasysad % boundary_chk) == 0) {
598          page_aligned = true;
599      }
600  
601      s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
602      if (s->trnmod & SDHC_TRNS_READ) {
603          s->prnsts |= SDHC_DOING_READ;
604          while (s->blkcnt) {
605              if (s->data_count == 0) {
606                  sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
607              }
608              begin = s->data_count;
609              if (((boundary_count + begin) < block_size) && page_aligned) {
610                  s->data_count = boundary_count + begin;
611                  boundary_count = 0;
612               } else {
613                  s->data_count = block_size;
614                  boundary_count -= block_size - begin;
615                  if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
616                      s->blkcnt--;
617                  }
618              }
619              dma_memory_write(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
620                               s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
621              s->sdmasysad += s->data_count - begin;
622              if (s->data_count == block_size) {
623                  s->data_count = 0;
624              }
625              if (page_aligned && boundary_count == 0) {
626                  break;
627              }
628          }
629      } else {
630          s->prnsts |= SDHC_DOING_WRITE;
631          while (s->blkcnt) {
632              begin = s->data_count;
633              if (((boundary_count + begin) < block_size) && page_aligned) {
634                  s->data_count = boundary_count + begin;
635                  boundary_count = 0;
636               } else {
637                  s->data_count = block_size;
638                  boundary_count -= block_size - begin;
639              }
640              dma_memory_read(s->dma_as, s->sdmasysad, &s->fifo_buffer[begin],
641                              s->data_count - begin, MEMTXATTRS_UNSPECIFIED);
642              s->sdmasysad += s->data_count - begin;
643              if (s->data_count == block_size) {
644                  sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
645                  s->data_count = 0;
646                  if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
647                      s->blkcnt--;
648                  }
649              }
650              if (page_aligned && boundary_count == 0) {
651                  break;
652              }
653          }
654      }
655  
656      if (s->blkcnt == 0) {
657          sdhci_end_transfer(s);
658      } else {
659          if (s->norintstsen & SDHC_NISEN_DMA) {
660              s->norintsts |= SDHC_NIS_DMA;
661          }
662          sdhci_update_irq(s);
663      }
664  }
665  
666  /* single block SDMA transfer */
667  static void sdhci_sdma_transfer_single_block(SDHCIState *s)
668  {
669      uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
670  
671      if (s->trnmod & SDHC_TRNS_READ) {
672          sdbus_read_data(&s->sdbus, s->fifo_buffer, datacnt);
673          dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
674                           MEMTXATTRS_UNSPECIFIED);
675      } else {
676          dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt,
677                          MEMTXATTRS_UNSPECIFIED);
678          sdbus_write_data(&s->sdbus, s->fifo_buffer, datacnt);
679      }
680      s->blkcnt--;
681  
682      sdhci_end_transfer(s);
683  }
684  
685  typedef struct ADMADescr {
686      hwaddr addr;
687      uint16_t length;
688      uint8_t attr;
689      uint8_t incr;
690  } ADMADescr;
691  
692  static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
693  {
694      uint32_t adma1 = 0;
695      uint64_t adma2 = 0;
696      hwaddr entry_addr = (hwaddr)s->admasysaddr;
697      switch (SDHC_DMA_TYPE(s->hostctl1)) {
698      case SDHC_CTRL_ADMA2_32:
699          dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2),
700                          MEMTXATTRS_UNSPECIFIED);
701          adma2 = le64_to_cpu(adma2);
702          /* The spec does not specify endianness of descriptor table.
703           * We currently assume that it is LE.
704           */
705          dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
706          dscr->length = (uint16_t)extract64(adma2, 16, 16);
707          dscr->attr = (uint8_t)extract64(adma2, 0, 7);
708          dscr->incr = 8;
709          break;
710      case SDHC_CTRL_ADMA1_32:
711          dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1),
712                          MEMTXATTRS_UNSPECIFIED);
713          adma1 = le32_to_cpu(adma1);
714          dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
715          dscr->attr = (uint8_t)extract32(adma1, 0, 7);
716          dscr->incr = 4;
717          if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
718              dscr->length = (uint16_t)extract32(adma1, 12, 16);
719          } else {
720              dscr->length = 4 * KiB;
721          }
722          break;
723      case SDHC_CTRL_ADMA2_64:
724          dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1,
725                          MEMTXATTRS_UNSPECIFIED);
726          dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2,
727                          MEMTXATTRS_UNSPECIFIED);
728          dscr->length = le16_to_cpu(dscr->length);
729          dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8,
730                          MEMTXATTRS_UNSPECIFIED);
731          dscr->addr = le64_to_cpu(dscr->addr);
732          dscr->attr &= (uint8_t) ~0xC0;
733          dscr->incr = 12;
734          break;
735      }
736  }
737  
738  /* Advanced DMA data transfer */
739  
740  static void sdhci_do_adma(SDHCIState *s)
741  {
742      unsigned int begin, length;
743      const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
744      const MemTxAttrs attrs = { .memory = true };
745      ADMADescr dscr = {};
746      MemTxResult res;
747      int i;
748  
749      if (s->trnmod & SDHC_TRNS_BLK_CNT_EN && !s->blkcnt) {
750          /* Stop Multiple Transfer */
751          sdhci_end_transfer(s);
752          return;
753      }
754  
755      for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
756          s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
757  
758          get_adma_description(s, &dscr);
759          trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
760  
761          if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
762              /* Indicate that error occurred in ST_FDS state */
763              s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
764              s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
765  
766              /* Generate ADMA error interrupt */
767              if (s->errintstsen & SDHC_EISEN_ADMAERR) {
768                  s->errintsts |= SDHC_EIS_ADMAERR;
769                  s->norintsts |= SDHC_NIS_ERR;
770              }
771  
772              sdhci_update_irq(s);
773              return;
774          }
775  
776          length = dscr.length ? dscr.length : 64 * KiB;
777  
778          switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
779          case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
780              s->prnsts |= SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE;
781              if (s->trnmod & SDHC_TRNS_READ) {
782                  s->prnsts |= SDHC_DOING_READ;
783                  while (length) {
784                      if (s->data_count == 0) {
785                          sdbus_read_data(&s->sdbus, s->fifo_buffer, block_size);
786                      }
787                      begin = s->data_count;
788                      if ((length + begin) < block_size) {
789                          s->data_count = length + begin;
790                          length = 0;
791                       } else {
792                          s->data_count = block_size;
793                          length -= block_size - begin;
794                      }
795                      res = dma_memory_write(s->dma_as, dscr.addr,
796                                             &s->fifo_buffer[begin],
797                                             s->data_count - begin,
798                                             attrs);
799                      if (res != MEMTX_OK) {
800                          break;
801                      }
802                      dscr.addr += s->data_count - begin;
803                      if (s->data_count == block_size) {
804                          s->data_count = 0;
805                          if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
806                              s->blkcnt--;
807                              if (s->blkcnt == 0) {
808                                  break;
809                              }
810                          }
811                      }
812                  }
813              } else {
814                  s->prnsts |= SDHC_DOING_WRITE;
815                  while (length) {
816                      begin = s->data_count;
817                      if ((length + begin) < block_size) {
818                          s->data_count = length + begin;
819                          length = 0;
820                       } else {
821                          s->data_count = block_size;
822                          length -= block_size - begin;
823                      }
824                      res = dma_memory_read(s->dma_as, dscr.addr,
825                                            &s->fifo_buffer[begin],
826                                            s->data_count - begin,
827                                            attrs);
828                      if (res != MEMTX_OK) {
829                          break;
830                      }
831                      dscr.addr += s->data_count - begin;
832                      if (s->data_count == block_size) {
833                          sdbus_write_data(&s->sdbus, s->fifo_buffer, block_size);
834                          s->data_count = 0;
835                          if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
836                              s->blkcnt--;
837                              if (s->blkcnt == 0) {
838                                  break;
839                              }
840                          }
841                      }
842                  }
843              }
844              if (res != MEMTX_OK) {
845                  if (s->errintstsen & SDHC_EISEN_ADMAERR) {
846                      trace_sdhci_error("Set ADMA error flag");
847                      s->errintsts |= SDHC_EIS_ADMAERR;
848                      s->norintsts |= SDHC_NIS_ERR;
849                  }
850                  sdhci_update_irq(s);
851              } else {
852                  s->admasysaddr += dscr.incr;
853              }
854              break;
855          case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
856              s->admasysaddr = dscr.addr;
857              trace_sdhci_adma("link", s->admasysaddr);
858              break;
859          default:
860              s->admasysaddr += dscr.incr;
861              break;
862          }
863  
864          if (dscr.attr & SDHC_ADMA_ATTR_INT) {
865              trace_sdhci_adma("interrupt", s->admasysaddr);
866              if (s->norintstsen & SDHC_NISEN_DMA) {
867                  s->norintsts |= SDHC_NIS_DMA;
868              }
869  
870              if (sdhci_update_irq(s) && !(dscr.attr & SDHC_ADMA_ATTR_END)) {
871                  /* IRQ delivered, reschedule current transfer */
872                  break;
873              }
874          }
875  
876          /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
877          if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
878                      (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
879              trace_sdhci_adma_transfer_completed();
880              if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
881                  (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
882                  s->blkcnt != 0)) {
883                  trace_sdhci_error("SD/MMC host ADMA length mismatch");
884                  s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
885                          SDHC_ADMAERR_STATE_ST_TFR;
886                  if (s->errintstsen & SDHC_EISEN_ADMAERR) {
887                      trace_sdhci_error("Set ADMA error flag");
888                      s->errintsts |= SDHC_EIS_ADMAERR;
889                      s->norintsts |= SDHC_NIS_ERR;
890                  }
891  
892                  sdhci_update_irq(s);
893              }
894              sdhci_end_transfer(s);
895              return;
896          }
897  
898      }
899  
900      /* we have unfinished business - reschedule to continue ADMA */
901      timer_mod(s->transfer_timer,
902                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
903  }
904  
905  /* Perform data transfer according to controller configuration */
906  
907  static void sdhci_data_transfer(void *opaque)
908  {
909      SDHCIState *s = (SDHCIState *)opaque;
910  
911      if (s->trnmod & SDHC_TRNS_DMA) {
912          switch (SDHC_DMA_TYPE(s->hostctl1)) {
913          case SDHC_CTRL_SDMA:
914              if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
915                  sdhci_sdma_transfer_single_block(s);
916              } else {
917                  sdhci_sdma_transfer_multi_blocks(s);
918              }
919  
920              break;
921          case SDHC_CTRL_ADMA1_32:
922              if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
923                  trace_sdhci_error("ADMA1 not supported");
924                  break;
925              }
926  
927              sdhci_do_adma(s);
928              break;
929          case SDHC_CTRL_ADMA2_32:
930              if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
931                  trace_sdhci_error("ADMA2 not supported");
932                  break;
933              }
934  
935              sdhci_do_adma(s);
936              break;
937          case SDHC_CTRL_ADMA2_64:
938              if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
939                      !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
940                  trace_sdhci_error("64 bit ADMA not supported");
941                  break;
942              }
943  
944              sdhci_do_adma(s);
945              break;
946          default:
947              trace_sdhci_error("Unsupported DMA type");
948              break;
949          }
950      } else {
951          if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
952              s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
953                      SDHC_DAT_LINE_ACTIVE;
954              sdhci_read_block_from_card(s);
955          } else {
956              s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
957                      SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
958              sdhci_write_block_to_card(s);
959          }
960      }
961  }
962  
963  static bool sdhci_can_issue_command(SDHCIState *s)
964  {
965      if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
966          (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
967          ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
968          ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
969          !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
970          return false;
971      }
972  
973      return true;
974  }
975  
976  /* The Buffer Data Port register must be accessed in sequential and
977   * continuous manner */
978  static inline bool
979  sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
980  {
981      if ((s->data_count & 0x3) != byte_num) {
982          trace_sdhci_error("Non-sequential access to Buffer Data Port register"
983                            "is prohibited\n");
984          return false;
985      }
986      return true;
987  }
988  
989  static void sdhci_resume_pending_transfer(SDHCIState *s)
990  {
991      timer_del(s->transfer_timer);
992      sdhci_data_transfer(s);
993  }
994  
995  static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
996  {
997      SDHCIState *s = (SDHCIState *)opaque;
998      uint32_t ret = 0;
999  
1000      if (timer_pending(s->transfer_timer)) {
1001          sdhci_resume_pending_transfer(s);
1002      }
1003  
1004      switch (offset & ~0x3) {
1005      case SDHC_SYSAD:
1006          ret = s->sdmasysad;
1007          break;
1008      case SDHC_BLKSIZE:
1009          ret = s->blksize | (s->blkcnt << 16);
1010          break;
1011      case SDHC_ARGUMENT:
1012          ret = s->argument;
1013          break;
1014      case SDHC_TRNMOD:
1015          ret = s->trnmod | (s->cmdreg << 16);
1016          break;
1017      case SDHC_RSPREG0 ... SDHC_RSPREG3:
1018          ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1019          break;
1020      case  SDHC_BDATA:
1021          if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1022              ret = sdhci_read_dataport(s, size);
1023              trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1024              return ret;
1025          }
1026          break;
1027      case SDHC_PRNSTS:
1028          ret = s->prnsts;
1029          ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1030                           sdbus_get_dat_lines(&s->sdbus));
1031          ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1032                           sdbus_get_cmd_line(&s->sdbus));
1033          break;
1034      case SDHC_HOSTCTL:
1035          ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1036                (s->wakcon << 24);
1037          break;
1038      case SDHC_CLKCON:
1039          ret = s->clkcon | (s->timeoutcon << 16);
1040          break;
1041      case SDHC_NORINTSTS:
1042          ret = s->norintsts | (s->errintsts << 16);
1043          break;
1044      case SDHC_NORINTSTSEN:
1045          ret = s->norintstsen | (s->errintstsen << 16);
1046          break;
1047      case SDHC_NORINTSIGEN:
1048          ret = s->norintsigen | (s->errintsigen << 16);
1049          break;
1050      case SDHC_ACMD12ERRSTS:
1051          ret = s->acmd12errsts | (s->hostctl2 << 16);
1052          break;
1053      case SDHC_CAPAB:
1054          ret = (uint32_t)s->capareg;
1055          break;
1056      case SDHC_CAPAB + 4:
1057          ret = (uint32_t)(s->capareg >> 32);
1058          break;
1059      case SDHC_MAXCURR:
1060          ret = (uint32_t)s->maxcurr;
1061          break;
1062      case SDHC_MAXCURR + 4:
1063          ret = (uint32_t)(s->maxcurr >> 32);
1064          break;
1065      case SDHC_ADMAERR:
1066          ret =  s->admaerr;
1067          break;
1068      case SDHC_ADMASYSADDR:
1069          ret = (uint32_t)s->admasysaddr;
1070          break;
1071      case SDHC_ADMASYSADDR + 4:
1072          ret = (uint32_t)(s->admasysaddr >> 32);
1073          break;
1074      case SDHC_SLOT_INT_STATUS:
1075          ret = (s->version << 16) | sdhci_slotint(s);
1076          break;
1077      default:
1078          qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1079                        "not implemented\n", size, offset);
1080          break;
1081      }
1082  
1083      ret >>= (offset & 0x3) * 8;
1084      ret &= (1ULL << (size * 8)) - 1;
1085      trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1086      return ret;
1087  }
1088  
1089  static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1090  {
1091      if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1092          return;
1093      }
1094      s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1095  
1096      if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1097              (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1098          if (s->stopped_state == sdhc_gap_read) {
1099              s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1100              sdhci_read_block_from_card(s);
1101          } else {
1102              s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1103              sdhci_write_block_to_card(s);
1104          }
1105          s->stopped_state = sdhc_not_stopped;
1106      } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1107          if (s->prnsts & SDHC_DOING_READ) {
1108              s->stopped_state = sdhc_gap_read;
1109          } else if (s->prnsts & SDHC_DOING_WRITE) {
1110              s->stopped_state = sdhc_gap_write;
1111          }
1112      }
1113  }
1114  
1115  static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1116  {
1117      switch (value) {
1118      case SDHC_RESET_ALL:
1119          sdhci_reset(s);
1120          break;
1121      case SDHC_RESET_CMD:
1122          s->prnsts &= ~SDHC_CMD_INHIBIT;
1123          s->norintsts &= ~SDHC_NIS_CMDCMP;
1124          break;
1125      case SDHC_RESET_DATA:
1126          s->data_count = 0;
1127          s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1128                  SDHC_DOING_READ | SDHC_DOING_WRITE |
1129                  SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1130          s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1131          s->stopped_state = sdhc_not_stopped;
1132          s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1133                  SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1134          break;
1135      }
1136  }
1137  
1138  static void
1139  sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1140  {
1141      SDHCIState *s = (SDHCIState *)opaque;
1142      unsigned shift =  8 * (offset & 0x3);
1143      uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1144      uint32_t value = val;
1145      value <<= shift;
1146  
1147      if (timer_pending(s->transfer_timer)) {
1148          sdhci_resume_pending_transfer(s);
1149      }
1150  
1151      switch (offset & ~0x3) {
1152      case SDHC_SYSAD:
1153          if (!TRANSFERRING_DATA(s->prnsts)) {
1154              s->sdmasysad = (s->sdmasysad & mask) | value;
1155              MASKED_WRITE(s->sdmasysad, mask, value);
1156              /* Writing to last byte of sdmasysad might trigger transfer */
1157              if (!(mask & 0xFF000000) && s->blkcnt && s->blksize &&
1158                  SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1159                  if (s->trnmod & SDHC_TRNS_MULTI) {
1160                      sdhci_sdma_transfer_multi_blocks(s);
1161                  } else {
1162                      sdhci_sdma_transfer_single_block(s);
1163                  }
1164              }
1165          }
1166          break;
1167      case SDHC_BLKSIZE:
1168          if (!TRANSFERRING_DATA(s->prnsts)) {
1169              uint16_t blksize = s->blksize;
1170  
1171              MASKED_WRITE(s->blksize, mask, extract32(value, 0, 12));
1172              MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1173  
1174              /* Limit block size to the maximum buffer size */
1175              if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1176                  qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than "
1177                                "the maximum buffer 0x%x\n", __func__, s->blksize,
1178                                s->buf_maxsz);
1179  
1180                  s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1181              }
1182  
1183              /*
1184               * If the block size is programmed to a different value from
1185               * the previous one, reset the data pointer of s->fifo_buffer[]
1186               * so that s->fifo_buffer[] can be filled in using the new block
1187               * size in the next transfer.
1188               */
1189              if (blksize != s->blksize) {
1190                  s->data_count = 0;
1191              }
1192          }
1193  
1194          break;
1195      case SDHC_ARGUMENT:
1196          MASKED_WRITE(s->argument, mask, value);
1197          break;
1198      case SDHC_TRNMOD:
1199          /* DMA can be enabled only if it is supported as indicated by
1200           * capabilities register */
1201          if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1202              value &= ~SDHC_TRNS_DMA;
1203          }
1204          MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1205          MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1206  
1207          /* Writing to the upper byte of CMDREG triggers SD command generation */
1208          if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1209              break;
1210          }
1211  
1212          sdhci_send_command(s);
1213          break;
1214      case  SDHC_BDATA:
1215          if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1216              sdhci_write_dataport(s, value >> shift, size);
1217          }
1218          break;
1219      case SDHC_HOSTCTL:
1220          if (!(mask & 0xFF0000)) {
1221              sdhci_blkgap_write(s, value >> 16);
1222          }
1223          MASKED_WRITE(s->hostctl1, mask, value);
1224          MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1225          MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1226          if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1227                  !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1228              s->pwrcon &= ~SDHC_POWER_ON;
1229          }
1230          break;
1231      case SDHC_CLKCON:
1232          if (!(mask & 0xFF000000)) {
1233              sdhci_reset_write(s, value >> 24);
1234          }
1235          MASKED_WRITE(s->clkcon, mask, value);
1236          MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1237          if (s->clkcon & SDHC_CLOCK_INT_EN) {
1238              s->clkcon |= SDHC_CLOCK_INT_STABLE;
1239          } else {
1240              s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1241          }
1242          break;
1243      case SDHC_NORINTSTS:
1244          if (s->norintstsen & SDHC_NISEN_CARDINT) {
1245              value &= ~SDHC_NIS_CARDINT;
1246          }
1247          s->norintsts &= mask | ~value;
1248          s->errintsts &= (mask >> 16) | ~(value >> 16);
1249          if (s->errintsts) {
1250              s->norintsts |= SDHC_NIS_ERR;
1251          } else {
1252              s->norintsts &= ~SDHC_NIS_ERR;
1253          }
1254          sdhci_update_irq(s);
1255          break;
1256      case SDHC_NORINTSTSEN:
1257          MASKED_WRITE(s->norintstsen, mask, value);
1258          MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1259          s->norintsts &= s->norintstsen;
1260          s->errintsts &= s->errintstsen;
1261          if (s->errintsts) {
1262              s->norintsts |= SDHC_NIS_ERR;
1263          } else {
1264              s->norintsts &= ~SDHC_NIS_ERR;
1265          }
1266          /* Quirk for Raspberry Pi: pending card insert interrupt
1267           * appears when first enabled after power on */
1268          if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1269              assert(s->pending_insert_quirk);
1270              s->norintsts |= SDHC_NIS_INSERT;
1271              s->pending_insert_state = false;
1272          }
1273          sdhci_update_irq(s);
1274          break;
1275      case SDHC_NORINTSIGEN:
1276          MASKED_WRITE(s->norintsigen, mask, value);
1277          MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1278          sdhci_update_irq(s);
1279          break;
1280      case SDHC_ADMAERR:
1281          MASKED_WRITE(s->admaerr, mask, value);
1282          break;
1283      case SDHC_ADMASYSADDR:
1284          s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1285                  (uint64_t)mask)) | (uint64_t)value;
1286          break;
1287      case SDHC_ADMASYSADDR + 4:
1288          s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1289                  ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1290          break;
1291      case SDHC_FEAER:
1292          s->acmd12errsts |= value;
1293          s->errintsts |= (value >> 16) & s->errintstsen;
1294          if (s->acmd12errsts) {
1295              s->errintsts |= SDHC_EIS_CMD12ERR;
1296          }
1297          if (s->errintsts) {
1298              s->norintsts |= SDHC_NIS_ERR;
1299          }
1300          sdhci_update_irq(s);
1301          break;
1302      case SDHC_ACMD12ERRSTS:
1303          MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1304          if (s->uhs_mode >= UHS_I) {
1305              MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1306  
1307              if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1308                  sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1309              } else {
1310                  sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1311              }
1312          }
1313          break;
1314  
1315      case SDHC_CAPAB:
1316      case SDHC_CAPAB + 4:
1317      case SDHC_MAXCURR:
1318      case SDHC_MAXCURR + 4:
1319          qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1320                        " <- 0x%08x read-only\n", size, offset, value >> shift);
1321          break;
1322  
1323      default:
1324          qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1325                        "not implemented\n", size, offset, value >> shift);
1326          break;
1327      }
1328      trace_sdhci_access("wr", size << 3, offset, "<-",
1329                         value >> shift, value >> shift);
1330  }
1331  
1332  static const MemoryRegionOps sdhci_mmio_le_ops = {
1333      .read = sdhci_read,
1334      .write = sdhci_write,
1335      .valid = {
1336          .min_access_size = 1,
1337          .max_access_size = 4,
1338          .unaligned = false
1339      },
1340      .endianness = DEVICE_LITTLE_ENDIAN,
1341  };
1342  
1343  static const MemoryRegionOps sdhci_mmio_be_ops = {
1344      .read = sdhci_read,
1345      .write = sdhci_write,
1346      .impl = {
1347          .min_access_size = 4,
1348          .max_access_size = 4,
1349      },
1350      .valid = {
1351          .min_access_size = 1,
1352          .max_access_size = 4,
1353          .unaligned = false
1354      },
1355      .endianness = DEVICE_BIG_ENDIAN,
1356  };
1357  
1358  static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1359  {
1360      ERRP_GUARD();
1361  
1362      switch (s->sd_spec_version) {
1363      case 2 ... 3:
1364          break;
1365      default:
1366          error_setg(errp, "Only Spec v2/v3 are supported");
1367          return;
1368      }
1369      s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1370  
1371      sdhci_check_capareg(s, errp);
1372      if (*errp) {
1373          return;
1374      }
1375  }
1376  
1377  /* --- qdev common --- */
1378  
1379  void sdhci_initfn(SDHCIState *s)
1380  {
1381      qbus_init(&s->sdbus, sizeof(s->sdbus), TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1382  
1383      s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1384      s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1385  
1386      s->io_ops = &sdhci_mmio_le_ops;
1387  }
1388  
1389  void sdhci_uninitfn(SDHCIState *s)
1390  {
1391      timer_free(s->insert_timer);
1392      timer_free(s->transfer_timer);
1393  
1394      g_free(s->fifo_buffer);
1395      s->fifo_buffer = NULL;
1396  }
1397  
1398  void sdhci_common_realize(SDHCIState *s, Error **errp)
1399  {
1400      ERRP_GUARD();
1401  
1402      switch (s->endianness) {
1403      case DEVICE_LITTLE_ENDIAN:
1404          /* s->io_ops is little endian by default */
1405          break;
1406      case DEVICE_BIG_ENDIAN:
1407          if (s->io_ops != &sdhci_mmio_le_ops) {
1408              error_setg(errp, "SD controller doesn't support big endianness");
1409              return;
1410          }
1411          s->io_ops = &sdhci_mmio_be_ops;
1412          break;
1413      default:
1414          error_setg(errp, "Incorrect endianness");
1415          return;
1416      }
1417  
1418      sdhci_init_readonly_registers(s, errp);
1419      if (*errp) {
1420          return;
1421      }
1422  
1423      s->buf_maxsz = sdhci_get_fifolen(s);
1424      s->fifo_buffer = g_malloc0(s->buf_maxsz);
1425  
1426      memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1427                            SDHC_REGISTERS_MAP_SIZE);
1428  }
1429  
1430  void sdhci_common_unrealize(SDHCIState *s)
1431  {
1432      /* This function is expected to be called only once for each class:
1433       * - SysBus:    via DeviceClass->unrealize(),
1434       * - PCI:       via PCIDeviceClass->exit().
1435       * However to avoid double-free and/or use-after-free we still nullify
1436       * this variable (better safe than sorry!). */
1437      g_free(s->fifo_buffer);
1438      s->fifo_buffer = NULL;
1439  }
1440  
1441  static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1442  {
1443      SDHCIState *s = opaque;
1444  
1445      return s->pending_insert_state;
1446  }
1447  
1448  static const VMStateDescription sdhci_pending_insert_vmstate = {
1449      .name = "sdhci/pending-insert",
1450      .version_id = 1,
1451      .minimum_version_id = 1,
1452      .needed = sdhci_pending_insert_vmstate_needed,
1453      .fields = (VMStateField[]) {
1454          VMSTATE_BOOL(pending_insert_state, SDHCIState),
1455          VMSTATE_END_OF_LIST()
1456      },
1457  };
1458  
1459  const VMStateDescription sdhci_vmstate = {
1460      .name = "sdhci",
1461      .version_id = 1,
1462      .minimum_version_id = 1,
1463      .fields = (VMStateField[]) {
1464          VMSTATE_UINT32(sdmasysad, SDHCIState),
1465          VMSTATE_UINT16(blksize, SDHCIState),
1466          VMSTATE_UINT16(blkcnt, SDHCIState),
1467          VMSTATE_UINT32(argument, SDHCIState),
1468          VMSTATE_UINT16(trnmod, SDHCIState),
1469          VMSTATE_UINT16(cmdreg, SDHCIState),
1470          VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1471          VMSTATE_UINT32(prnsts, SDHCIState),
1472          VMSTATE_UINT8(hostctl1, SDHCIState),
1473          VMSTATE_UINT8(pwrcon, SDHCIState),
1474          VMSTATE_UINT8(blkgap, SDHCIState),
1475          VMSTATE_UINT8(wakcon, SDHCIState),
1476          VMSTATE_UINT16(clkcon, SDHCIState),
1477          VMSTATE_UINT8(timeoutcon, SDHCIState),
1478          VMSTATE_UINT8(admaerr, SDHCIState),
1479          VMSTATE_UINT16(norintsts, SDHCIState),
1480          VMSTATE_UINT16(errintsts, SDHCIState),
1481          VMSTATE_UINT16(norintstsen, SDHCIState),
1482          VMSTATE_UINT16(errintstsen, SDHCIState),
1483          VMSTATE_UINT16(norintsigen, SDHCIState),
1484          VMSTATE_UINT16(errintsigen, SDHCIState),
1485          VMSTATE_UINT16(acmd12errsts, SDHCIState),
1486          VMSTATE_UINT16(data_count, SDHCIState),
1487          VMSTATE_UINT64(admasysaddr, SDHCIState),
1488          VMSTATE_UINT8(stopped_state, SDHCIState),
1489          VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1490          VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1491          VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1492          VMSTATE_END_OF_LIST()
1493      },
1494      .subsections = (const VMStateDescription*[]) {
1495          &sdhci_pending_insert_vmstate,
1496          NULL
1497      },
1498  };
1499  
1500  void sdhci_common_class_init(ObjectClass *klass, void *data)
1501  {
1502      DeviceClass *dc = DEVICE_CLASS(klass);
1503  
1504      set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1505      dc->vmsd = &sdhci_vmstate;
1506      dc->reset = sdhci_poweron_reset;
1507  }
1508  
1509  /* --- qdev SysBus --- */
1510  
1511  static Property sdhci_sysbus_properties[] = {
1512      DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1513      DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1514                       false),
1515      DEFINE_PROP_LINK("dma", SDHCIState,
1516                       dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1517      DEFINE_PROP_END_OF_LIST(),
1518  };
1519  
1520  static void sdhci_sysbus_init(Object *obj)
1521  {
1522      SDHCIState *s = SYSBUS_SDHCI(obj);
1523  
1524      sdhci_initfn(s);
1525  }
1526  
1527  static void sdhci_sysbus_finalize(Object *obj)
1528  {
1529      SDHCIState *s = SYSBUS_SDHCI(obj);
1530  
1531      if (s->dma_mr) {
1532          object_unparent(OBJECT(s->dma_mr));
1533      }
1534  
1535      sdhci_uninitfn(s);
1536  }
1537  
1538  static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1539  {
1540      ERRP_GUARD();
1541      SDHCIState *s = SYSBUS_SDHCI(dev);
1542      SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1543  
1544      sdhci_common_realize(s, errp);
1545      if (*errp) {
1546          return;
1547      }
1548  
1549      if (s->dma_mr) {
1550          s->dma_as = &s->sysbus_dma_as;
1551          address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1552      } else {
1553          /* use system_memory() if property "dma" not set */
1554          s->dma_as = &address_space_memory;
1555      }
1556  
1557      sysbus_init_irq(sbd, &s->irq);
1558  
1559      sysbus_init_mmio(sbd, &s->iomem);
1560  }
1561  
1562  static void sdhci_sysbus_unrealize(DeviceState *dev)
1563  {
1564      SDHCIState *s = SYSBUS_SDHCI(dev);
1565  
1566      sdhci_common_unrealize(s);
1567  
1568       if (s->dma_mr) {
1569          address_space_destroy(s->dma_as);
1570      }
1571  }
1572  
1573  static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1574  {
1575      DeviceClass *dc = DEVICE_CLASS(klass);
1576  
1577      device_class_set_props(dc, sdhci_sysbus_properties);
1578      dc->realize = sdhci_sysbus_realize;
1579      dc->unrealize = sdhci_sysbus_unrealize;
1580  
1581      sdhci_common_class_init(klass, data);
1582  }
1583  
1584  static const TypeInfo sdhci_sysbus_info = {
1585      .name = TYPE_SYSBUS_SDHCI,
1586      .parent = TYPE_SYS_BUS_DEVICE,
1587      .instance_size = sizeof(SDHCIState),
1588      .instance_init = sdhci_sysbus_init,
1589      .instance_finalize = sdhci_sysbus_finalize,
1590      .class_init = sdhci_sysbus_class_init,
1591  };
1592  
1593  /* --- qdev bus master --- */
1594  
1595  static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1596  {
1597      SDBusClass *sbc = SD_BUS_CLASS(klass);
1598  
1599      sbc->set_inserted = sdhci_set_inserted;
1600      sbc->set_readonly = sdhci_set_readonly;
1601  }
1602  
1603  static const TypeInfo sdhci_bus_info = {
1604      .name = TYPE_SDHCI_BUS,
1605      .parent = TYPE_SD_BUS,
1606      .instance_size = sizeof(SDBus),
1607      .class_init = sdhci_bus_class_init,
1608  };
1609  
1610  /* --- qdev i.MX eSDHC --- */
1611  
1612  #define USDHC_MIX_CTRL                  0x48
1613  
1614  #define USDHC_VENDOR_SPEC               0xc0
1615  #define USDHC_IMX_FRC_SDCLK_ON          (1 << 8)
1616  
1617  #define USDHC_DLL_CTRL                  0x60
1618  
1619  #define USDHC_TUNING_CTRL               0xcc
1620  #define USDHC_TUNE_CTRL_STATUS          0x68
1621  #define USDHC_WTMK_LVL                  0x44
1622  
1623  /* Undocumented register used by guests working around erratum ERR004536 */
1624  #define USDHC_UNDOCUMENTED_REG27        0x6c
1625  
1626  #define USDHC_CTRL_4BITBUS              (0x1 << 1)
1627  #define USDHC_CTRL_8BITBUS              (0x2 << 1)
1628  
1629  #define USDHC_PRNSTS_SDSTB              (1 << 3)
1630  
1631  static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1632  {
1633      SDHCIState *s = SYSBUS_SDHCI(opaque);
1634      uint32_t ret;
1635      uint16_t hostctl1;
1636  
1637      switch (offset) {
1638      default:
1639          return sdhci_read(opaque, offset, size);
1640  
1641      case SDHC_HOSTCTL:
1642          /*
1643           * For a detailed explanation on the following bit
1644           * manipulation code see comments in a similar part of
1645           * usdhc_write()
1646           */
1647          hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1648  
1649          if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1650              hostctl1 |= USDHC_CTRL_8BITBUS;
1651          }
1652  
1653          if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1654              hostctl1 |= USDHC_CTRL_4BITBUS;
1655          }
1656  
1657          ret  = hostctl1;
1658          ret |= (uint32_t)s->blkgap << 16;
1659          ret |= (uint32_t)s->wakcon << 24;
1660  
1661          break;
1662  
1663      case SDHC_PRNSTS:
1664          /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1665          ret = sdhci_read(opaque, offset, size) & ~USDHC_PRNSTS_SDSTB;
1666          if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1667              ret |= USDHC_PRNSTS_SDSTB;
1668          }
1669          break;
1670  
1671      case USDHC_VENDOR_SPEC:
1672          ret = s->vendor_spec;
1673          break;
1674      case USDHC_DLL_CTRL:
1675      case USDHC_TUNE_CTRL_STATUS:
1676      case USDHC_UNDOCUMENTED_REG27:
1677      case USDHC_TUNING_CTRL:
1678      case USDHC_MIX_CTRL:
1679      case USDHC_WTMK_LVL:
1680          ret = 0;
1681          break;
1682      }
1683  
1684      return ret;
1685  }
1686  
1687  static void
1688  usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1689  {
1690      SDHCIState *s = SYSBUS_SDHCI(opaque);
1691      uint8_t hostctl1;
1692      uint32_t value = (uint32_t)val;
1693  
1694      switch (offset) {
1695      case USDHC_DLL_CTRL:
1696      case USDHC_TUNE_CTRL_STATUS:
1697      case USDHC_UNDOCUMENTED_REG27:
1698      case USDHC_TUNING_CTRL:
1699      case USDHC_WTMK_LVL:
1700          break;
1701  
1702      case USDHC_VENDOR_SPEC:
1703          s->vendor_spec = value;
1704          switch (s->vendor) {
1705          case SDHCI_VENDOR_IMX:
1706              if (value & USDHC_IMX_FRC_SDCLK_ON) {
1707                  s->prnsts &= ~SDHC_IMX_CLOCK_GATE_OFF;
1708              } else {
1709                  s->prnsts |= SDHC_IMX_CLOCK_GATE_OFF;
1710              }
1711              break;
1712          default:
1713              break;
1714          }
1715          break;
1716  
1717      case SDHC_HOSTCTL:
1718          /*
1719           * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1720           *
1721           *       7         6     5      4      3      2        1      0
1722           * |-----------+--------+--------+-----------+----------+---------|
1723           * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1724           * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1725           * | Signal    | Test   |        | Detection | Width    |         |
1726           * | Selection | Level  |        | Pin       |          |         |
1727           * |-----------+--------+--------+-----------+----------+---------|
1728           *
1729           * and 0x29
1730           *
1731           *  15      10 9    8
1732           * |----------+------|
1733           * | Reserved | DMA  |
1734           * |          | Sel. |
1735           * |          |      |
1736           * |----------+------|
1737           *
1738           * and here's what SDCHI spec expects those offsets to be:
1739           *
1740           * 0x28 (Host Control Register)
1741           *
1742           *     7        6         5       4  3      2         1        0
1743           * |--------+--------+----------+------+--------+----------+---------|
1744           * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1745           * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1746           * | Signal | Test   | Transfer |      | Enable | Width    |         |
1747           * | Sel.   | Level  | Width    |      |        |          |         |
1748           * |--------+--------+----------+------+--------+----------+---------|
1749           *
1750           * and 0x29 (Power Control Register)
1751           *
1752           * |----------------------------------|
1753           * | Power Control Register           |
1754           * |                                  |
1755           * | Description omitted,             |
1756           * | since it has no analog in ESDHCI |
1757           * |                                  |
1758           * |----------------------------------|
1759           *
1760           * Since offsets 0x2A and 0x2B should be compatible between
1761           * both IP specs we only need to reconcile least 16-bit of the
1762           * word we've been given.
1763           */
1764  
1765          /*
1766           * First, save bits 7 6 and 0 since they are identical
1767           */
1768          hostctl1 = value & (SDHC_CTRL_LED |
1769                              SDHC_CTRL_CDTEST_INS |
1770                              SDHC_CTRL_CDTEST_EN);
1771          /*
1772           * Second, split "Data Transfer Width" from bits 2 and 1 in to
1773           * bits 5 and 1
1774           */
1775          if (value & USDHC_CTRL_8BITBUS) {
1776              hostctl1 |= SDHC_CTRL_8BITBUS;
1777          }
1778  
1779          if (value & USDHC_CTRL_4BITBUS) {
1780              hostctl1 |= USDHC_CTRL_4BITBUS;
1781          }
1782  
1783          /*
1784           * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1785           */
1786          hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1787  
1788          /*
1789           * Now place the corrected value into low 16-bit of the value
1790           * we are going to give standard SDHCI write function
1791           *
1792           * NOTE: This transformation should be the inverse of what can
1793           * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1794           * kernel
1795           */
1796          value &= ~UINT16_MAX;
1797          value |= hostctl1;
1798          value |= (uint16_t)s->pwrcon << 8;
1799  
1800          sdhci_write(opaque, offset, value, size);
1801          break;
1802  
1803      case USDHC_MIX_CTRL:
1804          /*
1805           * So, when SD/MMC stack in Linux tries to write to "Transfer
1806           * Mode Register", ESDHC i.MX quirk code will translate it
1807           * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1808           * order to get where we started
1809           *
1810           * Note that Auto CMD23 Enable bit is located in a wrong place
1811           * on i.MX, but since it is not used by QEMU we do not care.
1812           *
1813           * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1814           * here becuase it will result in a call to
1815           * sdhci_send_command(s) which we don't want.
1816           *
1817           */
1818          s->trnmod = value & UINT16_MAX;
1819          break;
1820      case SDHC_TRNMOD:
1821          /*
1822           * Similar to above, but this time a write to "Command
1823           * Register" will be translated into a 4-byte write to
1824           * "Transfer Mode register" where lower 16-bit of value would
1825           * be set to zero. So what we do is fill those bits with
1826           * cached value from s->trnmod and let the SDHCI
1827           * infrastructure handle the rest
1828           */
1829          sdhci_write(opaque, offset, val | s->trnmod, size);
1830          break;
1831      case SDHC_BLKSIZE:
1832          /*
1833           * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1834           * Linux driver will try to zero this field out which will
1835           * break the rest of SDHCI emulation.
1836           *
1837           * Linux defaults to maximum possible setting (512K boundary)
1838           * and it seems to be the only option that i.MX IP implements,
1839           * so we artificially set it to that value.
1840           */
1841          val |= 0x7 << 12;
1842          /* FALLTHROUGH */
1843      default:
1844          sdhci_write(opaque, offset, val, size);
1845          break;
1846      }
1847  }
1848  
1849  static const MemoryRegionOps usdhc_mmio_ops = {
1850      .read = usdhc_read,
1851      .write = usdhc_write,
1852      .valid = {
1853          .min_access_size = 1,
1854          .max_access_size = 4,
1855          .unaligned = false
1856      },
1857      .endianness = DEVICE_LITTLE_ENDIAN,
1858  };
1859  
1860  static void imx_usdhc_init(Object *obj)
1861  {
1862      SDHCIState *s = SYSBUS_SDHCI(obj);
1863  
1864      s->io_ops = &usdhc_mmio_ops;
1865      s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1866  }
1867  
1868  static const TypeInfo imx_usdhc_info = {
1869      .name = TYPE_IMX_USDHC,
1870      .parent = TYPE_SYSBUS_SDHCI,
1871      .instance_init = imx_usdhc_init,
1872  };
1873  
1874  /* --- qdev Samsung s3c --- */
1875  
1876  #define S3C_SDHCI_CONTROL2      0x80
1877  #define S3C_SDHCI_CONTROL3      0x84
1878  #define S3C_SDHCI_CONTROL4      0x8c
1879  
1880  static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1881  {
1882      uint64_t ret;
1883  
1884      switch (offset) {
1885      case S3C_SDHCI_CONTROL2:
1886      case S3C_SDHCI_CONTROL3:
1887      case S3C_SDHCI_CONTROL4:
1888          /* ignore */
1889          ret = 0;
1890          break;
1891      default:
1892          ret = sdhci_read(opaque, offset, size);
1893          break;
1894      }
1895  
1896      return ret;
1897  }
1898  
1899  static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1900                              unsigned size)
1901  {
1902      switch (offset) {
1903      case S3C_SDHCI_CONTROL2:
1904      case S3C_SDHCI_CONTROL3:
1905      case S3C_SDHCI_CONTROL4:
1906          /* ignore */
1907          break;
1908      default:
1909          sdhci_write(opaque, offset, val, size);
1910          break;
1911      }
1912  }
1913  
1914  static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1915      .read = sdhci_s3c_read,
1916      .write = sdhci_s3c_write,
1917      .valid = {
1918          .min_access_size = 1,
1919          .max_access_size = 4,
1920          .unaligned = false
1921      },
1922      .endianness = DEVICE_LITTLE_ENDIAN,
1923  };
1924  
1925  static void sdhci_s3c_init(Object *obj)
1926  {
1927      SDHCIState *s = SYSBUS_SDHCI(obj);
1928  
1929      s->io_ops = &sdhci_s3c_mmio_ops;
1930  }
1931  
1932  static const TypeInfo sdhci_s3c_info = {
1933      .name = TYPE_S3C_SDHCI  ,
1934      .parent = TYPE_SYSBUS_SDHCI,
1935      .instance_init = sdhci_s3c_init,
1936  };
1937  
1938  static void sdhci_register_types(void)
1939  {
1940      type_register_static(&sdhci_sysbus_info);
1941      type_register_static(&sdhci_bus_info);
1942      type_register_static(&imx_usdhc_info);
1943      type_register_static(&sdhci_s3c_info);
1944  }
1945  
1946  type_init(sdhci_register_types)
1947