xref: /openbmc/qemu/hw/sd/sdhci.c (revision 19f70347)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/error-report.h"
28 #include "qapi/error.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "sysemu/dma.h"
32 #include "qemu/timer.h"
33 #include "qemu/bitops.h"
34 #include "hw/sd/sdhci.h"
35 #include "migration/vmstate.h"
36 #include "sdhci-internal.h"
37 #include "qemu/log.h"
38 #include "qemu/module.h"
39 #include "trace.h"
40 
41 #define TYPE_SDHCI_BUS "sdhci-bus"
42 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
43 
44 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
45 
46 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
47 {
48     return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
49 }
50 
51 /* return true on error */
52 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
53                                          uint8_t freq, Error **errp)
54 {
55     if (s->sd_spec_version >= 3) {
56         return false;
57     }
58     switch (freq) {
59     case 0:
60     case 10 ... 63:
61         break;
62     default:
63         error_setg(errp, "SD %s clock frequency can have value"
64                    "in range 0-63 only", desc);
65         return true;
66     }
67     return false;
68 }
69 
70 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
71 {
72     uint64_t msk = s->capareg;
73     uint32_t val;
74     bool y;
75 
76     switch (s->sd_spec_version) {
77     case 4:
78         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
79         trace_sdhci_capareg("64-bit system bus (v4)", val);
80         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
81 
82         val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
83         trace_sdhci_capareg("UHS-II", val);
84         msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
85 
86         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
87         trace_sdhci_capareg("ADMA3", val);
88         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
89 
90     /* fallthrough */
91     case 3:
92         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
93         trace_sdhci_capareg("async interrupt", val);
94         msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
95 
96         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
97         if (val) {
98             error_setg(errp, "slot-type not supported");
99             return;
100         }
101         trace_sdhci_capareg("slot type", val);
102         msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
103 
104         if (val != 2) {
105             val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
106             trace_sdhci_capareg("8-bit bus", val);
107         }
108         msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
109 
110         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
111         trace_sdhci_capareg("bus speed mask", val);
112         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
113 
114         val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
115         trace_sdhci_capareg("driver strength mask", val);
116         msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
117 
118         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
119         trace_sdhci_capareg("timer re-tuning", val);
120         msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
121 
122         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
123         trace_sdhci_capareg("use SDR50 tuning", val);
124         msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
125 
126         val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
127         trace_sdhci_capareg("re-tuning mode", val);
128         msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
129 
130         val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
131         trace_sdhci_capareg("clock multiplier", val);
132         msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
133 
134     /* fallthrough */
135     case 2: /* default version */
136         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
137         trace_sdhci_capareg("ADMA2", val);
138         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
139 
140         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
141         trace_sdhci_capareg("ADMA1", val);
142         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
143 
144         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
145         trace_sdhci_capareg("64-bit system bus (v3)", val);
146         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
147 
148     /* fallthrough */
149     case 1:
150         y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
151         msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
152 
153         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
154         trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
155         if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
156             return;
157         }
158         msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
159 
160         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
161         trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
162         if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
163             return;
164         }
165         msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
166 
167         val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
168         if (val >= 3) {
169             error_setg(errp, "block size can be 512, 1024 or 2048 only");
170             return;
171         }
172         trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
173         msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
174 
175         val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
176         trace_sdhci_capareg("high speed", val);
177         msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
178 
179         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
180         trace_sdhci_capareg("SDMA", val);
181         msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
182 
183         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
184         trace_sdhci_capareg("suspend/resume", val);
185         msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
186 
187         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
188         trace_sdhci_capareg("3.3v", val);
189         msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
190 
191         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
192         trace_sdhci_capareg("3.0v", val);
193         msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
194 
195         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
196         trace_sdhci_capareg("1.8v", val);
197         msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
198         break;
199 
200     default:
201         error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
202     }
203     if (msk) {
204         qemu_log_mask(LOG_UNIMP,
205                       "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
206     }
207 }
208 
209 static uint8_t sdhci_slotint(SDHCIState *s)
210 {
211     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
212          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
213          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
214 }
215 
216 static inline void sdhci_update_irq(SDHCIState *s)
217 {
218     qemu_set_irq(s->irq, sdhci_slotint(s));
219 }
220 
221 static void sdhci_raise_insertion_irq(void *opaque)
222 {
223     SDHCIState *s = (SDHCIState *)opaque;
224 
225     if (s->norintsts & SDHC_NIS_REMOVE) {
226         timer_mod(s->insert_timer,
227                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
228     } else {
229         s->prnsts = 0x1ff0000;
230         if (s->norintstsen & SDHC_NISEN_INSERT) {
231             s->norintsts |= SDHC_NIS_INSERT;
232         }
233         sdhci_update_irq(s);
234     }
235 }
236 
237 static void sdhci_set_inserted(DeviceState *dev, bool level)
238 {
239     SDHCIState *s = (SDHCIState *)dev;
240 
241     trace_sdhci_set_inserted(level ? "insert" : "eject");
242     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
243         /* Give target some time to notice card ejection */
244         timer_mod(s->insert_timer,
245                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
246     } else {
247         if (level) {
248             s->prnsts = 0x1ff0000;
249             if (s->norintstsen & SDHC_NISEN_INSERT) {
250                 s->norintsts |= SDHC_NIS_INSERT;
251             }
252         } else {
253             s->prnsts = 0x1fa0000;
254             s->pwrcon &= ~SDHC_POWER_ON;
255             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
256             if (s->norintstsen & SDHC_NISEN_REMOVE) {
257                 s->norintsts |= SDHC_NIS_REMOVE;
258             }
259         }
260         sdhci_update_irq(s);
261     }
262 }
263 
264 static void sdhci_set_readonly(DeviceState *dev, bool level)
265 {
266     SDHCIState *s = (SDHCIState *)dev;
267 
268     if (level) {
269         s->prnsts &= ~SDHC_WRITE_PROTECT;
270     } else {
271         /* Write enabled */
272         s->prnsts |= SDHC_WRITE_PROTECT;
273     }
274 }
275 
276 static void sdhci_reset(SDHCIState *s)
277 {
278     DeviceState *dev = DEVICE(s);
279 
280     timer_del(s->insert_timer);
281     timer_del(s->transfer_timer);
282 
283     /* Set all registers to 0. Capabilities/Version registers are not cleared
284      * and assumed to always preserve their value, given to them during
285      * initialization */
286     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
287 
288     /* Reset other state based on current card insertion/readonly status */
289     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
290     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
291 
292     s->data_count = 0;
293     s->stopped_state = sdhc_not_stopped;
294     s->pending_insert_state = false;
295 }
296 
297 static void sdhci_poweron_reset(DeviceState *dev)
298 {
299     /* QOM (ie power-on) reset. This is identical to reset
300      * commanded via device register apart from handling of the
301      * 'pending insert on powerup' quirk.
302      */
303     SDHCIState *s = (SDHCIState *)dev;
304 
305     sdhci_reset(s);
306 
307     if (s->pending_insert_quirk) {
308         s->pending_insert_state = true;
309     }
310 }
311 
312 static void sdhci_data_transfer(void *opaque);
313 
314 static void sdhci_send_command(SDHCIState *s)
315 {
316     SDRequest request;
317     uint8_t response[16];
318     int rlen;
319 
320     s->errintsts = 0;
321     s->acmd12errsts = 0;
322     request.cmd = s->cmdreg >> 8;
323     request.arg = s->argument;
324 
325     trace_sdhci_send_command(request.cmd, request.arg);
326     rlen = sdbus_do_command(&s->sdbus, &request, response);
327 
328     if (s->cmdreg & SDHC_CMD_RESPONSE) {
329         if (rlen == 4) {
330             s->rspreg[0] = ldl_be_p(response);
331             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
332             trace_sdhci_response4(s->rspreg[0]);
333         } else if (rlen == 16) {
334             s->rspreg[0] = ldl_be_p(&response[11]);
335             s->rspreg[1] = ldl_be_p(&response[7]);
336             s->rspreg[2] = ldl_be_p(&response[3]);
337             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
338                             response[2];
339             trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
340                                    s->rspreg[1], s->rspreg[0]);
341         } else {
342             trace_sdhci_error("timeout waiting for command response");
343             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
344                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
345                 s->norintsts |= SDHC_NIS_ERR;
346             }
347         }
348 
349         if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
350             (s->norintstsen & SDHC_NISEN_TRSCMP) &&
351             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
352             s->norintsts |= SDHC_NIS_TRSCMP;
353         }
354     }
355 
356     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
357         s->norintsts |= SDHC_NIS_CMDCMP;
358     }
359 
360     sdhci_update_irq(s);
361 
362     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
363         s->data_count = 0;
364         sdhci_data_transfer(s);
365     }
366 }
367 
368 static void sdhci_end_transfer(SDHCIState *s)
369 {
370     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
371     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
372         SDRequest request;
373         uint8_t response[16];
374 
375         request.cmd = 0x0C;
376         request.arg = 0;
377         trace_sdhci_end_transfer(request.cmd, request.arg);
378         sdbus_do_command(&s->sdbus, &request, response);
379         /* Auto CMD12 response goes to the upper Response register */
380         s->rspreg[3] = ldl_be_p(response);
381     }
382 
383     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
384             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
385             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
386 
387     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
388         s->norintsts |= SDHC_NIS_TRSCMP;
389     }
390 
391     sdhci_update_irq(s);
392 }
393 
394 /*
395  * Programmed i/o data transfer
396  */
397 #define BLOCK_SIZE_MASK (4 * KiB - 1)
398 
399 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
400 static void sdhci_read_block_from_card(SDHCIState *s)
401 {
402     int index = 0;
403     uint8_t data;
404     const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
405 
406     if ((s->trnmod & SDHC_TRNS_MULTI) &&
407             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
408         return;
409     }
410 
411     for (index = 0; index < blk_size; index++) {
412         data = sdbus_read_data(&s->sdbus);
413         if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
414             /* Device is not in tuning */
415             s->fifo_buffer[index] = data;
416         }
417     }
418 
419     if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
420         /* Device is in tuning */
421         s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
422         s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
423         s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
424                        SDHC_DATA_INHIBIT);
425         goto read_done;
426     }
427 
428     /* New data now available for READ through Buffer Port Register */
429     s->prnsts |= SDHC_DATA_AVAILABLE;
430     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
431         s->norintsts |= SDHC_NIS_RBUFRDY;
432     }
433 
434     /* Clear DAT line active status if that was the last block */
435     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
436             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
437         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
438     }
439 
440     /* If stop at block gap request was set and it's not the last block of
441      * data - generate Block Event interrupt */
442     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
443             s->blkcnt != 1)    {
444         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
445         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
446             s->norintsts |= SDHC_EIS_BLKGAP;
447         }
448     }
449 
450 read_done:
451     sdhci_update_irq(s);
452 }
453 
454 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
455 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
456 {
457     uint32_t value = 0;
458     int i;
459 
460     /* first check that a valid data exists in host controller input buffer */
461     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
462         trace_sdhci_error("read from empty buffer");
463         return 0;
464     }
465 
466     for (i = 0; i < size; i++) {
467         value |= s->fifo_buffer[s->data_count] << i * 8;
468         s->data_count++;
469         /* check if we've read all valid data (blksize bytes) from buffer */
470         if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
471             trace_sdhci_read_dataport(s->data_count);
472             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
473             s->data_count = 0;  /* next buff read must start at position [0] */
474 
475             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
476                 s->blkcnt--;
477             }
478 
479             /* if that was the last block of data */
480             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
481                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
482                  /* stop at gap request */
483                 (s->stopped_state == sdhc_gap_read &&
484                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
485                 sdhci_end_transfer(s);
486             } else { /* if there are more data, read next block from card */
487                 sdhci_read_block_from_card(s);
488             }
489             break;
490         }
491     }
492 
493     return value;
494 }
495 
496 /* Write data from host controller FIFO to card */
497 static void sdhci_write_block_to_card(SDHCIState *s)
498 {
499     int index = 0;
500 
501     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
502         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
503             s->norintsts |= SDHC_NIS_WBUFRDY;
504         }
505         sdhci_update_irq(s);
506         return;
507     }
508 
509     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
510         if (s->blkcnt == 0) {
511             return;
512         } else {
513             s->blkcnt--;
514         }
515     }
516 
517     for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
518         sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
519     }
520 
521     /* Next data can be written through BUFFER DATORT register */
522     s->prnsts |= SDHC_SPACE_AVAILABLE;
523 
524     /* Finish transfer if that was the last block of data */
525     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
526             ((s->trnmod & SDHC_TRNS_MULTI) &&
527             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
528         sdhci_end_transfer(s);
529     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
530         s->norintsts |= SDHC_NIS_WBUFRDY;
531     }
532 
533     /* Generate Block Gap Event if requested and if not the last block */
534     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
535             s->blkcnt > 0) {
536         s->prnsts &= ~SDHC_DOING_WRITE;
537         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
538             s->norintsts |= SDHC_EIS_BLKGAP;
539         }
540         sdhci_end_transfer(s);
541     }
542 
543     sdhci_update_irq(s);
544 }
545 
546 /* Write @size bytes of @value data to host controller @s Buffer Data Port
547  * register */
548 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
549 {
550     unsigned i;
551 
552     /* Check that there is free space left in a buffer */
553     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
554         trace_sdhci_error("Can't write to data buffer: buffer full");
555         return;
556     }
557 
558     for (i = 0; i < size; i++) {
559         s->fifo_buffer[s->data_count] = value & 0xFF;
560         s->data_count++;
561         value >>= 8;
562         if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
563             trace_sdhci_write_dataport(s->data_count);
564             s->data_count = 0;
565             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
566             if (s->prnsts & SDHC_DOING_WRITE) {
567                 sdhci_write_block_to_card(s);
568             }
569         }
570     }
571 }
572 
573 /*
574  * Single DMA data transfer
575  */
576 
577 /* Multi block SDMA transfer */
578 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
579 {
580     bool page_aligned = false;
581     unsigned int n, begin;
582     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
583     uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
584     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
585 
586     if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
587         qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
588         return;
589     }
590 
591     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
592      * possible stop at page boundary if initial address is not page aligned,
593      * allow them to work properly */
594     if ((s->sdmasysad % boundary_chk) == 0) {
595         page_aligned = true;
596     }
597 
598     if (s->trnmod & SDHC_TRNS_READ) {
599         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
600                 SDHC_DAT_LINE_ACTIVE;
601         while (s->blkcnt) {
602             if (s->data_count == 0) {
603                 for (n = 0; n < block_size; n++) {
604                     s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
605                 }
606             }
607             begin = s->data_count;
608             if (((boundary_count + begin) < block_size) && page_aligned) {
609                 s->data_count = boundary_count + begin;
610                 boundary_count = 0;
611              } else {
612                 s->data_count = block_size;
613                 boundary_count -= block_size - begin;
614                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
615                     s->blkcnt--;
616                 }
617             }
618             dma_memory_write(s->dma_as, s->sdmasysad,
619                              &s->fifo_buffer[begin], s->data_count - begin);
620             s->sdmasysad += s->data_count - begin;
621             if (s->data_count == block_size) {
622                 s->data_count = 0;
623             }
624             if (page_aligned && boundary_count == 0) {
625                 break;
626             }
627         }
628     } else {
629         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
630                 SDHC_DAT_LINE_ACTIVE;
631         while (s->blkcnt) {
632             begin = s->data_count;
633             if (((boundary_count + begin) < block_size) && page_aligned) {
634                 s->data_count = boundary_count + begin;
635                 boundary_count = 0;
636              } else {
637                 s->data_count = block_size;
638                 boundary_count -= block_size - begin;
639             }
640             dma_memory_read(s->dma_as, s->sdmasysad,
641                             &s->fifo_buffer[begin], s->data_count - begin);
642             s->sdmasysad += s->data_count - begin;
643             if (s->data_count == block_size) {
644                 for (n = 0; n < block_size; n++) {
645                     sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
646                 }
647                 s->data_count = 0;
648                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
649                     s->blkcnt--;
650                 }
651             }
652             if (page_aligned && boundary_count == 0) {
653                 break;
654             }
655         }
656     }
657 
658     if (s->blkcnt == 0) {
659         sdhci_end_transfer(s);
660     } else {
661         if (s->norintstsen & SDHC_NISEN_DMA) {
662             s->norintsts |= SDHC_NIS_DMA;
663         }
664         sdhci_update_irq(s);
665     }
666 }
667 
668 /* single block SDMA transfer */
669 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
670 {
671     int n;
672     uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
673 
674     if (s->trnmod & SDHC_TRNS_READ) {
675         for (n = 0; n < datacnt; n++) {
676             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
677         }
678         dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
679     } else {
680         dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
681         for (n = 0; n < datacnt; n++) {
682             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
683         }
684     }
685     s->blkcnt--;
686 
687     sdhci_end_transfer(s);
688 }
689 
690 typedef struct ADMADescr {
691     hwaddr addr;
692     uint16_t length;
693     uint8_t attr;
694     uint8_t incr;
695 } ADMADescr;
696 
697 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
698 {
699     uint32_t adma1 = 0;
700     uint64_t adma2 = 0;
701     hwaddr entry_addr = (hwaddr)s->admasysaddr;
702     switch (SDHC_DMA_TYPE(s->hostctl1)) {
703     case SDHC_CTRL_ADMA2_32:
704         dma_memory_read(s->dma_as, entry_addr, &adma2, sizeof(adma2));
705         adma2 = le64_to_cpu(adma2);
706         /* The spec does not specify endianness of descriptor table.
707          * We currently assume that it is LE.
708          */
709         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
710         dscr->length = (uint16_t)extract64(adma2, 16, 16);
711         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
712         dscr->incr = 8;
713         break;
714     case SDHC_CTRL_ADMA1_32:
715         dma_memory_read(s->dma_as, entry_addr, &adma1, sizeof(adma1));
716         adma1 = le32_to_cpu(adma1);
717         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
718         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
719         dscr->incr = 4;
720         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
721             dscr->length = (uint16_t)extract32(adma1, 12, 16);
722         } else {
723             dscr->length = 4 * KiB;
724         }
725         break;
726     case SDHC_CTRL_ADMA2_64:
727         dma_memory_read(s->dma_as, entry_addr, &dscr->attr, 1);
728         dma_memory_read(s->dma_as, entry_addr + 2, &dscr->length, 2);
729         dscr->length = le16_to_cpu(dscr->length);
730         dma_memory_read(s->dma_as, entry_addr + 4, &dscr->addr, 8);
731         dscr->addr = le64_to_cpu(dscr->addr);
732         dscr->attr &= (uint8_t) ~0xC0;
733         dscr->incr = 12;
734         break;
735     }
736 }
737 
738 /* Advanced DMA data transfer */
739 
740 static void sdhci_do_adma(SDHCIState *s)
741 {
742     unsigned int n, begin, length;
743     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
744     ADMADescr dscr = {};
745     int i;
746 
747     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
748         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
749 
750         get_adma_description(s, &dscr);
751         trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
752 
753         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
754             /* Indicate that error occurred in ST_FDS state */
755             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
756             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
757 
758             /* Generate ADMA error interrupt */
759             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
760                 s->errintsts |= SDHC_EIS_ADMAERR;
761                 s->norintsts |= SDHC_NIS_ERR;
762             }
763 
764             sdhci_update_irq(s);
765             return;
766         }
767 
768         length = dscr.length ? dscr.length : 64 * KiB;
769 
770         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
771         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
772 
773             if (s->trnmod & SDHC_TRNS_READ) {
774                 while (length) {
775                     if (s->data_count == 0) {
776                         for (n = 0; n < block_size; n++) {
777                             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
778                         }
779                     }
780                     begin = s->data_count;
781                     if ((length + begin) < block_size) {
782                         s->data_count = length + begin;
783                         length = 0;
784                      } else {
785                         s->data_count = block_size;
786                         length -= block_size - begin;
787                     }
788                     dma_memory_write(s->dma_as, dscr.addr,
789                                      &s->fifo_buffer[begin],
790                                      s->data_count - begin);
791                     dscr.addr += s->data_count - begin;
792                     if (s->data_count == block_size) {
793                         s->data_count = 0;
794                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
795                             s->blkcnt--;
796                             if (s->blkcnt == 0) {
797                                 break;
798                             }
799                         }
800                     }
801                 }
802             } else {
803                 while (length) {
804                     begin = s->data_count;
805                     if ((length + begin) < block_size) {
806                         s->data_count = length + begin;
807                         length = 0;
808                      } else {
809                         s->data_count = block_size;
810                         length -= block_size - begin;
811                     }
812                     dma_memory_read(s->dma_as, dscr.addr,
813                                     &s->fifo_buffer[begin],
814                                     s->data_count - begin);
815                     dscr.addr += s->data_count - begin;
816                     if (s->data_count == block_size) {
817                         for (n = 0; n < block_size; n++) {
818                             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
819                         }
820                         s->data_count = 0;
821                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
822                             s->blkcnt--;
823                             if (s->blkcnt == 0) {
824                                 break;
825                             }
826                         }
827                     }
828                 }
829             }
830             s->admasysaddr += dscr.incr;
831             break;
832         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
833             s->admasysaddr = dscr.addr;
834             trace_sdhci_adma("link", s->admasysaddr);
835             break;
836         default:
837             s->admasysaddr += dscr.incr;
838             break;
839         }
840 
841         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
842             trace_sdhci_adma("interrupt", s->admasysaddr);
843             if (s->norintstsen & SDHC_NISEN_DMA) {
844                 s->norintsts |= SDHC_NIS_DMA;
845             }
846 
847             sdhci_update_irq(s);
848         }
849 
850         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
851         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
852                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
853             trace_sdhci_adma_transfer_completed();
854             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
855                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
856                 s->blkcnt != 0)) {
857                 trace_sdhci_error("SD/MMC host ADMA length mismatch");
858                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
859                         SDHC_ADMAERR_STATE_ST_TFR;
860                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
861                     trace_sdhci_error("Set ADMA error flag");
862                     s->errintsts |= SDHC_EIS_ADMAERR;
863                     s->norintsts |= SDHC_NIS_ERR;
864                 }
865 
866                 sdhci_update_irq(s);
867             }
868             sdhci_end_transfer(s);
869             return;
870         }
871 
872     }
873 
874     /* we have unfinished business - reschedule to continue ADMA */
875     timer_mod(s->transfer_timer,
876                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
877 }
878 
879 /* Perform data transfer according to controller configuration */
880 
881 static void sdhci_data_transfer(void *opaque)
882 {
883     SDHCIState *s = (SDHCIState *)opaque;
884 
885     if (s->trnmod & SDHC_TRNS_DMA) {
886         switch (SDHC_DMA_TYPE(s->hostctl1)) {
887         case SDHC_CTRL_SDMA:
888             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
889                 sdhci_sdma_transfer_single_block(s);
890             } else {
891                 sdhci_sdma_transfer_multi_blocks(s);
892             }
893 
894             break;
895         case SDHC_CTRL_ADMA1_32:
896             if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
897                 trace_sdhci_error("ADMA1 not supported");
898                 break;
899             }
900 
901             sdhci_do_adma(s);
902             break;
903         case SDHC_CTRL_ADMA2_32:
904             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
905                 trace_sdhci_error("ADMA2 not supported");
906                 break;
907             }
908 
909             sdhci_do_adma(s);
910             break;
911         case SDHC_CTRL_ADMA2_64:
912             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
913                     !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
914                 trace_sdhci_error("64 bit ADMA not supported");
915                 break;
916             }
917 
918             sdhci_do_adma(s);
919             break;
920         default:
921             trace_sdhci_error("Unsupported DMA type");
922             break;
923         }
924     } else {
925         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
926             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
927                     SDHC_DAT_LINE_ACTIVE;
928             sdhci_read_block_from_card(s);
929         } else {
930             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
931                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
932             sdhci_write_block_to_card(s);
933         }
934     }
935 }
936 
937 static bool sdhci_can_issue_command(SDHCIState *s)
938 {
939     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
940         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
941         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
942         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
943         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
944         return false;
945     }
946 
947     return true;
948 }
949 
950 /* The Buffer Data Port register must be accessed in sequential and
951  * continuous manner */
952 static inline bool
953 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
954 {
955     if ((s->data_count & 0x3) != byte_num) {
956         trace_sdhci_error("Non-sequential access to Buffer Data Port register"
957                           "is prohibited\n");
958         return false;
959     }
960     return true;
961 }
962 
963 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
964 {
965     SDHCIState *s = (SDHCIState *)opaque;
966     uint32_t ret = 0;
967 
968     switch (offset & ~0x3) {
969     case SDHC_SYSAD:
970         ret = s->sdmasysad;
971         break;
972     case SDHC_BLKSIZE:
973         ret = s->blksize | (s->blkcnt << 16);
974         break;
975     case SDHC_ARGUMENT:
976         ret = s->argument;
977         break;
978     case SDHC_TRNMOD:
979         ret = s->trnmod | (s->cmdreg << 16);
980         break;
981     case SDHC_RSPREG0 ... SDHC_RSPREG3:
982         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
983         break;
984     case  SDHC_BDATA:
985         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
986             ret = sdhci_read_dataport(s, size);
987             trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
988             return ret;
989         }
990         break;
991     case SDHC_PRNSTS:
992         ret = s->prnsts;
993         ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
994                          sdbus_get_dat_lines(&s->sdbus));
995         ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
996                          sdbus_get_cmd_line(&s->sdbus));
997         break;
998     case SDHC_HOSTCTL:
999         ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1000               (s->wakcon << 24);
1001         break;
1002     case SDHC_CLKCON:
1003         ret = s->clkcon | (s->timeoutcon << 16);
1004         break;
1005     case SDHC_NORINTSTS:
1006         ret = s->norintsts | (s->errintsts << 16);
1007         break;
1008     case SDHC_NORINTSTSEN:
1009         ret = s->norintstsen | (s->errintstsen << 16);
1010         break;
1011     case SDHC_NORINTSIGEN:
1012         ret = s->norintsigen | (s->errintsigen << 16);
1013         break;
1014     case SDHC_ACMD12ERRSTS:
1015         ret = s->acmd12errsts | (s->hostctl2 << 16);
1016         break;
1017     case SDHC_CAPAB:
1018         ret = (uint32_t)s->capareg;
1019         break;
1020     case SDHC_CAPAB + 4:
1021         ret = (uint32_t)(s->capareg >> 32);
1022         break;
1023     case SDHC_MAXCURR:
1024         ret = (uint32_t)s->maxcurr;
1025         break;
1026     case SDHC_MAXCURR + 4:
1027         ret = (uint32_t)(s->maxcurr >> 32);
1028         break;
1029     case SDHC_ADMAERR:
1030         ret =  s->admaerr;
1031         break;
1032     case SDHC_ADMASYSADDR:
1033         ret = (uint32_t)s->admasysaddr;
1034         break;
1035     case SDHC_ADMASYSADDR + 4:
1036         ret = (uint32_t)(s->admasysaddr >> 32);
1037         break;
1038     case SDHC_SLOT_INT_STATUS:
1039         ret = (s->version << 16) | sdhci_slotint(s);
1040         break;
1041     default:
1042         qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1043                       "not implemented\n", size, offset);
1044         break;
1045     }
1046 
1047     ret >>= (offset & 0x3) * 8;
1048     ret &= (1ULL << (size * 8)) - 1;
1049     trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1050     return ret;
1051 }
1052 
1053 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1054 {
1055     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1056         return;
1057     }
1058     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1059 
1060     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1061             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1062         if (s->stopped_state == sdhc_gap_read) {
1063             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1064             sdhci_read_block_from_card(s);
1065         } else {
1066             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1067             sdhci_write_block_to_card(s);
1068         }
1069         s->stopped_state = sdhc_not_stopped;
1070     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1071         if (s->prnsts & SDHC_DOING_READ) {
1072             s->stopped_state = sdhc_gap_read;
1073         } else if (s->prnsts & SDHC_DOING_WRITE) {
1074             s->stopped_state = sdhc_gap_write;
1075         }
1076     }
1077 }
1078 
1079 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1080 {
1081     switch (value) {
1082     case SDHC_RESET_ALL:
1083         sdhci_reset(s);
1084         break;
1085     case SDHC_RESET_CMD:
1086         s->prnsts &= ~SDHC_CMD_INHIBIT;
1087         s->norintsts &= ~SDHC_NIS_CMDCMP;
1088         break;
1089     case SDHC_RESET_DATA:
1090         s->data_count = 0;
1091         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1092                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1093                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1094         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1095         s->stopped_state = sdhc_not_stopped;
1096         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1097                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1098         break;
1099     }
1100 }
1101 
1102 static void
1103 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1104 {
1105     SDHCIState *s = (SDHCIState *)opaque;
1106     unsigned shift =  8 * (offset & 0x3);
1107     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1108     uint32_t value = val;
1109     value <<= shift;
1110 
1111     switch (offset & ~0x3) {
1112     case SDHC_SYSAD:
1113         s->sdmasysad = (s->sdmasysad & mask) | value;
1114         MASKED_WRITE(s->sdmasysad, mask, value);
1115         /* Writing to last byte of sdmasysad might trigger transfer */
1116         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1117                 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1118             if (s->trnmod & SDHC_TRNS_MULTI) {
1119                 sdhci_sdma_transfer_multi_blocks(s);
1120             } else {
1121                 sdhci_sdma_transfer_single_block(s);
1122             }
1123         }
1124         break;
1125     case SDHC_BLKSIZE:
1126         if (!TRANSFERRING_DATA(s->prnsts)) {
1127             MASKED_WRITE(s->blksize, mask, value);
1128             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1129         }
1130 
1131         /* Limit block size to the maximum buffer size */
1132         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1133             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1134                           "the maximum buffer 0x%x", __func__, s->blksize,
1135                           s->buf_maxsz);
1136 
1137             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1138         }
1139 
1140         break;
1141     case SDHC_ARGUMENT:
1142         MASKED_WRITE(s->argument, mask, value);
1143         break;
1144     case SDHC_TRNMOD:
1145         /* DMA can be enabled only if it is supported as indicated by
1146          * capabilities register */
1147         if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1148             value &= ~SDHC_TRNS_DMA;
1149         }
1150         MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1151         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1152 
1153         /* Writing to the upper byte of CMDREG triggers SD command generation */
1154         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1155             break;
1156         }
1157 
1158         sdhci_send_command(s);
1159         break;
1160     case  SDHC_BDATA:
1161         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1162             sdhci_write_dataport(s, value >> shift, size);
1163         }
1164         break;
1165     case SDHC_HOSTCTL:
1166         if (!(mask & 0xFF0000)) {
1167             sdhci_blkgap_write(s, value >> 16);
1168         }
1169         MASKED_WRITE(s->hostctl1, mask, value);
1170         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1171         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1172         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1173                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1174             s->pwrcon &= ~SDHC_POWER_ON;
1175         }
1176         break;
1177     case SDHC_CLKCON:
1178         if (!(mask & 0xFF000000)) {
1179             sdhci_reset_write(s, value >> 24);
1180         }
1181         MASKED_WRITE(s->clkcon, mask, value);
1182         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1183         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1184             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1185         } else {
1186             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1187         }
1188         break;
1189     case SDHC_NORINTSTS:
1190         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1191             value &= ~SDHC_NIS_CARDINT;
1192         }
1193         s->norintsts &= mask | ~value;
1194         s->errintsts &= (mask >> 16) | ~(value >> 16);
1195         if (s->errintsts) {
1196             s->norintsts |= SDHC_NIS_ERR;
1197         } else {
1198             s->norintsts &= ~SDHC_NIS_ERR;
1199         }
1200         sdhci_update_irq(s);
1201         break;
1202     case SDHC_NORINTSTSEN:
1203         MASKED_WRITE(s->norintstsen, mask, value);
1204         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1205         s->norintsts &= s->norintstsen;
1206         s->errintsts &= s->errintstsen;
1207         if (s->errintsts) {
1208             s->norintsts |= SDHC_NIS_ERR;
1209         } else {
1210             s->norintsts &= ~SDHC_NIS_ERR;
1211         }
1212         /* Quirk for Raspberry Pi: pending card insert interrupt
1213          * appears when first enabled after power on */
1214         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1215             assert(s->pending_insert_quirk);
1216             s->norintsts |= SDHC_NIS_INSERT;
1217             s->pending_insert_state = false;
1218         }
1219         sdhci_update_irq(s);
1220         break;
1221     case SDHC_NORINTSIGEN:
1222         MASKED_WRITE(s->norintsigen, mask, value);
1223         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1224         sdhci_update_irq(s);
1225         break;
1226     case SDHC_ADMAERR:
1227         MASKED_WRITE(s->admaerr, mask, value);
1228         break;
1229     case SDHC_ADMASYSADDR:
1230         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1231                 (uint64_t)mask)) | (uint64_t)value;
1232         break;
1233     case SDHC_ADMASYSADDR + 4:
1234         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1235                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1236         break;
1237     case SDHC_FEAER:
1238         s->acmd12errsts |= value;
1239         s->errintsts |= (value >> 16) & s->errintstsen;
1240         if (s->acmd12errsts) {
1241             s->errintsts |= SDHC_EIS_CMD12ERR;
1242         }
1243         if (s->errintsts) {
1244             s->norintsts |= SDHC_NIS_ERR;
1245         }
1246         sdhci_update_irq(s);
1247         break;
1248     case SDHC_ACMD12ERRSTS:
1249         MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1250         if (s->uhs_mode >= UHS_I) {
1251             MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1252 
1253             if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1254                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1255             } else {
1256                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1257             }
1258         }
1259         break;
1260 
1261     case SDHC_CAPAB:
1262     case SDHC_CAPAB + 4:
1263     case SDHC_MAXCURR:
1264     case SDHC_MAXCURR + 4:
1265         qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1266                       " <- 0x%08x read-only\n", size, offset, value >> shift);
1267         break;
1268 
1269     default:
1270         qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1271                       "not implemented\n", size, offset, value >> shift);
1272         break;
1273     }
1274     trace_sdhci_access("wr", size << 3, offset, "<-",
1275                        value >> shift, value >> shift);
1276 }
1277 
1278 static const MemoryRegionOps sdhci_mmio_ops = {
1279     .read = sdhci_read,
1280     .write = sdhci_write,
1281     .valid = {
1282         .min_access_size = 1,
1283         .max_access_size = 4,
1284         .unaligned = false
1285     },
1286     .endianness = DEVICE_LITTLE_ENDIAN,
1287 };
1288 
1289 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1290 {
1291     Error *local_err = NULL;
1292 
1293     switch (s->sd_spec_version) {
1294     case 2 ... 3:
1295         break;
1296     default:
1297         error_setg(errp, "Only Spec v2/v3 are supported");
1298         return;
1299     }
1300     s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1301 
1302     sdhci_check_capareg(s, &local_err);
1303     if (local_err) {
1304         error_propagate(errp, local_err);
1305         return;
1306     }
1307 }
1308 
1309 /* --- qdev common --- */
1310 
1311 void sdhci_initfn(SDHCIState *s)
1312 {
1313     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1314                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1315 
1316     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1317     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1318 
1319     s->io_ops = &sdhci_mmio_ops;
1320 }
1321 
1322 void sdhci_uninitfn(SDHCIState *s)
1323 {
1324     timer_del(s->insert_timer);
1325     timer_free(s->insert_timer);
1326     timer_del(s->transfer_timer);
1327     timer_free(s->transfer_timer);
1328 
1329     g_free(s->fifo_buffer);
1330     s->fifo_buffer = NULL;
1331 }
1332 
1333 void sdhci_common_realize(SDHCIState *s, Error **errp)
1334 {
1335     Error *local_err = NULL;
1336 
1337     sdhci_init_readonly_registers(s, &local_err);
1338     if (local_err) {
1339         error_propagate(errp, local_err);
1340         return;
1341     }
1342     s->buf_maxsz = sdhci_get_fifolen(s);
1343     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1344 
1345     memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1346                           SDHC_REGISTERS_MAP_SIZE);
1347 }
1348 
1349 void sdhci_common_unrealize(SDHCIState *s, Error **errp)
1350 {
1351     /* This function is expected to be called only once for each class:
1352      * - SysBus:    via DeviceClass->unrealize(),
1353      * - PCI:       via PCIDeviceClass->exit().
1354      * However to avoid double-free and/or use-after-free we still nullify
1355      * this variable (better safe than sorry!). */
1356     g_free(s->fifo_buffer);
1357     s->fifo_buffer = NULL;
1358 }
1359 
1360 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1361 {
1362     SDHCIState *s = opaque;
1363 
1364     return s->pending_insert_state;
1365 }
1366 
1367 static const VMStateDescription sdhci_pending_insert_vmstate = {
1368     .name = "sdhci/pending-insert",
1369     .version_id = 1,
1370     .minimum_version_id = 1,
1371     .needed = sdhci_pending_insert_vmstate_needed,
1372     .fields = (VMStateField[]) {
1373         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1374         VMSTATE_END_OF_LIST()
1375     },
1376 };
1377 
1378 const VMStateDescription sdhci_vmstate = {
1379     .name = "sdhci",
1380     .version_id = 1,
1381     .minimum_version_id = 1,
1382     .fields = (VMStateField[]) {
1383         VMSTATE_UINT32(sdmasysad, SDHCIState),
1384         VMSTATE_UINT16(blksize, SDHCIState),
1385         VMSTATE_UINT16(blkcnt, SDHCIState),
1386         VMSTATE_UINT32(argument, SDHCIState),
1387         VMSTATE_UINT16(trnmod, SDHCIState),
1388         VMSTATE_UINT16(cmdreg, SDHCIState),
1389         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1390         VMSTATE_UINT32(prnsts, SDHCIState),
1391         VMSTATE_UINT8(hostctl1, SDHCIState),
1392         VMSTATE_UINT8(pwrcon, SDHCIState),
1393         VMSTATE_UINT8(blkgap, SDHCIState),
1394         VMSTATE_UINT8(wakcon, SDHCIState),
1395         VMSTATE_UINT16(clkcon, SDHCIState),
1396         VMSTATE_UINT8(timeoutcon, SDHCIState),
1397         VMSTATE_UINT8(admaerr, SDHCIState),
1398         VMSTATE_UINT16(norintsts, SDHCIState),
1399         VMSTATE_UINT16(errintsts, SDHCIState),
1400         VMSTATE_UINT16(norintstsen, SDHCIState),
1401         VMSTATE_UINT16(errintstsen, SDHCIState),
1402         VMSTATE_UINT16(norintsigen, SDHCIState),
1403         VMSTATE_UINT16(errintsigen, SDHCIState),
1404         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1405         VMSTATE_UINT16(data_count, SDHCIState),
1406         VMSTATE_UINT64(admasysaddr, SDHCIState),
1407         VMSTATE_UINT8(stopped_state, SDHCIState),
1408         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1409         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1410         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1411         VMSTATE_END_OF_LIST()
1412     },
1413     .subsections = (const VMStateDescription*[]) {
1414         &sdhci_pending_insert_vmstate,
1415         NULL
1416     },
1417 };
1418 
1419 void sdhci_common_class_init(ObjectClass *klass, void *data)
1420 {
1421     DeviceClass *dc = DEVICE_CLASS(klass);
1422 
1423     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1424     dc->vmsd = &sdhci_vmstate;
1425     dc->reset = sdhci_poweron_reset;
1426 }
1427 
1428 /* --- qdev SysBus --- */
1429 
1430 static Property sdhci_sysbus_properties[] = {
1431     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1432     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1433                      false),
1434     DEFINE_PROP_LINK("dma", SDHCIState,
1435                      dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1436     DEFINE_PROP_END_OF_LIST(),
1437 };
1438 
1439 static void sdhci_sysbus_init(Object *obj)
1440 {
1441     SDHCIState *s = SYSBUS_SDHCI(obj);
1442 
1443     sdhci_initfn(s);
1444 }
1445 
1446 static void sdhci_sysbus_finalize(Object *obj)
1447 {
1448     SDHCIState *s = SYSBUS_SDHCI(obj);
1449 
1450     if (s->dma_mr) {
1451         object_unparent(OBJECT(s->dma_mr));
1452     }
1453 
1454     sdhci_uninitfn(s);
1455 }
1456 
1457 static void sdhci_sysbus_realize(DeviceState *dev, Error **errp)
1458 {
1459     SDHCIState *s = SYSBUS_SDHCI(dev);
1460     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1461     Error *local_err = NULL;
1462 
1463     sdhci_common_realize(s, &local_err);
1464     if (local_err) {
1465         error_propagate(errp, local_err);
1466         return;
1467     }
1468 
1469     if (s->dma_mr) {
1470         s->dma_as = &s->sysbus_dma_as;
1471         address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1472     } else {
1473         /* use system_memory() if property "dma" not set */
1474         s->dma_as = &address_space_memory;
1475     }
1476 
1477     sysbus_init_irq(sbd, &s->irq);
1478 
1479     sysbus_init_mmio(sbd, &s->iomem);
1480 }
1481 
1482 static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
1483 {
1484     SDHCIState *s = SYSBUS_SDHCI(dev);
1485 
1486     sdhci_common_unrealize(s, &error_abort);
1487 
1488      if (s->dma_mr) {
1489         address_space_destroy(s->dma_as);
1490     }
1491 }
1492 
1493 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1494 {
1495     DeviceClass *dc = DEVICE_CLASS(klass);
1496 
1497     device_class_set_props(dc, sdhci_sysbus_properties);
1498     dc->realize = sdhci_sysbus_realize;
1499     dc->unrealize = sdhci_sysbus_unrealize;
1500 
1501     sdhci_common_class_init(klass, data);
1502 }
1503 
1504 static const TypeInfo sdhci_sysbus_info = {
1505     .name = TYPE_SYSBUS_SDHCI,
1506     .parent = TYPE_SYS_BUS_DEVICE,
1507     .instance_size = sizeof(SDHCIState),
1508     .instance_init = sdhci_sysbus_init,
1509     .instance_finalize = sdhci_sysbus_finalize,
1510     .class_init = sdhci_sysbus_class_init,
1511 };
1512 
1513 /* --- qdev bus master --- */
1514 
1515 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1516 {
1517     SDBusClass *sbc = SD_BUS_CLASS(klass);
1518 
1519     sbc->set_inserted = sdhci_set_inserted;
1520     sbc->set_readonly = sdhci_set_readonly;
1521 }
1522 
1523 static const TypeInfo sdhci_bus_info = {
1524     .name = TYPE_SDHCI_BUS,
1525     .parent = TYPE_SD_BUS,
1526     .instance_size = sizeof(SDBus),
1527     .class_init = sdhci_bus_class_init,
1528 };
1529 
1530 /* --- qdev i.MX eSDHC --- */
1531 
1532 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1533 {
1534     SDHCIState *s = SYSBUS_SDHCI(opaque);
1535     uint32_t ret;
1536     uint16_t hostctl1;
1537 
1538     switch (offset) {
1539     default:
1540         return sdhci_read(opaque, offset, size);
1541 
1542     case SDHC_HOSTCTL:
1543         /*
1544          * For a detailed explanation on the following bit
1545          * manipulation code see comments in a similar part of
1546          * usdhc_write()
1547          */
1548         hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1549 
1550         if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1551             hostctl1 |= ESDHC_CTRL_8BITBUS;
1552         }
1553 
1554         if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1555             hostctl1 |= ESDHC_CTRL_4BITBUS;
1556         }
1557 
1558         ret  = hostctl1;
1559         ret |= (uint32_t)s->blkgap << 16;
1560         ret |= (uint32_t)s->wakcon << 24;
1561 
1562         break;
1563 
1564     case SDHC_PRNSTS:
1565         /* Add SDSTB (SD Clock Stable) bit to PRNSTS */
1566         ret = sdhci_read(opaque, offset, size) & ~ESDHC_PRNSTS_SDSTB;
1567         if (s->clkcon & SDHC_CLOCK_INT_STABLE) {
1568             ret |= ESDHC_PRNSTS_SDSTB;
1569         }
1570         break;
1571 
1572     case ESDHC_DLL_CTRL:
1573     case ESDHC_TUNE_CTRL_STATUS:
1574     case ESDHC_UNDOCUMENTED_REG27:
1575     case ESDHC_TUNING_CTRL:
1576     case ESDHC_VENDOR_SPEC:
1577     case ESDHC_MIX_CTRL:
1578     case ESDHC_WTMK_LVL:
1579         ret = 0;
1580         break;
1581     }
1582 
1583     return ret;
1584 }
1585 
1586 static void
1587 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1588 {
1589     SDHCIState *s = SYSBUS_SDHCI(opaque);
1590     uint8_t hostctl1;
1591     uint32_t value = (uint32_t)val;
1592 
1593     switch (offset) {
1594     case ESDHC_DLL_CTRL:
1595     case ESDHC_TUNE_CTRL_STATUS:
1596     case ESDHC_UNDOCUMENTED_REG27:
1597     case ESDHC_TUNING_CTRL:
1598     case ESDHC_WTMK_LVL:
1599     case ESDHC_VENDOR_SPEC:
1600         break;
1601 
1602     case SDHC_HOSTCTL:
1603         /*
1604          * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1605          *
1606          *       7         6     5      4      3      2        1      0
1607          * |-----------+--------+--------+-----------+----------+---------|
1608          * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1609          * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1610          * | Signal    | Test   |        | Detection | Width    |         |
1611          * | Selection | Level  |        | Pin       |          |         |
1612          * |-----------+--------+--------+-----------+----------+---------|
1613          *
1614          * and 0x29
1615          *
1616          *  15      10 9    8
1617          * |----------+------|
1618          * | Reserved | DMA  |
1619          * |          | Sel. |
1620          * |          |      |
1621          * |----------+------|
1622          *
1623          * and here's what SDCHI spec expects those offsets to be:
1624          *
1625          * 0x28 (Host Control Register)
1626          *
1627          *     7        6         5       4  3      2         1        0
1628          * |--------+--------+----------+------+--------+----------+---------|
1629          * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1630          * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1631          * | Signal | Test   | Transfer |      | Enable | Width    |         |
1632          * | Sel.   | Level  | Width    |      |        |          |         |
1633          * |--------+--------+----------+------+--------+----------+---------|
1634          *
1635          * and 0x29 (Power Control Register)
1636          *
1637          * |----------------------------------|
1638          * | Power Control Register           |
1639          * |                                  |
1640          * | Description omitted,             |
1641          * | since it has no analog in ESDHCI |
1642          * |                                  |
1643          * |----------------------------------|
1644          *
1645          * Since offsets 0x2A and 0x2B should be compatible between
1646          * both IP specs we only need to reconcile least 16-bit of the
1647          * word we've been given.
1648          */
1649 
1650         /*
1651          * First, save bits 7 6 and 0 since they are identical
1652          */
1653         hostctl1 = value & (SDHC_CTRL_LED |
1654                             SDHC_CTRL_CDTEST_INS |
1655                             SDHC_CTRL_CDTEST_EN);
1656         /*
1657          * Second, split "Data Transfer Width" from bits 2 and 1 in to
1658          * bits 5 and 1
1659          */
1660         if (value & ESDHC_CTRL_8BITBUS) {
1661             hostctl1 |= SDHC_CTRL_8BITBUS;
1662         }
1663 
1664         if (value & ESDHC_CTRL_4BITBUS) {
1665             hostctl1 |= ESDHC_CTRL_4BITBUS;
1666         }
1667 
1668         /*
1669          * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1670          */
1671         hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1672 
1673         /*
1674          * Now place the corrected value into low 16-bit of the value
1675          * we are going to give standard SDHCI write function
1676          *
1677          * NOTE: This transformation should be the inverse of what can
1678          * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1679          * kernel
1680          */
1681         value &= ~UINT16_MAX;
1682         value |= hostctl1;
1683         value |= (uint16_t)s->pwrcon << 8;
1684 
1685         sdhci_write(opaque, offset, value, size);
1686         break;
1687 
1688     case ESDHC_MIX_CTRL:
1689         /*
1690          * So, when SD/MMC stack in Linux tries to write to "Transfer
1691          * Mode Register", ESDHC i.MX quirk code will translate it
1692          * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1693          * order to get where we started
1694          *
1695          * Note that Auto CMD23 Enable bit is located in a wrong place
1696          * on i.MX, but since it is not used by QEMU we do not care.
1697          *
1698          * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1699          * here becuase it will result in a call to
1700          * sdhci_send_command(s) which we don't want.
1701          *
1702          */
1703         s->trnmod = value & UINT16_MAX;
1704         break;
1705     case SDHC_TRNMOD:
1706         /*
1707          * Similar to above, but this time a write to "Command
1708          * Register" will be translated into a 4-byte write to
1709          * "Transfer Mode register" where lower 16-bit of value would
1710          * be set to zero. So what we do is fill those bits with
1711          * cached value from s->trnmod and let the SDHCI
1712          * infrastructure handle the rest
1713          */
1714         sdhci_write(opaque, offset, val | s->trnmod, size);
1715         break;
1716     case SDHC_BLKSIZE:
1717         /*
1718          * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1719          * Linux driver will try to zero this field out which will
1720          * break the rest of SDHCI emulation.
1721          *
1722          * Linux defaults to maximum possible setting (512K boundary)
1723          * and it seems to be the only option that i.MX IP implements,
1724          * so we artificially set it to that value.
1725          */
1726         val |= 0x7 << 12;
1727         /* FALLTHROUGH */
1728     default:
1729         sdhci_write(opaque, offset, val, size);
1730         break;
1731     }
1732 }
1733 
1734 static const MemoryRegionOps usdhc_mmio_ops = {
1735     .read = usdhc_read,
1736     .write = usdhc_write,
1737     .valid = {
1738         .min_access_size = 1,
1739         .max_access_size = 4,
1740         .unaligned = false
1741     },
1742     .endianness = DEVICE_LITTLE_ENDIAN,
1743 };
1744 
1745 static void imx_usdhc_init(Object *obj)
1746 {
1747     SDHCIState *s = SYSBUS_SDHCI(obj);
1748 
1749     s->io_ops = &usdhc_mmio_ops;
1750     s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1751 }
1752 
1753 static const TypeInfo imx_usdhc_info = {
1754     .name = TYPE_IMX_USDHC,
1755     .parent = TYPE_SYSBUS_SDHCI,
1756     .instance_init = imx_usdhc_init,
1757 };
1758 
1759 /* --- qdev Samsung s3c --- */
1760 
1761 #define S3C_SDHCI_CONTROL2      0x80
1762 #define S3C_SDHCI_CONTROL3      0x84
1763 #define S3C_SDHCI_CONTROL4      0x8c
1764 
1765 static uint64_t sdhci_s3c_read(void *opaque, hwaddr offset, unsigned size)
1766 {
1767     uint64_t ret;
1768 
1769     switch (offset) {
1770     case S3C_SDHCI_CONTROL2:
1771     case S3C_SDHCI_CONTROL3:
1772     case S3C_SDHCI_CONTROL4:
1773         /* ignore */
1774         ret = 0;
1775         break;
1776     default:
1777         ret = sdhci_read(opaque, offset, size);
1778         break;
1779     }
1780 
1781     return ret;
1782 }
1783 
1784 static void sdhci_s3c_write(void *opaque, hwaddr offset, uint64_t val,
1785                             unsigned size)
1786 {
1787     switch (offset) {
1788     case S3C_SDHCI_CONTROL2:
1789     case S3C_SDHCI_CONTROL3:
1790     case S3C_SDHCI_CONTROL4:
1791         /* ignore */
1792         break;
1793     default:
1794         sdhci_write(opaque, offset, val, size);
1795         break;
1796     }
1797 }
1798 
1799 static const MemoryRegionOps sdhci_s3c_mmio_ops = {
1800     .read = sdhci_s3c_read,
1801     .write = sdhci_s3c_write,
1802     .valid = {
1803         .min_access_size = 1,
1804         .max_access_size = 4,
1805         .unaligned = false
1806     },
1807     .endianness = DEVICE_LITTLE_ENDIAN,
1808 };
1809 
1810 static void sdhci_s3c_init(Object *obj)
1811 {
1812     SDHCIState *s = SYSBUS_SDHCI(obj);
1813 
1814     s->io_ops = &sdhci_s3c_mmio_ops;
1815 }
1816 
1817 static const TypeInfo sdhci_s3c_info = {
1818     .name = TYPE_S3C_SDHCI  ,
1819     .parent = TYPE_SYSBUS_SDHCI,
1820     .instance_init = sdhci_s3c_init,
1821 };
1822 
1823 static void sdhci_register_types(void)
1824 {
1825     type_register_static(&sdhci_sysbus_info);
1826     type_register_static(&sdhci_bus_info);
1827     type_register_static(&imx_usdhc_info);
1828     type_register_static(&sdhci_s3c_info);
1829 }
1830 
1831 type_init(sdhci_register_types)
1832