xref: /openbmc/qemu/hw/sd/sdhci.c (revision 0304f9ec9c5fddd2bd3d830d5c4dbe0d54006aa5)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "sysemu/blockdev.h"
30 #include "sysemu/dma.h"
31 #include "qemu/timer.h"
32 #include "qemu/bitops.h"
33 #include "hw/sd/sdhci.h"
34 #include "sdhci-internal.h"
35 #include "qemu/log.h"
36 #include "qemu/cutils.h"
37 #include "trace.h"
38 
39 #define TYPE_SDHCI_BUS "sdhci-bus"
40 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
41 
42 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
43 
44 /* Default SD/MMC host controller features information, which will be
45  * presented in CAPABILITIES register of generic SD host controller at reset.
46  *
47  * support:
48  * - 3.3v and 1.8v voltages
49  * - SDMA/ADMA1/ADMA2
50  * - high-speed
51  * max host controller R/W buffers size: 512B
52  * max clock frequency for SDclock: 52 MHz
53  * timeout clock frequency: 52 MHz
54  *
55  * does not support:
56  * - 3.0v voltage
57  * - 64-bit system bus
58  * - suspend/resume
59  */
60 #define SDHC_CAPAB_REG_DEFAULT 0x057834b4
61 
62 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
63 {
64     return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
65 }
66 
67 /* return true on error */
68 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
69                                          uint8_t freq, Error **errp)
70 {
71     if (s->sd_spec_version >= 3) {
72         return false;
73     }
74     switch (freq) {
75     case 0:
76     case 10 ... 63:
77         break;
78     default:
79         error_setg(errp, "SD %s clock frequency can have value"
80                    "in range 0-63 only", desc);
81         return true;
82     }
83     return false;
84 }
85 
86 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
87 {
88     uint64_t msk = s->capareg;
89     uint32_t val;
90     bool y;
91 
92     switch (s->sd_spec_version) {
93     case 4:
94         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
95         trace_sdhci_capareg("64-bit system bus (v4)", val);
96         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
97 
98         val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
99         trace_sdhci_capareg("UHS-II", val);
100         msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
101 
102         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
103         trace_sdhci_capareg("ADMA3", val);
104         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
105 
106     /* fallthrough */
107     case 3:
108         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
109         trace_sdhci_capareg("async interrupt", val);
110         msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
111 
112         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
113         if (val) {
114             error_setg(errp, "slot-type not supported");
115             return;
116         }
117         trace_sdhci_capareg("slot type", val);
118         msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
119 
120         if (val != 2) {
121             val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
122             trace_sdhci_capareg("8-bit bus", val);
123         }
124         msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
125 
126         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
127         trace_sdhci_capareg("bus speed mask", val);
128         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
129 
130         val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
131         trace_sdhci_capareg("driver strength mask", val);
132         msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
133 
134         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
135         trace_sdhci_capareg("timer re-tuning", val);
136         msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
137 
138         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
139         trace_sdhci_capareg("use SDR50 tuning", val);
140         msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
141 
142         val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
143         trace_sdhci_capareg("re-tuning mode", val);
144         msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
145 
146         val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
147         trace_sdhci_capareg("clock multiplier", val);
148         msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
149 
150     /* fallthrough */
151     case 2: /* default version */
152         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
153         trace_sdhci_capareg("ADMA2", val);
154         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
155 
156         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
157         trace_sdhci_capareg("ADMA1", val);
158         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
159 
160         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
161         trace_sdhci_capareg("64-bit system bus (v3)", val);
162         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
163 
164     /* fallthrough */
165     case 1:
166         y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
167         msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
168 
169         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
170         trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
171         if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
172             return;
173         }
174         msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
175 
176         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
177         trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
178         if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
179             return;
180         }
181         msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
182 
183         val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
184         if (val >= 3) {
185             error_setg(errp, "block size can be 512, 1024 or 2048 only");
186             return;
187         }
188         trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
189         msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
190 
191         val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
192         trace_sdhci_capareg("high speed", val);
193         msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
194 
195         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
196         trace_sdhci_capareg("SDMA", val);
197         msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
198 
199         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
200         trace_sdhci_capareg("suspend/resume", val);
201         msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
202 
203         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
204         trace_sdhci_capareg("3.3v", val);
205         msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
206 
207         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
208         trace_sdhci_capareg("3.0v", val);
209         msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
210 
211         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
212         trace_sdhci_capareg("1.8v", val);
213         msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
214         break;
215 
216     default:
217         error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
218     }
219     if (msk) {
220         qemu_log_mask(LOG_UNIMP,
221                       "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
222     }
223 }
224 
225 static uint8_t sdhci_slotint(SDHCIState *s)
226 {
227     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
228          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
229          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
230 }
231 
232 static inline void sdhci_update_irq(SDHCIState *s)
233 {
234     qemu_set_irq(s->irq, sdhci_slotint(s));
235 }
236 
237 static void sdhci_raise_insertion_irq(void *opaque)
238 {
239     SDHCIState *s = (SDHCIState *)opaque;
240 
241     if (s->norintsts & SDHC_NIS_REMOVE) {
242         timer_mod(s->insert_timer,
243                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
244     } else {
245         s->prnsts = 0x1ff0000;
246         if (s->norintstsen & SDHC_NISEN_INSERT) {
247             s->norintsts |= SDHC_NIS_INSERT;
248         }
249         sdhci_update_irq(s);
250     }
251 }
252 
253 static void sdhci_set_inserted(DeviceState *dev, bool level)
254 {
255     SDHCIState *s = (SDHCIState *)dev;
256 
257     trace_sdhci_set_inserted(level ? "insert" : "eject");
258     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
259         /* Give target some time to notice card ejection */
260         timer_mod(s->insert_timer,
261                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
262     } else {
263         if (level) {
264             s->prnsts = 0x1ff0000;
265             if (s->norintstsen & SDHC_NISEN_INSERT) {
266                 s->norintsts |= SDHC_NIS_INSERT;
267             }
268         } else {
269             s->prnsts = 0x1fa0000;
270             s->pwrcon &= ~SDHC_POWER_ON;
271             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
272             if (s->norintstsen & SDHC_NISEN_REMOVE) {
273                 s->norintsts |= SDHC_NIS_REMOVE;
274             }
275         }
276         sdhci_update_irq(s);
277     }
278 }
279 
280 static void sdhci_set_readonly(DeviceState *dev, bool level)
281 {
282     SDHCIState *s = (SDHCIState *)dev;
283 
284     if (level) {
285         s->prnsts &= ~SDHC_WRITE_PROTECT;
286     } else {
287         /* Write enabled */
288         s->prnsts |= SDHC_WRITE_PROTECT;
289     }
290 }
291 
292 static void sdhci_reset(SDHCIState *s)
293 {
294     DeviceState *dev = DEVICE(s);
295 
296     timer_del(s->insert_timer);
297     timer_del(s->transfer_timer);
298 
299     /* Set all registers to 0. Capabilities/Version registers are not cleared
300      * and assumed to always preserve their value, given to them during
301      * initialization */
302     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
303 
304     /* Reset other state based on current card insertion/readonly status */
305     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
306     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
307 
308     s->data_count = 0;
309     s->stopped_state = sdhc_not_stopped;
310     s->pending_insert_state = false;
311 }
312 
313 static void sdhci_poweron_reset(DeviceState *dev)
314 {
315     /* QOM (ie power-on) reset. This is identical to reset
316      * commanded via device register apart from handling of the
317      * 'pending insert on powerup' quirk.
318      */
319     SDHCIState *s = (SDHCIState *)dev;
320 
321     sdhci_reset(s);
322 
323     if (s->pending_insert_quirk) {
324         s->pending_insert_state = true;
325     }
326 }
327 
328 static void sdhci_data_transfer(void *opaque);
329 
330 static void sdhci_send_command(SDHCIState *s)
331 {
332     SDRequest request;
333     uint8_t response[16];
334     int rlen;
335 
336     s->errintsts = 0;
337     s->acmd12errsts = 0;
338     request.cmd = s->cmdreg >> 8;
339     request.arg = s->argument;
340 
341     trace_sdhci_send_command(request.cmd, request.arg);
342     rlen = sdbus_do_command(&s->sdbus, &request, response);
343 
344     if (s->cmdreg & SDHC_CMD_RESPONSE) {
345         if (rlen == 4) {
346             s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
347                            (response[2] << 8)  |  response[3];
348             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
349             trace_sdhci_response4(s->rspreg[0]);
350         } else if (rlen == 16) {
351             s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
352                            (response[13] << 8) |  response[14];
353             s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
354                            (response[9] << 8)  |  response[10];
355             s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
356                            (response[5] << 8)  |  response[6];
357             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
358                             response[2];
359             trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
360                                    s->rspreg[1], s->rspreg[0]);
361         } else {
362             trace_sdhci_error("timeout waiting for command response");
363             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
364                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
365                 s->norintsts |= SDHC_NIS_ERR;
366             }
367         }
368 
369         if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
370             (s->norintstsen & SDHC_NISEN_TRSCMP) &&
371             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
372             s->norintsts |= SDHC_NIS_TRSCMP;
373         }
374     }
375 
376     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
377         s->norintsts |= SDHC_NIS_CMDCMP;
378     }
379 
380     sdhci_update_irq(s);
381 
382     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
383         s->data_count = 0;
384         sdhci_data_transfer(s);
385     }
386 }
387 
388 static void sdhci_end_transfer(SDHCIState *s)
389 {
390     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
391     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
392         SDRequest request;
393         uint8_t response[16];
394 
395         request.cmd = 0x0C;
396         request.arg = 0;
397         trace_sdhci_end_transfer(request.cmd, request.arg);
398         sdbus_do_command(&s->sdbus, &request, response);
399         /* Auto CMD12 response goes to the upper Response register */
400         s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
401                 (response[2] << 8) | response[3];
402     }
403 
404     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
405             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
406             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
407 
408     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
409         s->norintsts |= SDHC_NIS_TRSCMP;
410     }
411 
412     sdhci_update_irq(s);
413 }
414 
415 /*
416  * Programmed i/o data transfer
417  */
418 #define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
419 
420 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
421 static void sdhci_read_block_from_card(SDHCIState *s)
422 {
423     int index = 0;
424     uint8_t data;
425     const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
426 
427     if ((s->trnmod & SDHC_TRNS_MULTI) &&
428             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
429         return;
430     }
431 
432     for (index = 0; index < blk_size; index++) {
433         data = sdbus_read_data(&s->sdbus);
434         if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
435             /* Device is not in tuning */
436             s->fifo_buffer[index] = data;
437         }
438     }
439 
440     if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
441         /* Device is in tuning */
442         s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
443         s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
444         s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
445                        SDHC_DATA_INHIBIT);
446         goto read_done;
447     }
448 
449     /* New data now available for READ through Buffer Port Register */
450     s->prnsts |= SDHC_DATA_AVAILABLE;
451     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
452         s->norintsts |= SDHC_NIS_RBUFRDY;
453     }
454 
455     /* Clear DAT line active status if that was the last block */
456     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
457             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
458         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
459     }
460 
461     /* If stop at block gap request was set and it's not the last block of
462      * data - generate Block Event interrupt */
463     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
464             s->blkcnt != 1)    {
465         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
466         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
467             s->norintsts |= SDHC_EIS_BLKGAP;
468         }
469     }
470 
471 read_done:
472     sdhci_update_irq(s);
473 }
474 
475 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
476 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
477 {
478     uint32_t value = 0;
479     int i;
480 
481     /* first check that a valid data exists in host controller input buffer */
482     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
483         trace_sdhci_error("read from empty buffer");
484         return 0;
485     }
486 
487     for (i = 0; i < size; i++) {
488         value |= s->fifo_buffer[s->data_count] << i * 8;
489         s->data_count++;
490         /* check if we've read all valid data (blksize bytes) from buffer */
491         if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
492             trace_sdhci_read_dataport(s->data_count);
493             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
494             s->data_count = 0;  /* next buff read must start at position [0] */
495 
496             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
497                 s->blkcnt--;
498             }
499 
500             /* if that was the last block of data */
501             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
502                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
503                  /* stop at gap request */
504                 (s->stopped_state == sdhc_gap_read &&
505                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
506                 sdhci_end_transfer(s);
507             } else { /* if there are more data, read next block from card */
508                 sdhci_read_block_from_card(s);
509             }
510             break;
511         }
512     }
513 
514     return value;
515 }
516 
517 /* Write data from host controller FIFO to card */
518 static void sdhci_write_block_to_card(SDHCIState *s)
519 {
520     int index = 0;
521 
522     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
523         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
524             s->norintsts |= SDHC_NIS_WBUFRDY;
525         }
526         sdhci_update_irq(s);
527         return;
528     }
529 
530     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
531         if (s->blkcnt == 0) {
532             return;
533         } else {
534             s->blkcnt--;
535         }
536     }
537 
538     for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
539         sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
540     }
541 
542     /* Next data can be written through BUFFER DATORT register */
543     s->prnsts |= SDHC_SPACE_AVAILABLE;
544 
545     /* Finish transfer if that was the last block of data */
546     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
547             ((s->trnmod & SDHC_TRNS_MULTI) &&
548             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
549         sdhci_end_transfer(s);
550     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
551         s->norintsts |= SDHC_NIS_WBUFRDY;
552     }
553 
554     /* Generate Block Gap Event if requested and if not the last block */
555     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
556             s->blkcnt > 0) {
557         s->prnsts &= ~SDHC_DOING_WRITE;
558         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
559             s->norintsts |= SDHC_EIS_BLKGAP;
560         }
561         sdhci_end_transfer(s);
562     }
563 
564     sdhci_update_irq(s);
565 }
566 
567 /* Write @size bytes of @value data to host controller @s Buffer Data Port
568  * register */
569 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
570 {
571     unsigned i;
572 
573     /* Check that there is free space left in a buffer */
574     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
575         trace_sdhci_error("Can't write to data buffer: buffer full");
576         return;
577     }
578 
579     for (i = 0; i < size; i++) {
580         s->fifo_buffer[s->data_count] = value & 0xFF;
581         s->data_count++;
582         value >>= 8;
583         if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
584             trace_sdhci_write_dataport(s->data_count);
585             s->data_count = 0;
586             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
587             if (s->prnsts & SDHC_DOING_WRITE) {
588                 sdhci_write_block_to_card(s);
589             }
590         }
591     }
592 }
593 
594 /*
595  * Single DMA data transfer
596  */
597 
598 /* Multi block SDMA transfer */
599 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
600 {
601     bool page_aligned = false;
602     unsigned int n, begin;
603     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
604     uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
605     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
606 
607     if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
608         qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
609         return;
610     }
611 
612     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
613      * possible stop at page boundary if initial address is not page aligned,
614      * allow them to work properly */
615     if ((s->sdmasysad % boundary_chk) == 0) {
616         page_aligned = true;
617     }
618 
619     if (s->trnmod & SDHC_TRNS_READ) {
620         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
621                 SDHC_DAT_LINE_ACTIVE;
622         while (s->blkcnt) {
623             if (s->data_count == 0) {
624                 for (n = 0; n < block_size; n++) {
625                     s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
626                 }
627             }
628             begin = s->data_count;
629             if (((boundary_count + begin) < block_size) && page_aligned) {
630                 s->data_count = boundary_count + begin;
631                 boundary_count = 0;
632              } else {
633                 s->data_count = block_size;
634                 boundary_count -= block_size - begin;
635                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
636                     s->blkcnt--;
637                 }
638             }
639             dma_memory_write(s->dma_as, s->sdmasysad,
640                              &s->fifo_buffer[begin], s->data_count - begin);
641             s->sdmasysad += s->data_count - begin;
642             if (s->data_count == block_size) {
643                 s->data_count = 0;
644             }
645             if (page_aligned && boundary_count == 0) {
646                 break;
647             }
648         }
649     } else {
650         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
651                 SDHC_DAT_LINE_ACTIVE;
652         while (s->blkcnt) {
653             begin = s->data_count;
654             if (((boundary_count + begin) < block_size) && page_aligned) {
655                 s->data_count = boundary_count + begin;
656                 boundary_count = 0;
657              } else {
658                 s->data_count = block_size;
659                 boundary_count -= block_size - begin;
660             }
661             dma_memory_read(s->dma_as, s->sdmasysad,
662                             &s->fifo_buffer[begin], s->data_count - begin);
663             s->sdmasysad += s->data_count - begin;
664             if (s->data_count == block_size) {
665                 for (n = 0; n < block_size; n++) {
666                     sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
667                 }
668                 s->data_count = 0;
669                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
670                     s->blkcnt--;
671                 }
672             }
673             if (page_aligned && boundary_count == 0) {
674                 break;
675             }
676         }
677     }
678 
679     if (s->blkcnt == 0) {
680         sdhci_end_transfer(s);
681     } else {
682         if (s->norintstsen & SDHC_NISEN_DMA) {
683             s->norintsts |= SDHC_NIS_DMA;
684         }
685         sdhci_update_irq(s);
686     }
687 }
688 
689 /* single block SDMA transfer */
690 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
691 {
692     int n;
693     uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
694 
695     if (s->trnmod & SDHC_TRNS_READ) {
696         for (n = 0; n < datacnt; n++) {
697             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
698         }
699         dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
700     } else {
701         dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
702         for (n = 0; n < datacnt; n++) {
703             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
704         }
705     }
706     s->blkcnt--;
707 
708     sdhci_end_transfer(s);
709 }
710 
711 typedef struct ADMADescr {
712     hwaddr addr;
713     uint16_t length;
714     uint8_t attr;
715     uint8_t incr;
716 } ADMADescr;
717 
718 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
719 {
720     uint32_t adma1 = 0;
721     uint64_t adma2 = 0;
722     hwaddr entry_addr = (hwaddr)s->admasysaddr;
723     switch (SDHC_DMA_TYPE(s->hostctl1)) {
724     case SDHC_CTRL_ADMA2_32:
725         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
726                         sizeof(adma2));
727         adma2 = le64_to_cpu(adma2);
728         /* The spec does not specify endianness of descriptor table.
729          * We currently assume that it is LE.
730          */
731         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
732         dscr->length = (uint16_t)extract64(adma2, 16, 16);
733         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
734         dscr->incr = 8;
735         break;
736     case SDHC_CTRL_ADMA1_32:
737         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
738                         sizeof(adma1));
739         adma1 = le32_to_cpu(adma1);
740         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
741         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
742         dscr->incr = 4;
743         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
744             dscr->length = (uint16_t)extract32(adma1, 12, 16);
745         } else {
746             dscr->length = 4096;
747         }
748         break;
749     case SDHC_CTRL_ADMA2_64:
750         dma_memory_read(s->dma_as, entry_addr,
751                         (uint8_t *)(&dscr->attr), 1);
752         dma_memory_read(s->dma_as, entry_addr + 2,
753                         (uint8_t *)(&dscr->length), 2);
754         dscr->length = le16_to_cpu(dscr->length);
755         dma_memory_read(s->dma_as, entry_addr + 4,
756                         (uint8_t *)(&dscr->addr), 8);
757         dscr->addr = le64_to_cpu(dscr->addr);
758         dscr->attr &= (uint8_t) ~0xC0;
759         dscr->incr = 12;
760         break;
761     }
762 }
763 
764 /* Advanced DMA data transfer */
765 
766 static void sdhci_do_adma(SDHCIState *s)
767 {
768     unsigned int n, begin, length;
769     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
770     ADMADescr dscr = {};
771     int i;
772 
773     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
774         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
775 
776         get_adma_description(s, &dscr);
777         trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
778 
779         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
780             /* Indicate that error occurred in ST_FDS state */
781             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
782             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
783 
784             /* Generate ADMA error interrupt */
785             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
786                 s->errintsts |= SDHC_EIS_ADMAERR;
787                 s->norintsts |= SDHC_NIS_ERR;
788             }
789 
790             sdhci_update_irq(s);
791             return;
792         }
793 
794         length = dscr.length ? dscr.length : 65536;
795 
796         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
797         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
798 
799             if (s->trnmod & SDHC_TRNS_READ) {
800                 while (length) {
801                     if (s->data_count == 0) {
802                         for (n = 0; n < block_size; n++) {
803                             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
804                         }
805                     }
806                     begin = s->data_count;
807                     if ((length + begin) < block_size) {
808                         s->data_count = length + begin;
809                         length = 0;
810                      } else {
811                         s->data_count = block_size;
812                         length -= block_size - begin;
813                     }
814                     dma_memory_write(s->dma_as, dscr.addr,
815                                      &s->fifo_buffer[begin],
816                                      s->data_count - begin);
817                     dscr.addr += s->data_count - begin;
818                     if (s->data_count == block_size) {
819                         s->data_count = 0;
820                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
821                             s->blkcnt--;
822                             if (s->blkcnt == 0) {
823                                 break;
824                             }
825                         }
826                     }
827                 }
828             } else {
829                 while (length) {
830                     begin = s->data_count;
831                     if ((length + begin) < block_size) {
832                         s->data_count = length + begin;
833                         length = 0;
834                      } else {
835                         s->data_count = block_size;
836                         length -= block_size - begin;
837                     }
838                     dma_memory_read(s->dma_as, dscr.addr,
839                                     &s->fifo_buffer[begin],
840                                     s->data_count - begin);
841                     dscr.addr += s->data_count - begin;
842                     if (s->data_count == block_size) {
843                         for (n = 0; n < block_size; n++) {
844                             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
845                         }
846                         s->data_count = 0;
847                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
848                             s->blkcnt--;
849                             if (s->blkcnt == 0) {
850                                 break;
851                             }
852                         }
853                     }
854                 }
855             }
856             s->admasysaddr += dscr.incr;
857             break;
858         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
859             s->admasysaddr = dscr.addr;
860             trace_sdhci_adma("link", s->admasysaddr);
861             break;
862         default:
863             s->admasysaddr += dscr.incr;
864             break;
865         }
866 
867         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
868             trace_sdhci_adma("interrupt", s->admasysaddr);
869             if (s->norintstsen & SDHC_NISEN_DMA) {
870                 s->norintsts |= SDHC_NIS_DMA;
871             }
872 
873             sdhci_update_irq(s);
874         }
875 
876         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
877         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
878                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
879             trace_sdhci_adma_transfer_completed();
880             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
881                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
882                 s->blkcnt != 0)) {
883                 trace_sdhci_error("SD/MMC host ADMA length mismatch");
884                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
885                         SDHC_ADMAERR_STATE_ST_TFR;
886                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
887                     trace_sdhci_error("Set ADMA error flag");
888                     s->errintsts |= SDHC_EIS_ADMAERR;
889                     s->norintsts |= SDHC_NIS_ERR;
890                 }
891 
892                 sdhci_update_irq(s);
893             }
894             sdhci_end_transfer(s);
895             return;
896         }
897 
898     }
899 
900     /* we have unfinished business - reschedule to continue ADMA */
901     timer_mod(s->transfer_timer,
902                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
903 }
904 
905 /* Perform data transfer according to controller configuration */
906 
907 static void sdhci_data_transfer(void *opaque)
908 {
909     SDHCIState *s = (SDHCIState *)opaque;
910 
911     if (s->trnmod & SDHC_TRNS_DMA) {
912         switch (SDHC_DMA_TYPE(s->hostctl1)) {
913         case SDHC_CTRL_SDMA:
914             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
915                 sdhci_sdma_transfer_single_block(s);
916             } else {
917                 sdhci_sdma_transfer_multi_blocks(s);
918             }
919 
920             break;
921         case SDHC_CTRL_ADMA1_32:
922             if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
923                 trace_sdhci_error("ADMA1 not supported");
924                 break;
925             }
926 
927             sdhci_do_adma(s);
928             break;
929         case SDHC_CTRL_ADMA2_32:
930             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
931                 trace_sdhci_error("ADMA2 not supported");
932                 break;
933             }
934 
935             sdhci_do_adma(s);
936             break;
937         case SDHC_CTRL_ADMA2_64:
938             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
939                     !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
940                 trace_sdhci_error("64 bit ADMA not supported");
941                 break;
942             }
943 
944             sdhci_do_adma(s);
945             break;
946         default:
947             trace_sdhci_error("Unsupported DMA type");
948             break;
949         }
950     } else {
951         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
952             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
953                     SDHC_DAT_LINE_ACTIVE;
954             sdhci_read_block_from_card(s);
955         } else {
956             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
957                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
958             sdhci_write_block_to_card(s);
959         }
960     }
961 }
962 
963 static bool sdhci_can_issue_command(SDHCIState *s)
964 {
965     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
966         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
967         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
968         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
969         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
970         return false;
971     }
972 
973     return true;
974 }
975 
976 /* The Buffer Data Port register must be accessed in sequential and
977  * continuous manner */
978 static inline bool
979 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
980 {
981     if ((s->data_count & 0x3) != byte_num) {
982         trace_sdhci_error("Non-sequential access to Buffer Data Port register"
983                           "is prohibited\n");
984         return false;
985     }
986     return true;
987 }
988 
989 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
990 {
991     SDHCIState *s = (SDHCIState *)opaque;
992     uint32_t ret = 0;
993 
994     switch (offset & ~0x3) {
995     case SDHC_SYSAD:
996         ret = s->sdmasysad;
997         break;
998     case SDHC_BLKSIZE:
999         ret = s->blksize | (s->blkcnt << 16);
1000         break;
1001     case SDHC_ARGUMENT:
1002         ret = s->argument;
1003         break;
1004     case SDHC_TRNMOD:
1005         ret = s->trnmod | (s->cmdreg << 16);
1006         break;
1007     case SDHC_RSPREG0 ... SDHC_RSPREG3:
1008         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1009         break;
1010     case  SDHC_BDATA:
1011         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1012             ret = sdhci_read_dataport(s, size);
1013             trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1014             return ret;
1015         }
1016         break;
1017     case SDHC_PRNSTS:
1018         ret = s->prnsts;
1019         ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1020                          sdbus_get_dat_lines(&s->sdbus));
1021         ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1022                          sdbus_get_cmd_line(&s->sdbus));
1023         break;
1024     case SDHC_HOSTCTL:
1025         ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1026               (s->wakcon << 24);
1027         break;
1028     case SDHC_CLKCON:
1029         ret = s->clkcon | (s->timeoutcon << 16);
1030         break;
1031     case SDHC_NORINTSTS:
1032         ret = s->norintsts | (s->errintsts << 16);
1033         break;
1034     case SDHC_NORINTSTSEN:
1035         ret = s->norintstsen | (s->errintstsen << 16);
1036         break;
1037     case SDHC_NORINTSIGEN:
1038         ret = s->norintsigen | (s->errintsigen << 16);
1039         break;
1040     case SDHC_ACMD12ERRSTS:
1041         ret = s->acmd12errsts | (s->hostctl2 << 16);
1042         break;
1043     case SDHC_CAPAB:
1044         ret = (uint32_t)s->capareg;
1045         break;
1046     case SDHC_CAPAB + 4:
1047         ret = (uint32_t)(s->capareg >> 32);
1048         break;
1049     case SDHC_MAXCURR:
1050         ret = (uint32_t)s->maxcurr;
1051         break;
1052     case SDHC_MAXCURR + 4:
1053         ret = (uint32_t)(s->maxcurr >> 32);
1054         break;
1055     case SDHC_ADMAERR:
1056         ret =  s->admaerr;
1057         break;
1058     case SDHC_ADMASYSADDR:
1059         ret = (uint32_t)s->admasysaddr;
1060         break;
1061     case SDHC_ADMASYSADDR + 4:
1062         ret = (uint32_t)(s->admasysaddr >> 32);
1063         break;
1064     case SDHC_SLOT_INT_STATUS:
1065         ret = (s->version << 16) | sdhci_slotint(s);
1066         break;
1067     default:
1068         qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1069                       "not implemented\n", size, offset);
1070         break;
1071     }
1072 
1073     ret >>= (offset & 0x3) * 8;
1074     ret &= (1ULL << (size * 8)) - 1;
1075     trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1076     return ret;
1077 }
1078 
1079 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1080 {
1081     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1082         return;
1083     }
1084     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1085 
1086     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1087             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1088         if (s->stopped_state == sdhc_gap_read) {
1089             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1090             sdhci_read_block_from_card(s);
1091         } else {
1092             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1093             sdhci_write_block_to_card(s);
1094         }
1095         s->stopped_state = sdhc_not_stopped;
1096     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1097         if (s->prnsts & SDHC_DOING_READ) {
1098             s->stopped_state = sdhc_gap_read;
1099         } else if (s->prnsts & SDHC_DOING_WRITE) {
1100             s->stopped_state = sdhc_gap_write;
1101         }
1102     }
1103 }
1104 
1105 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1106 {
1107     switch (value) {
1108     case SDHC_RESET_ALL:
1109         sdhci_reset(s);
1110         break;
1111     case SDHC_RESET_CMD:
1112         s->prnsts &= ~SDHC_CMD_INHIBIT;
1113         s->norintsts &= ~SDHC_NIS_CMDCMP;
1114         break;
1115     case SDHC_RESET_DATA:
1116         s->data_count = 0;
1117         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1118                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1119                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1120         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1121         s->stopped_state = sdhc_not_stopped;
1122         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1123                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1124         break;
1125     }
1126 }
1127 
1128 static void
1129 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1130 {
1131     SDHCIState *s = (SDHCIState *)opaque;
1132     unsigned shift =  8 * (offset & 0x3);
1133     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1134     uint32_t value = val;
1135     value <<= shift;
1136 
1137     switch (offset & ~0x3) {
1138     case SDHC_SYSAD:
1139         s->sdmasysad = (s->sdmasysad & mask) | value;
1140         MASKED_WRITE(s->sdmasysad, mask, value);
1141         /* Writing to last byte of sdmasysad might trigger transfer */
1142         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1143                 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1144             if (s->trnmod & SDHC_TRNS_MULTI) {
1145                 sdhci_sdma_transfer_multi_blocks(s);
1146             } else {
1147                 sdhci_sdma_transfer_single_block(s);
1148             }
1149         }
1150         break;
1151     case SDHC_BLKSIZE:
1152         if (!TRANSFERRING_DATA(s->prnsts)) {
1153             MASKED_WRITE(s->blksize, mask, value);
1154             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1155         }
1156 
1157         /* Limit block size to the maximum buffer size */
1158         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1159             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1160                           "the maximum buffer 0x%x", __func__, s->blksize,
1161                           s->buf_maxsz);
1162 
1163             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1164         }
1165 
1166         break;
1167     case SDHC_ARGUMENT:
1168         MASKED_WRITE(s->argument, mask, value);
1169         break;
1170     case SDHC_TRNMOD:
1171         /* DMA can be enabled only if it is supported as indicated by
1172          * capabilities register */
1173         if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1174             value &= ~SDHC_TRNS_DMA;
1175         }
1176         MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1177         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1178 
1179         /* Writing to the upper byte of CMDREG triggers SD command generation */
1180         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1181             break;
1182         }
1183 
1184         sdhci_send_command(s);
1185         break;
1186     case  SDHC_BDATA:
1187         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1188             sdhci_write_dataport(s, value >> shift, size);
1189         }
1190         break;
1191     case SDHC_HOSTCTL:
1192         if (!(mask & 0xFF0000)) {
1193             sdhci_blkgap_write(s, value >> 16);
1194         }
1195         MASKED_WRITE(s->hostctl1, mask, value);
1196         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1197         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1198         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1199                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1200             s->pwrcon &= ~SDHC_POWER_ON;
1201         }
1202         break;
1203     case SDHC_CLKCON:
1204         if (!(mask & 0xFF000000)) {
1205             sdhci_reset_write(s, value >> 24);
1206         }
1207         MASKED_WRITE(s->clkcon, mask, value);
1208         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1209         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1210             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1211         } else {
1212             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1213         }
1214         break;
1215     case SDHC_NORINTSTS:
1216         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1217             value &= ~SDHC_NIS_CARDINT;
1218         }
1219         s->norintsts &= mask | ~value;
1220         s->errintsts &= (mask >> 16) | ~(value >> 16);
1221         if (s->errintsts) {
1222             s->norintsts |= SDHC_NIS_ERR;
1223         } else {
1224             s->norintsts &= ~SDHC_NIS_ERR;
1225         }
1226         sdhci_update_irq(s);
1227         break;
1228     case SDHC_NORINTSTSEN:
1229         MASKED_WRITE(s->norintstsen, mask, value);
1230         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1231         s->norintsts &= s->norintstsen;
1232         s->errintsts &= s->errintstsen;
1233         if (s->errintsts) {
1234             s->norintsts |= SDHC_NIS_ERR;
1235         } else {
1236             s->norintsts &= ~SDHC_NIS_ERR;
1237         }
1238         /* Quirk for Raspberry Pi: pending card insert interrupt
1239          * appears when first enabled after power on */
1240         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1241             assert(s->pending_insert_quirk);
1242             s->norintsts |= SDHC_NIS_INSERT;
1243             s->pending_insert_state = false;
1244         }
1245         sdhci_update_irq(s);
1246         break;
1247     case SDHC_NORINTSIGEN:
1248         MASKED_WRITE(s->norintsigen, mask, value);
1249         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1250         sdhci_update_irq(s);
1251         break;
1252     case SDHC_ADMAERR:
1253         MASKED_WRITE(s->admaerr, mask, value);
1254         break;
1255     case SDHC_ADMASYSADDR:
1256         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1257                 (uint64_t)mask)) | (uint64_t)value;
1258         break;
1259     case SDHC_ADMASYSADDR + 4:
1260         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1261                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1262         break;
1263     case SDHC_FEAER:
1264         s->acmd12errsts |= value;
1265         s->errintsts |= (value >> 16) & s->errintstsen;
1266         if (s->acmd12errsts) {
1267             s->errintsts |= SDHC_EIS_CMD12ERR;
1268         }
1269         if (s->errintsts) {
1270             s->norintsts |= SDHC_NIS_ERR;
1271         }
1272         sdhci_update_irq(s);
1273         break;
1274     case SDHC_ACMD12ERRSTS:
1275         MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1276         if (s->uhs_mode >= UHS_I) {
1277             MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1278 
1279             if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1280                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1281             } else {
1282                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1283             }
1284         }
1285         break;
1286 
1287     case SDHC_CAPAB:
1288     case SDHC_CAPAB + 4:
1289     case SDHC_MAXCURR:
1290     case SDHC_MAXCURR + 4:
1291         qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1292                       " <- 0x%08x read-only\n", size, offset, value >> shift);
1293         break;
1294 
1295     default:
1296         qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1297                       "not implemented\n", size, offset, value >> shift);
1298         break;
1299     }
1300     trace_sdhci_access("wr", size << 3, offset, "<-",
1301                        value >> shift, value >> shift);
1302 }
1303 
1304 static const MemoryRegionOps sdhci_mmio_ops = {
1305     .read = sdhci_read,
1306     .write = sdhci_write,
1307     .valid = {
1308         .min_access_size = 1,
1309         .max_access_size = 4,
1310         .unaligned = false
1311     },
1312     .endianness = DEVICE_LITTLE_ENDIAN,
1313 };
1314 
1315 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1316 {
1317     Error *local_err = NULL;
1318 
1319     switch (s->sd_spec_version) {
1320     case 2 ... 3:
1321         break;
1322     default:
1323         error_setg(errp, "Only Spec v2/v3 are supported");
1324         return;
1325     }
1326     s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1327 
1328     sdhci_check_capareg(s, &local_err);
1329     if (local_err) {
1330         error_propagate(errp, local_err);
1331         return;
1332     }
1333 }
1334 
1335 /* --- qdev common --- */
1336 
1337 #define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1338     DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1339     DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
1340     \
1341     /* Capabilities registers provide information on supported
1342      * features of this specific host controller implementation */ \
1343     DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
1344     DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1345 
1346 static void sdhci_initfn(SDHCIState *s)
1347 {
1348     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1349                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1350 
1351     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1352     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1353 
1354     s->io_ops = &sdhci_mmio_ops;
1355 }
1356 
1357 static void sdhci_uninitfn(SDHCIState *s)
1358 {
1359     timer_del(s->insert_timer);
1360     timer_free(s->insert_timer);
1361     timer_del(s->transfer_timer);
1362     timer_free(s->transfer_timer);
1363 
1364     g_free(s->fifo_buffer);
1365     s->fifo_buffer = NULL;
1366 }
1367 
1368 static void sdhci_common_realize(SDHCIState *s, Error **errp)
1369 {
1370     Error *local_err = NULL;
1371 
1372     sdhci_init_readonly_registers(s, &local_err);
1373     if (local_err) {
1374         error_propagate(errp, local_err);
1375         return;
1376     }
1377     s->buf_maxsz = sdhci_get_fifolen(s);
1378     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1379 
1380     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1381                           SDHC_REGISTERS_MAP_SIZE);
1382 }
1383 
1384 static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
1385 {
1386     /* This function is expected to be called only once for each class:
1387      * - SysBus:    via DeviceClass->unrealize(),
1388      * - PCI:       via PCIDeviceClass->exit().
1389      * However to avoid double-free and/or use-after-free we still nullify
1390      * this variable (better safe than sorry!). */
1391     g_free(s->fifo_buffer);
1392     s->fifo_buffer = NULL;
1393 }
1394 
1395 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1396 {
1397     SDHCIState *s = opaque;
1398 
1399     return s->pending_insert_state;
1400 }
1401 
1402 static const VMStateDescription sdhci_pending_insert_vmstate = {
1403     .name = "sdhci/pending-insert",
1404     .version_id = 1,
1405     .minimum_version_id = 1,
1406     .needed = sdhci_pending_insert_vmstate_needed,
1407     .fields = (VMStateField[]) {
1408         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1409         VMSTATE_END_OF_LIST()
1410     },
1411 };
1412 
1413 const VMStateDescription sdhci_vmstate = {
1414     .name = "sdhci",
1415     .version_id = 1,
1416     .minimum_version_id = 1,
1417     .fields = (VMStateField[]) {
1418         VMSTATE_UINT32(sdmasysad, SDHCIState),
1419         VMSTATE_UINT16(blksize, SDHCIState),
1420         VMSTATE_UINT16(blkcnt, SDHCIState),
1421         VMSTATE_UINT32(argument, SDHCIState),
1422         VMSTATE_UINT16(trnmod, SDHCIState),
1423         VMSTATE_UINT16(cmdreg, SDHCIState),
1424         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1425         VMSTATE_UINT32(prnsts, SDHCIState),
1426         VMSTATE_UINT8(hostctl1, SDHCIState),
1427         VMSTATE_UINT8(pwrcon, SDHCIState),
1428         VMSTATE_UINT8(blkgap, SDHCIState),
1429         VMSTATE_UINT8(wakcon, SDHCIState),
1430         VMSTATE_UINT16(clkcon, SDHCIState),
1431         VMSTATE_UINT8(timeoutcon, SDHCIState),
1432         VMSTATE_UINT8(admaerr, SDHCIState),
1433         VMSTATE_UINT16(norintsts, SDHCIState),
1434         VMSTATE_UINT16(errintsts, SDHCIState),
1435         VMSTATE_UINT16(norintstsen, SDHCIState),
1436         VMSTATE_UINT16(errintstsen, SDHCIState),
1437         VMSTATE_UINT16(norintsigen, SDHCIState),
1438         VMSTATE_UINT16(errintsigen, SDHCIState),
1439         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1440         VMSTATE_UINT16(data_count, SDHCIState),
1441         VMSTATE_UINT64(admasysaddr, SDHCIState),
1442         VMSTATE_UINT8(stopped_state, SDHCIState),
1443         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1444         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1445         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1446         VMSTATE_END_OF_LIST()
1447     },
1448     .subsections = (const VMStateDescription*[]) {
1449         &sdhci_pending_insert_vmstate,
1450         NULL
1451     },
1452 };
1453 
1454 static void sdhci_common_class_init(ObjectClass *klass, void *data)
1455 {
1456     DeviceClass *dc = DEVICE_CLASS(klass);
1457 
1458     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1459     dc->vmsd = &sdhci_vmstate;
1460     dc->reset = sdhci_poweron_reset;
1461 }
1462 
1463 /* --- qdev PCI --- */
1464 
1465 static Property sdhci_pci_properties[] = {
1466     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1467     DEFINE_PROP_END_OF_LIST(),
1468 };
1469 
1470 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1471 {
1472     SDHCIState *s = PCI_SDHCI(dev);
1473     Error *local_err = NULL;
1474 
1475     sdhci_initfn(s);
1476     sdhci_common_realize(s, &local_err);
1477     if (local_err) {
1478         error_propagate(errp, local_err);
1479         return;
1480     }
1481 
1482     dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1483     dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1484     s->irq = pci_allocate_irq(dev);
1485     s->dma_as = pci_get_address_space(dev);
1486     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1487 }
1488 
1489 static void sdhci_pci_exit(PCIDevice *dev)
1490 {
1491     SDHCIState *s = PCI_SDHCI(dev);
1492 
1493     sdhci_common_unrealize(s, &error_abort);
1494     sdhci_uninitfn(s);
1495 }
1496 
1497 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1498 {
1499     DeviceClass *dc = DEVICE_CLASS(klass);
1500     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1501 
1502     k->realize = sdhci_pci_realize;
1503     k->exit = sdhci_pci_exit;
1504     k->vendor_id = PCI_VENDOR_ID_REDHAT;
1505     k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1506     k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1507     dc->props = sdhci_pci_properties;
1508 
1509     sdhci_common_class_init(klass, data);
1510 }
1511 
1512 static const TypeInfo sdhci_pci_info = {
1513     .name = TYPE_PCI_SDHCI,
1514     .parent = TYPE_PCI_DEVICE,
1515     .instance_size = sizeof(SDHCIState),
1516     .class_init = sdhci_pci_class_init,
1517     .interfaces = (InterfaceInfo[]) {
1518         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1519         { },
1520     },
1521 };
1522 
1523 /* --- qdev SysBus --- */
1524 
1525 static Property sdhci_sysbus_properties[] = {
1526     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1527     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1528                      false),
1529     DEFINE_PROP_LINK("dma", SDHCIState,
1530                      dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1531     DEFINE_PROP_END_OF_LIST(),
1532 };
1533 
1534 static void sdhci_sysbus_init(Object *obj)
1535 {
1536     SDHCIState *s = SYSBUS_SDHCI(obj);
1537 
1538     sdhci_initfn(s);
1539 }
1540 
1541 static void sdhci_sysbus_finalize(Object *obj)
1542 {
1543     SDHCIState *s = SYSBUS_SDHCI(obj);
1544 
1545     if (s->dma_mr) {
1546         object_unparent(OBJECT(s->dma_mr));
1547     }
1548 
1549     sdhci_uninitfn(s);
1550 }
1551 
1552 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1553 {
1554     SDHCIState *s = SYSBUS_SDHCI(dev);
1555     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1556     Error *local_err = NULL;
1557 
1558     sdhci_common_realize(s, &local_err);
1559     if (local_err) {
1560         error_propagate(errp, local_err);
1561         return;
1562     }
1563 
1564     if (s->dma_mr) {
1565         s->dma_as = &s->sysbus_dma_as;
1566         address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1567     } else {
1568         /* use system_memory() if property "dma" not set */
1569         s->dma_as = &address_space_memory;
1570     }
1571 
1572     sysbus_init_irq(sbd, &s->irq);
1573 
1574     memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1575             SDHC_REGISTERS_MAP_SIZE);
1576 
1577     sysbus_init_mmio(sbd, &s->iomem);
1578 }
1579 
1580 static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
1581 {
1582     SDHCIState *s = SYSBUS_SDHCI(dev);
1583 
1584     sdhci_common_unrealize(s, &error_abort);
1585 
1586      if (s->dma_mr) {
1587         address_space_destroy(s->dma_as);
1588     }
1589 }
1590 
1591 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1592 {
1593     DeviceClass *dc = DEVICE_CLASS(klass);
1594 
1595     dc->props = sdhci_sysbus_properties;
1596     dc->realize = sdhci_sysbus_realize;
1597     dc->unrealize = sdhci_sysbus_unrealize;
1598 
1599     sdhci_common_class_init(klass, data);
1600 }
1601 
1602 static const TypeInfo sdhci_sysbus_info = {
1603     .name = TYPE_SYSBUS_SDHCI,
1604     .parent = TYPE_SYS_BUS_DEVICE,
1605     .instance_size = sizeof(SDHCIState),
1606     .instance_init = sdhci_sysbus_init,
1607     .instance_finalize = sdhci_sysbus_finalize,
1608     .class_init = sdhci_sysbus_class_init,
1609 };
1610 
1611 /* --- qdev bus master --- */
1612 
1613 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1614 {
1615     SDBusClass *sbc = SD_BUS_CLASS(klass);
1616 
1617     sbc->set_inserted = sdhci_set_inserted;
1618     sbc->set_readonly = sdhci_set_readonly;
1619 }
1620 
1621 static const TypeInfo sdhci_bus_info = {
1622     .name = TYPE_SDHCI_BUS,
1623     .parent = TYPE_SD_BUS,
1624     .instance_size = sizeof(SDBus),
1625     .class_init = sdhci_bus_class_init,
1626 };
1627 
1628 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1629 {
1630     SDHCIState *s = SYSBUS_SDHCI(opaque);
1631     uint32_t ret;
1632     uint16_t hostctl1;
1633 
1634     switch (offset) {
1635     default:
1636         return sdhci_read(opaque, offset, size);
1637 
1638     case SDHC_HOSTCTL:
1639         /*
1640          * For a detailed explanation on the following bit
1641          * manipulation code see comments in a similar part of
1642          * usdhc_write()
1643          */
1644         hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1645 
1646         if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1647             hostctl1 |= ESDHC_CTRL_8BITBUS;
1648         }
1649 
1650         if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1651             hostctl1 |= ESDHC_CTRL_4BITBUS;
1652         }
1653 
1654         ret  = hostctl1;
1655         ret |= (uint32_t)s->blkgap << 16;
1656         ret |= (uint32_t)s->wakcon << 24;
1657 
1658         break;
1659 
1660     case ESDHC_DLL_CTRL:
1661     case ESDHC_TUNE_CTRL_STATUS:
1662     case ESDHC_UNDOCUMENTED_REG27:
1663     case ESDHC_TUNING_CTRL:
1664     case ESDHC_VENDOR_SPEC:
1665     case ESDHC_MIX_CTRL:
1666     case ESDHC_WTMK_LVL:
1667         ret = 0;
1668         break;
1669     }
1670 
1671     return ret;
1672 }
1673 
1674 static void
1675 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1676 {
1677     SDHCIState *s = SYSBUS_SDHCI(opaque);
1678     uint8_t hostctl1;
1679     uint32_t value = (uint32_t)val;
1680 
1681     switch (offset) {
1682     case ESDHC_DLL_CTRL:
1683     case ESDHC_TUNE_CTRL_STATUS:
1684     case ESDHC_UNDOCUMENTED_REG27:
1685     case ESDHC_TUNING_CTRL:
1686     case ESDHC_WTMK_LVL:
1687     case ESDHC_VENDOR_SPEC:
1688         break;
1689 
1690     case SDHC_HOSTCTL:
1691         /*
1692          * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1693          *
1694          *       7         6     5      4      3      2        1      0
1695          * |-----------+--------+--------+-----------+----------+---------|
1696          * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1697          * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1698          * | Signal    | Test   |        | Detection | Width    |         |
1699          * | Selection | Level  |        | Pin       |          |         |
1700          * |-----------+--------+--------+-----------+----------+---------|
1701          *
1702          * and 0x29
1703          *
1704          *  15      10 9    8
1705          * |----------+------|
1706          * | Reserved | DMA  |
1707          * |          | Sel. |
1708          * |          |      |
1709          * |----------+------|
1710          *
1711          * and here's what SDCHI spec expects those offsets to be:
1712          *
1713          * 0x28 (Host Control Register)
1714          *
1715          *     7        6         5       4  3      2         1        0
1716          * |--------+--------+----------+------+--------+----------+---------|
1717          * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1718          * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1719          * | Signal | Test   | Transfer |      | Enable | Width    |         |
1720          * | Sel.   | Level  | Width    |      |        |          |         |
1721          * |--------+--------+----------+------+--------+----------+---------|
1722          *
1723          * and 0x29 (Power Control Register)
1724          *
1725          * |----------------------------------|
1726          * | Power Control Register           |
1727          * |                                  |
1728          * | Description omitted,             |
1729          * | since it has no analog in ESDHCI |
1730          * |                                  |
1731          * |----------------------------------|
1732          *
1733          * Since offsets 0x2A and 0x2B should be compatible between
1734          * both IP specs we only need to reconcile least 16-bit of the
1735          * word we've been given.
1736          */
1737 
1738         /*
1739          * First, save bits 7 6 and 0 since they are identical
1740          */
1741         hostctl1 = value & (SDHC_CTRL_LED |
1742                             SDHC_CTRL_CDTEST_INS |
1743                             SDHC_CTRL_CDTEST_EN);
1744         /*
1745          * Second, split "Data Transfer Width" from bits 2 and 1 in to
1746          * bits 5 and 1
1747          */
1748         if (value & ESDHC_CTRL_8BITBUS) {
1749             hostctl1 |= SDHC_CTRL_8BITBUS;
1750         }
1751 
1752         if (value & ESDHC_CTRL_4BITBUS) {
1753             hostctl1 |= ESDHC_CTRL_4BITBUS;
1754         }
1755 
1756         /*
1757          * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1758          */
1759         hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1760 
1761         /*
1762          * Now place the corrected value into low 16-bit of the value
1763          * we are going to give standard SDHCI write function
1764          *
1765          * NOTE: This transformation should be the inverse of what can
1766          * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1767          * kernel
1768          */
1769         value &= ~UINT16_MAX;
1770         value |= hostctl1;
1771         value |= (uint16_t)s->pwrcon << 8;
1772 
1773         sdhci_write(opaque, offset, value, size);
1774         break;
1775 
1776     case ESDHC_MIX_CTRL:
1777         /*
1778          * So, when SD/MMC stack in Linux tries to write to "Transfer
1779          * Mode Register", ESDHC i.MX quirk code will translate it
1780          * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1781          * order to get where we started
1782          *
1783          * Note that Auto CMD23 Enable bit is located in a wrong place
1784          * on i.MX, but since it is not used by QEMU we do not care.
1785          *
1786          * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1787          * here becuase it will result in a call to
1788          * sdhci_send_command(s) which we don't want.
1789          *
1790          */
1791         s->trnmod = value & UINT16_MAX;
1792         break;
1793     case SDHC_TRNMOD:
1794         /*
1795          * Similar to above, but this time a write to "Command
1796          * Register" will be translated into a 4-byte write to
1797          * "Transfer Mode register" where lower 16-bit of value would
1798          * be set to zero. So what we do is fill those bits with
1799          * cached value from s->trnmod and let the SDHCI
1800          * infrastructure handle the rest
1801          */
1802         sdhci_write(opaque, offset, val | s->trnmod, size);
1803         break;
1804     case SDHC_BLKSIZE:
1805         /*
1806          * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1807          * Linux driver will try to zero this field out which will
1808          * break the rest of SDHCI emulation.
1809          *
1810          * Linux defaults to maximum possible setting (512K boundary)
1811          * and it seems to be the only option that i.MX IP implements,
1812          * so we artificially set it to that value.
1813          */
1814         val |= 0x7 << 12;
1815         /* FALLTHROUGH */
1816     default:
1817         sdhci_write(opaque, offset, val, size);
1818         break;
1819     }
1820 }
1821 
1822 
1823 static const MemoryRegionOps usdhc_mmio_ops = {
1824     .read = usdhc_read,
1825     .write = usdhc_write,
1826     .valid = {
1827         .min_access_size = 1,
1828         .max_access_size = 4,
1829         .unaligned = false
1830     },
1831     .endianness = DEVICE_LITTLE_ENDIAN,
1832 };
1833 
1834 static void imx_usdhc_init(Object *obj)
1835 {
1836     SDHCIState *s = SYSBUS_SDHCI(obj);
1837 
1838     s->io_ops = &usdhc_mmio_ops;
1839     s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1840 }
1841 
1842 static const TypeInfo imx_usdhc_info = {
1843     .name = TYPE_IMX_USDHC,
1844     .parent = TYPE_SYSBUS_SDHCI,
1845     .instance_init = imx_usdhc_init,
1846 };
1847 
1848 static void sdhci_register_types(void)
1849 {
1850     type_register_static(&sdhci_pci_info);
1851     type_register_static(&sdhci_sysbus_info);
1852     type_register_static(&sdhci_bus_info);
1853     type_register_static(&imx_usdhc_info);
1854 }
1855 
1856 type_init(sdhci_register_types)
1857