1 /* 2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation 3 * 4 * Copyright (c) 2006 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the LGPL. 8 */ 9 10 /* Note: 11 * LSI53C810 emulation is incorrect, in the sense that it supports 12 * features added in later evolutions. This should not be a problem, 13 * as well-behaved operating systems will not try to use them. 14 */ 15 16 #include <assert.h> 17 18 #include "hw/hw.h" 19 #include "hw/pci/pci.h" 20 #include "hw/scsi/scsi.h" 21 #include "sysemu/dma.h" 22 #include "qemu/error-report.h" 23 24 //#define DEBUG_LSI 25 //#define DEBUG_LSI_REG 26 27 #ifdef DEBUG_LSI 28 #define DPRINTF(fmt, ...) \ 29 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0) 30 #define BADF(fmt, ...) \ 31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0) 32 #else 33 #define DPRINTF(fmt, ...) do {} while(0) 34 #define BADF(fmt, ...) \ 35 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0) 36 #endif 37 38 #define LSI_MAX_DEVS 7 39 40 #define LSI_SCNTL0_TRG 0x01 41 #define LSI_SCNTL0_AAP 0x02 42 #define LSI_SCNTL0_EPC 0x08 43 #define LSI_SCNTL0_WATN 0x10 44 #define LSI_SCNTL0_START 0x20 45 46 #define LSI_SCNTL1_SST 0x01 47 #define LSI_SCNTL1_IARB 0x02 48 #define LSI_SCNTL1_AESP 0x04 49 #define LSI_SCNTL1_RST 0x08 50 #define LSI_SCNTL1_CON 0x10 51 #define LSI_SCNTL1_DHP 0x20 52 #define LSI_SCNTL1_ADB 0x40 53 #define LSI_SCNTL1_EXC 0x80 54 55 #define LSI_SCNTL2_WSR 0x01 56 #define LSI_SCNTL2_VUE0 0x02 57 #define LSI_SCNTL2_VUE1 0x04 58 #define LSI_SCNTL2_WSS 0x08 59 #define LSI_SCNTL2_SLPHBEN 0x10 60 #define LSI_SCNTL2_SLPMD 0x20 61 #define LSI_SCNTL2_CHM 0x40 62 #define LSI_SCNTL2_SDU 0x80 63 64 #define LSI_ISTAT0_DIP 0x01 65 #define LSI_ISTAT0_SIP 0x02 66 #define LSI_ISTAT0_INTF 0x04 67 #define LSI_ISTAT0_CON 0x08 68 #define LSI_ISTAT0_SEM 0x10 69 #define LSI_ISTAT0_SIGP 0x20 70 #define LSI_ISTAT0_SRST 0x40 71 #define LSI_ISTAT0_ABRT 0x80 72 73 #define LSI_ISTAT1_SI 0x01 74 #define LSI_ISTAT1_SRUN 0x02 75 #define LSI_ISTAT1_FLSH 0x04 76 77 #define LSI_SSTAT0_SDP0 0x01 78 #define LSI_SSTAT0_RST 0x02 79 #define LSI_SSTAT0_WOA 0x04 80 #define LSI_SSTAT0_LOA 0x08 81 #define LSI_SSTAT0_AIP 0x10 82 #define LSI_SSTAT0_OLF 0x20 83 #define LSI_SSTAT0_ORF 0x40 84 #define LSI_SSTAT0_ILF 0x80 85 86 #define LSI_SIST0_PAR 0x01 87 #define LSI_SIST0_RST 0x02 88 #define LSI_SIST0_UDC 0x04 89 #define LSI_SIST0_SGE 0x08 90 #define LSI_SIST0_RSL 0x10 91 #define LSI_SIST0_SEL 0x20 92 #define LSI_SIST0_CMP 0x40 93 #define LSI_SIST0_MA 0x80 94 95 #define LSI_SIST1_HTH 0x01 96 #define LSI_SIST1_GEN 0x02 97 #define LSI_SIST1_STO 0x04 98 #define LSI_SIST1_SBMC 0x10 99 100 #define LSI_SOCL_IO 0x01 101 #define LSI_SOCL_CD 0x02 102 #define LSI_SOCL_MSG 0x04 103 #define LSI_SOCL_ATN 0x08 104 #define LSI_SOCL_SEL 0x10 105 #define LSI_SOCL_BSY 0x20 106 #define LSI_SOCL_ACK 0x40 107 #define LSI_SOCL_REQ 0x80 108 109 #define LSI_DSTAT_IID 0x01 110 #define LSI_DSTAT_SIR 0x04 111 #define LSI_DSTAT_SSI 0x08 112 #define LSI_DSTAT_ABRT 0x10 113 #define LSI_DSTAT_BF 0x20 114 #define LSI_DSTAT_MDPE 0x40 115 #define LSI_DSTAT_DFE 0x80 116 117 #define LSI_DCNTL_COM 0x01 118 #define LSI_DCNTL_IRQD 0x02 119 #define LSI_DCNTL_STD 0x04 120 #define LSI_DCNTL_IRQM 0x08 121 #define LSI_DCNTL_SSM 0x10 122 #define LSI_DCNTL_PFEN 0x20 123 #define LSI_DCNTL_PFF 0x40 124 #define LSI_DCNTL_CLSE 0x80 125 126 #define LSI_DMODE_MAN 0x01 127 #define LSI_DMODE_BOF 0x02 128 #define LSI_DMODE_ERMP 0x04 129 #define LSI_DMODE_ERL 0x08 130 #define LSI_DMODE_DIOM 0x10 131 #define LSI_DMODE_SIOM 0x20 132 133 #define LSI_CTEST2_DACK 0x01 134 #define LSI_CTEST2_DREQ 0x02 135 #define LSI_CTEST2_TEOP 0x04 136 #define LSI_CTEST2_PCICIE 0x08 137 #define LSI_CTEST2_CM 0x10 138 #define LSI_CTEST2_CIO 0x20 139 #define LSI_CTEST2_SIGP 0x40 140 #define LSI_CTEST2_DDIR 0x80 141 142 #define LSI_CTEST5_BL2 0x04 143 #define LSI_CTEST5_DDIR 0x08 144 #define LSI_CTEST5_MASR 0x10 145 #define LSI_CTEST5_DFSN 0x20 146 #define LSI_CTEST5_BBCK 0x40 147 #define LSI_CTEST5_ADCK 0x80 148 149 #define LSI_CCNTL0_DILS 0x01 150 #define LSI_CCNTL0_DISFC 0x10 151 #define LSI_CCNTL0_ENNDJ 0x20 152 #define LSI_CCNTL0_PMJCTL 0x40 153 #define LSI_CCNTL0_ENPMJ 0x80 154 155 #define LSI_CCNTL1_EN64DBMV 0x01 156 #define LSI_CCNTL1_EN64TIBMV 0x02 157 #define LSI_CCNTL1_64TIMOD 0x04 158 #define LSI_CCNTL1_DDAC 0x08 159 #define LSI_CCNTL1_ZMOD 0x80 160 161 /* Enable Response to Reselection */ 162 #define LSI_SCID_RRE 0x60 163 164 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD) 165 166 #define PHASE_DO 0 167 #define PHASE_DI 1 168 #define PHASE_CMD 2 169 #define PHASE_ST 3 170 #define PHASE_MO 6 171 #define PHASE_MI 7 172 #define PHASE_MASK 7 173 174 /* Maximum length of MSG IN data. */ 175 #define LSI_MAX_MSGIN_LEN 8 176 177 /* Flag set if this is a tagged command. */ 178 #define LSI_TAG_VALID (1 << 16) 179 180 typedef struct lsi_request { 181 SCSIRequest *req; 182 uint32_t tag; 183 uint32_t dma_len; 184 uint8_t *dma_buf; 185 uint32_t pending; 186 int out; 187 QTAILQ_ENTRY(lsi_request) next; 188 } lsi_request; 189 190 typedef struct { 191 /*< private >*/ 192 PCIDevice parent_obj; 193 /*< public >*/ 194 195 MemoryRegion mmio_io; 196 MemoryRegion ram_io; 197 MemoryRegion io_io; 198 199 int carry; /* ??? Should this be an a visible register somewhere? */ 200 int status; 201 /* Action to take at the end of a MSG IN phase. 202 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */ 203 int msg_action; 204 int msg_len; 205 uint8_t msg[LSI_MAX_MSGIN_LEN]; 206 /* 0 if SCRIPTS are running or stopped. 207 * 1 if a Wait Reselect instruction has been issued. 208 * 2 if processing DMA from lsi_execute_script. 209 * 3 if a DMA operation is in progress. */ 210 int waiting; 211 SCSIBus bus; 212 int current_lun; 213 /* The tag is a combination of the device ID and the SCSI tag. */ 214 uint32_t select_tag; 215 int command_complete; 216 QTAILQ_HEAD(, lsi_request) queue; 217 lsi_request *current; 218 219 uint32_t dsa; 220 uint32_t temp; 221 uint32_t dnad; 222 uint32_t dbc; 223 uint8_t istat0; 224 uint8_t istat1; 225 uint8_t dcmd; 226 uint8_t dstat; 227 uint8_t dien; 228 uint8_t sist0; 229 uint8_t sist1; 230 uint8_t sien0; 231 uint8_t sien1; 232 uint8_t mbox0; 233 uint8_t mbox1; 234 uint8_t dfifo; 235 uint8_t ctest2; 236 uint8_t ctest3; 237 uint8_t ctest4; 238 uint8_t ctest5; 239 uint8_t ccntl0; 240 uint8_t ccntl1; 241 uint32_t dsp; 242 uint32_t dsps; 243 uint8_t dmode; 244 uint8_t dcntl; 245 uint8_t scntl0; 246 uint8_t scntl1; 247 uint8_t scntl2; 248 uint8_t scntl3; 249 uint8_t sstat0; 250 uint8_t sstat1; 251 uint8_t scid; 252 uint8_t sxfer; 253 uint8_t socl; 254 uint8_t sdid; 255 uint8_t ssid; 256 uint8_t sfbr; 257 uint8_t stest1; 258 uint8_t stest2; 259 uint8_t stest3; 260 uint8_t sidl; 261 uint8_t stime0; 262 uint8_t respid0; 263 uint8_t respid1; 264 uint32_t mmrs; 265 uint32_t mmws; 266 uint32_t sfs; 267 uint32_t drs; 268 uint32_t sbms; 269 uint32_t dbms; 270 uint32_t dnad64; 271 uint32_t pmjad1; 272 uint32_t pmjad2; 273 uint32_t rbc; 274 uint32_t ua; 275 uint32_t ia; 276 uint32_t sbc; 277 uint32_t csbc; 278 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */ 279 uint8_t sbr; 280 281 /* Script ram is stored as 32-bit words in host byteorder. */ 282 uint32_t script_ram[2048]; 283 } LSIState; 284 285 #define TYPE_LSI53C810 "lsi53c810" 286 #define TYPE_LSI53C895A "lsi53c895a" 287 288 #define LSI53C895A(obj) \ 289 OBJECT_CHECK(LSIState, (obj), TYPE_LSI53C895A) 290 291 static inline int lsi_irq_on_rsl(LSIState *s) 292 { 293 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE); 294 } 295 296 static void lsi_soft_reset(LSIState *s) 297 { 298 DPRINTF("Reset\n"); 299 s->carry = 0; 300 301 s->msg_action = 0; 302 s->msg_len = 0; 303 s->waiting = 0; 304 s->dsa = 0; 305 s->dnad = 0; 306 s->dbc = 0; 307 s->temp = 0; 308 memset(s->scratch, 0, sizeof(s->scratch)); 309 s->istat0 = 0; 310 s->istat1 = 0; 311 s->dcmd = 0x40; 312 s->dstat = LSI_DSTAT_DFE; 313 s->dien = 0; 314 s->sist0 = 0; 315 s->sist1 = 0; 316 s->sien0 = 0; 317 s->sien1 = 0; 318 s->mbox0 = 0; 319 s->mbox1 = 0; 320 s->dfifo = 0; 321 s->ctest2 = LSI_CTEST2_DACK; 322 s->ctest3 = 0; 323 s->ctest4 = 0; 324 s->ctest5 = 0; 325 s->ccntl0 = 0; 326 s->ccntl1 = 0; 327 s->dsp = 0; 328 s->dsps = 0; 329 s->dmode = 0; 330 s->dcntl = 0; 331 s->scntl0 = 0xc0; 332 s->scntl1 = 0; 333 s->scntl2 = 0; 334 s->scntl3 = 0; 335 s->sstat0 = 0; 336 s->sstat1 = 0; 337 s->scid = 7; 338 s->sxfer = 0; 339 s->socl = 0; 340 s->sdid = 0; 341 s->ssid = 0; 342 s->stest1 = 0; 343 s->stest2 = 0; 344 s->stest3 = 0; 345 s->sidl = 0; 346 s->stime0 = 0; 347 s->respid0 = 0x80; 348 s->respid1 = 0; 349 s->mmrs = 0; 350 s->mmws = 0; 351 s->sfs = 0; 352 s->drs = 0; 353 s->sbms = 0; 354 s->dbms = 0; 355 s->dnad64 = 0; 356 s->pmjad1 = 0; 357 s->pmjad2 = 0; 358 s->rbc = 0; 359 s->ua = 0; 360 s->ia = 0; 361 s->sbc = 0; 362 s->csbc = 0; 363 s->sbr = 0; 364 assert(QTAILQ_EMPTY(&s->queue)); 365 assert(!s->current); 366 } 367 368 static int lsi_dma_40bit(LSIState *s) 369 { 370 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT) 371 return 1; 372 return 0; 373 } 374 375 static int lsi_dma_ti64bit(LSIState *s) 376 { 377 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV) 378 return 1; 379 return 0; 380 } 381 382 static int lsi_dma_64bit(LSIState *s) 383 { 384 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV) 385 return 1; 386 return 0; 387 } 388 389 static uint8_t lsi_reg_readb(LSIState *s, int offset); 390 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val); 391 static void lsi_execute_script(LSIState *s); 392 static void lsi_reselect(LSIState *s, lsi_request *p); 393 394 static inline uint32_t read_dword(LSIState *s, uint32_t addr) 395 { 396 uint32_t buf; 397 398 pci_dma_read(PCI_DEVICE(s), addr, &buf, 4); 399 return cpu_to_le32(buf); 400 } 401 402 static void lsi_stop_script(LSIState *s) 403 { 404 s->istat1 &= ~LSI_ISTAT1_SRUN; 405 } 406 407 static void lsi_update_irq(LSIState *s) 408 { 409 PCIDevice *d = PCI_DEVICE(s); 410 int level; 411 static int last_level; 412 lsi_request *p; 413 414 /* It's unclear whether the DIP/SIP bits should be cleared when the 415 Interrupt Status Registers are cleared or when istat0 is read. 416 We currently do the formwer, which seems to work. */ 417 level = 0; 418 if (s->dstat) { 419 if (s->dstat & s->dien) 420 level = 1; 421 s->istat0 |= LSI_ISTAT0_DIP; 422 } else { 423 s->istat0 &= ~LSI_ISTAT0_DIP; 424 } 425 426 if (s->sist0 || s->sist1) { 427 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1)) 428 level = 1; 429 s->istat0 |= LSI_ISTAT0_SIP; 430 } else { 431 s->istat0 &= ~LSI_ISTAT0_SIP; 432 } 433 if (s->istat0 & LSI_ISTAT0_INTF) 434 level = 1; 435 436 if (level != last_level) { 437 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n", 438 level, s->dstat, s->sist1, s->sist0); 439 last_level = level; 440 } 441 pci_set_irq(d, level); 442 443 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) { 444 DPRINTF("Handled IRQs & disconnected, looking for pending " 445 "processes\n"); 446 QTAILQ_FOREACH(p, &s->queue, next) { 447 if (p->pending) { 448 lsi_reselect(s, p); 449 break; 450 } 451 } 452 } 453 } 454 455 /* Stop SCRIPTS execution and raise a SCSI interrupt. */ 456 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1) 457 { 458 uint32_t mask0; 459 uint32_t mask1; 460 461 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n", 462 stat1, stat0, s->sist1, s->sist0); 463 s->sist0 |= stat0; 464 s->sist1 |= stat1; 465 /* Stop processor on fatal or unmasked interrupt. As a special hack 466 we don't stop processing when raising STO. Instead continue 467 execution and stop at the next insn that accesses the SCSI bus. */ 468 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL); 469 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH); 470 mask1 &= ~LSI_SIST1_STO; 471 if (s->sist0 & mask0 || s->sist1 & mask1) { 472 lsi_stop_script(s); 473 } 474 lsi_update_irq(s); 475 } 476 477 /* Stop SCRIPTS execution and raise a DMA interrupt. */ 478 static void lsi_script_dma_interrupt(LSIState *s, int stat) 479 { 480 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat); 481 s->dstat |= stat; 482 lsi_update_irq(s); 483 lsi_stop_script(s); 484 } 485 486 static inline void lsi_set_phase(LSIState *s, int phase) 487 { 488 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase; 489 } 490 491 static void lsi_bad_phase(LSIState *s, int out, int new_phase) 492 { 493 /* Trigger a phase mismatch. */ 494 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) { 495 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) { 496 s->dsp = out ? s->pmjad1 : s->pmjad2; 497 } else { 498 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1); 499 } 500 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp); 501 } else { 502 DPRINTF("Phase mismatch interrupt\n"); 503 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0); 504 lsi_stop_script(s); 505 } 506 lsi_set_phase(s, new_phase); 507 } 508 509 510 /* Resume SCRIPTS execution after a DMA operation. */ 511 static void lsi_resume_script(LSIState *s) 512 { 513 if (s->waiting != 2) { 514 s->waiting = 0; 515 lsi_execute_script(s); 516 } else { 517 s->waiting = 0; 518 } 519 } 520 521 static void lsi_disconnect(LSIState *s) 522 { 523 s->scntl1 &= ~LSI_SCNTL1_CON; 524 s->sstat1 &= ~PHASE_MASK; 525 } 526 527 static void lsi_bad_selection(LSIState *s, uint32_t id) 528 { 529 DPRINTF("Selected absent target %d\n", id); 530 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO); 531 lsi_disconnect(s); 532 } 533 534 /* Initiate a SCSI layer data transfer. */ 535 static void lsi_do_dma(LSIState *s, int out) 536 { 537 PCIDevice *pci_dev; 538 uint32_t count; 539 dma_addr_t addr; 540 SCSIDevice *dev; 541 542 assert(s->current); 543 if (!s->current->dma_len) { 544 /* Wait until data is available. */ 545 DPRINTF("DMA no data available\n"); 546 return; 547 } 548 549 pci_dev = PCI_DEVICE(s); 550 dev = s->current->req->dev; 551 assert(dev); 552 553 count = s->dbc; 554 if (count > s->current->dma_len) 555 count = s->current->dma_len; 556 557 addr = s->dnad; 558 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */ 559 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s)) 560 addr |= ((uint64_t)s->dnad64 << 32); 561 else if (s->dbms) 562 addr |= ((uint64_t)s->dbms << 32); 563 else if (s->sbms) 564 addr |= ((uint64_t)s->sbms << 32); 565 566 DPRINTF("DMA addr=0x" DMA_ADDR_FMT " len=%d\n", addr, count); 567 s->csbc += count; 568 s->dnad += count; 569 s->dbc -= count; 570 if (s->current->dma_buf == NULL) { 571 s->current->dma_buf = scsi_req_get_buf(s->current->req); 572 } 573 /* ??? Set SFBR to first data byte. */ 574 if (out) { 575 pci_dma_read(pci_dev, addr, s->current->dma_buf, count); 576 } else { 577 pci_dma_write(pci_dev, addr, s->current->dma_buf, count); 578 } 579 s->current->dma_len -= count; 580 if (s->current->dma_len == 0) { 581 s->current->dma_buf = NULL; 582 scsi_req_continue(s->current->req); 583 } else { 584 s->current->dma_buf += count; 585 lsi_resume_script(s); 586 } 587 } 588 589 590 /* Add a command to the queue. */ 591 static void lsi_queue_command(LSIState *s) 592 { 593 lsi_request *p = s->current; 594 595 DPRINTF("Queueing tag=0x%x\n", p->tag); 596 assert(s->current != NULL); 597 assert(s->current->dma_len == 0); 598 QTAILQ_INSERT_TAIL(&s->queue, s->current, next); 599 s->current = NULL; 600 601 p->pending = 0; 602 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO; 603 } 604 605 /* Queue a byte for a MSG IN phase. */ 606 static void lsi_add_msg_byte(LSIState *s, uint8_t data) 607 { 608 if (s->msg_len >= LSI_MAX_MSGIN_LEN) { 609 BADF("MSG IN data too long\n"); 610 } else { 611 DPRINTF("MSG IN 0x%02x\n", data); 612 s->msg[s->msg_len++] = data; 613 } 614 } 615 616 /* Perform reselection to continue a command. */ 617 static void lsi_reselect(LSIState *s, lsi_request *p) 618 { 619 int id; 620 621 assert(s->current == NULL); 622 QTAILQ_REMOVE(&s->queue, p, next); 623 s->current = p; 624 625 id = (p->tag >> 8) & 0xf; 626 s->ssid = id | 0x80; 627 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */ 628 if (!(s->dcntl & LSI_DCNTL_COM)) { 629 s->sfbr = 1 << (id & 0x7); 630 } 631 DPRINTF("Reselected target %d\n", id); 632 s->scntl1 |= LSI_SCNTL1_CON; 633 lsi_set_phase(s, PHASE_MI); 634 s->msg_action = p->out ? 2 : 3; 635 s->current->dma_len = p->pending; 636 lsi_add_msg_byte(s, 0x80); 637 if (s->current->tag & LSI_TAG_VALID) { 638 lsi_add_msg_byte(s, 0x20); 639 lsi_add_msg_byte(s, p->tag & 0xff); 640 } 641 642 if (lsi_irq_on_rsl(s)) { 643 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0); 644 } 645 } 646 647 static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag) 648 { 649 lsi_request *p; 650 651 QTAILQ_FOREACH(p, &s->queue, next) { 652 if (p->tag == tag) { 653 return p; 654 } 655 } 656 657 return NULL; 658 } 659 660 static void lsi_request_free(LSIState *s, lsi_request *p) 661 { 662 if (p == s->current) { 663 s->current = NULL; 664 } else { 665 QTAILQ_REMOVE(&s->queue, p, next); 666 } 667 g_free(p); 668 } 669 670 static void lsi_request_cancelled(SCSIRequest *req) 671 { 672 LSIState *s = LSI53C895A(req->bus->qbus.parent); 673 lsi_request *p = req->hba_private; 674 675 req->hba_private = NULL; 676 lsi_request_free(s, p); 677 scsi_req_unref(req); 678 } 679 680 /* Record that data is available for a queued command. Returns zero if 681 the device was reselected, nonzero if the IO is deferred. */ 682 static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len) 683 { 684 lsi_request *p = req->hba_private; 685 686 if (p->pending) { 687 BADF("Multiple IO pending for request %p\n", p); 688 } 689 p->pending = len; 690 /* Reselect if waiting for it, or if reselection triggers an IRQ 691 and the bus is free. 692 Since no interrupt stacking is implemented in the emulation, it 693 is also required that there are no pending interrupts waiting 694 for service from the device driver. */ 695 if (s->waiting == 1 || 696 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) && 697 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) { 698 /* Reselect device. */ 699 lsi_reselect(s, p); 700 return 0; 701 } else { 702 DPRINTF("Queueing IO tag=0x%x\n", p->tag); 703 p->pending = len; 704 return 1; 705 } 706 } 707 708 /* Callback to indicate that the SCSI layer has completed a command. */ 709 static void lsi_command_complete(SCSIRequest *req, uint32_t status, size_t resid) 710 { 711 LSIState *s = LSI53C895A(req->bus->qbus.parent); 712 int out; 713 714 out = (s->sstat1 & PHASE_MASK) == PHASE_DO; 715 DPRINTF("Command complete status=%d\n", (int)status); 716 s->status = status; 717 s->command_complete = 2; 718 if (s->waiting && s->dbc != 0) { 719 /* Raise phase mismatch for short transfers. */ 720 lsi_bad_phase(s, out, PHASE_ST); 721 } else { 722 lsi_set_phase(s, PHASE_ST); 723 } 724 725 if (req->hba_private == s->current) { 726 req->hba_private = NULL; 727 lsi_request_free(s, s->current); 728 scsi_req_unref(req); 729 } 730 lsi_resume_script(s); 731 } 732 733 /* Callback to indicate that the SCSI layer has completed a transfer. */ 734 static void lsi_transfer_data(SCSIRequest *req, uint32_t len) 735 { 736 LSIState *s = LSI53C895A(req->bus->qbus.parent); 737 int out; 738 739 assert(req->hba_private); 740 if (s->waiting == 1 || req->hba_private != s->current || 741 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) { 742 if (lsi_queue_req(s, req, len)) { 743 return; 744 } 745 } 746 747 out = (s->sstat1 & PHASE_MASK) == PHASE_DO; 748 749 /* host adapter (re)connected */ 750 DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len); 751 s->current->dma_len = len; 752 s->command_complete = 1; 753 if (s->waiting) { 754 if (s->waiting == 1 || s->dbc == 0) { 755 lsi_resume_script(s); 756 } else { 757 lsi_do_dma(s, out); 758 } 759 } 760 } 761 762 static void lsi_do_command(LSIState *s) 763 { 764 SCSIDevice *dev; 765 uint8_t buf[16]; 766 uint32_t id; 767 int n; 768 769 DPRINTF("Send command len=%d\n", s->dbc); 770 if (s->dbc > 16) 771 s->dbc = 16; 772 pci_dma_read(PCI_DEVICE(s), s->dnad, buf, s->dbc); 773 s->sfbr = buf[0]; 774 s->command_complete = 0; 775 776 id = (s->select_tag >> 8) & 0xf; 777 dev = scsi_device_find(&s->bus, 0, id, s->current_lun); 778 if (!dev) { 779 lsi_bad_selection(s, id); 780 return; 781 } 782 783 assert(s->current == NULL); 784 s->current = g_malloc0(sizeof(lsi_request)); 785 s->current->tag = s->select_tag; 786 s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf, 787 s->current); 788 789 n = scsi_req_enqueue(s->current->req); 790 if (n) { 791 if (n > 0) { 792 lsi_set_phase(s, PHASE_DI); 793 } else if (n < 0) { 794 lsi_set_phase(s, PHASE_DO); 795 } 796 scsi_req_continue(s->current->req); 797 } 798 if (!s->command_complete) { 799 if (n) { 800 /* Command did not complete immediately so disconnect. */ 801 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */ 802 lsi_add_msg_byte(s, 4); /* DISCONNECT */ 803 /* wait data */ 804 lsi_set_phase(s, PHASE_MI); 805 s->msg_action = 1; 806 lsi_queue_command(s); 807 } else { 808 /* wait command complete */ 809 lsi_set_phase(s, PHASE_DI); 810 } 811 } 812 } 813 814 static void lsi_do_status(LSIState *s) 815 { 816 uint8_t status; 817 DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status); 818 if (s->dbc != 1) 819 BADF("Bad Status move\n"); 820 s->dbc = 1; 821 status = s->status; 822 s->sfbr = status; 823 pci_dma_write(PCI_DEVICE(s), s->dnad, &status, 1); 824 lsi_set_phase(s, PHASE_MI); 825 s->msg_action = 1; 826 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */ 827 } 828 829 static void lsi_do_msgin(LSIState *s) 830 { 831 int len; 832 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len); 833 s->sfbr = s->msg[0]; 834 len = s->msg_len; 835 if (len > s->dbc) 836 len = s->dbc; 837 pci_dma_write(PCI_DEVICE(s), s->dnad, s->msg, len); 838 /* Linux drivers rely on the last byte being in the SIDL. */ 839 s->sidl = s->msg[len - 1]; 840 s->msg_len -= len; 841 if (s->msg_len) { 842 memmove(s->msg, s->msg + len, s->msg_len); 843 } else { 844 /* ??? Check if ATN (not yet implemented) is asserted and maybe 845 switch to PHASE_MO. */ 846 switch (s->msg_action) { 847 case 0: 848 lsi_set_phase(s, PHASE_CMD); 849 break; 850 case 1: 851 lsi_disconnect(s); 852 break; 853 case 2: 854 lsi_set_phase(s, PHASE_DO); 855 break; 856 case 3: 857 lsi_set_phase(s, PHASE_DI); 858 break; 859 default: 860 abort(); 861 } 862 } 863 } 864 865 /* Read the next byte during a MSGOUT phase. */ 866 static uint8_t lsi_get_msgbyte(LSIState *s) 867 { 868 uint8_t data; 869 pci_dma_read(PCI_DEVICE(s), s->dnad, &data, 1); 870 s->dnad++; 871 s->dbc--; 872 return data; 873 } 874 875 /* Skip the next n bytes during a MSGOUT phase. */ 876 static void lsi_skip_msgbytes(LSIState *s, unsigned int n) 877 { 878 s->dnad += n; 879 s->dbc -= n; 880 } 881 882 static void lsi_do_msgout(LSIState *s) 883 { 884 uint8_t msg; 885 int len; 886 uint32_t current_tag; 887 lsi_request *current_req, *p, *p_next; 888 889 if (s->current) { 890 current_tag = s->current->tag; 891 current_req = s->current; 892 } else { 893 current_tag = s->select_tag; 894 current_req = lsi_find_by_tag(s, current_tag); 895 } 896 897 DPRINTF("MSG out len=%d\n", s->dbc); 898 while (s->dbc) { 899 msg = lsi_get_msgbyte(s); 900 s->sfbr = msg; 901 902 switch (msg) { 903 case 0x04: 904 DPRINTF("MSG: Disconnect\n"); 905 lsi_disconnect(s); 906 break; 907 case 0x08: 908 DPRINTF("MSG: No Operation\n"); 909 lsi_set_phase(s, PHASE_CMD); 910 break; 911 case 0x01: 912 len = lsi_get_msgbyte(s); 913 msg = lsi_get_msgbyte(s); 914 (void)len; /* avoid a warning about unused variable*/ 915 DPRINTF("Extended message 0x%x (len %d)\n", msg, len); 916 switch (msg) { 917 case 1: 918 DPRINTF("SDTR (ignored)\n"); 919 lsi_skip_msgbytes(s, 2); 920 break; 921 case 3: 922 DPRINTF("WDTR (ignored)\n"); 923 lsi_skip_msgbytes(s, 1); 924 break; 925 default: 926 goto bad; 927 } 928 break; 929 case 0x20: /* SIMPLE queue */ 930 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; 931 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff); 932 break; 933 case 0x21: /* HEAD of queue */ 934 BADF("HEAD queue not implemented\n"); 935 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; 936 break; 937 case 0x22: /* ORDERED queue */ 938 BADF("ORDERED queue not implemented\n"); 939 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; 940 break; 941 case 0x0d: 942 /* The ABORT TAG message clears the current I/O process only. */ 943 DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag); 944 if (current_req) { 945 scsi_req_cancel(current_req->req); 946 } 947 lsi_disconnect(s); 948 break; 949 case 0x06: 950 case 0x0e: 951 case 0x0c: 952 /* The ABORT message clears all I/O processes for the selecting 953 initiator on the specified logical unit of the target. */ 954 if (msg == 0x06) { 955 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag); 956 } 957 /* The CLEAR QUEUE message clears all I/O processes for all 958 initiators on the specified logical unit of the target. */ 959 if (msg == 0x0e) { 960 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag); 961 } 962 /* The BUS DEVICE RESET message clears all I/O processes for all 963 initiators on all logical units of the target. */ 964 if (msg == 0x0c) { 965 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag); 966 } 967 968 /* clear the current I/O process */ 969 if (s->current) { 970 scsi_req_cancel(s->current->req); 971 } 972 973 /* As the current implemented devices scsi_disk and scsi_generic 974 only support one LUN, we don't need to keep track of LUNs. 975 Clearing I/O processes for other initiators could be possible 976 for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX 977 device, but this is currently not implemented (and seems not 978 to be really necessary). So let's simply clear all queued 979 commands for the current device: */ 980 QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) { 981 if ((p->tag & 0x0000ff00) == (current_tag & 0x0000ff00)) { 982 scsi_req_cancel(p->req); 983 } 984 } 985 986 lsi_disconnect(s); 987 break; 988 default: 989 if ((msg & 0x80) == 0) { 990 goto bad; 991 } 992 s->current_lun = msg & 7; 993 DPRINTF("Select LUN %d\n", s->current_lun); 994 lsi_set_phase(s, PHASE_CMD); 995 break; 996 } 997 } 998 return; 999 bad: 1000 BADF("Unimplemented message 0x%02x\n", msg); 1001 lsi_set_phase(s, PHASE_MI); 1002 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */ 1003 s->msg_action = 0; 1004 } 1005 1006 #define LSI_BUF_SIZE 4096 1007 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count) 1008 { 1009 PCIDevice *d = PCI_DEVICE(s); 1010 int n; 1011 uint8_t buf[LSI_BUF_SIZE]; 1012 1013 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count); 1014 while (count) { 1015 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count; 1016 pci_dma_read(d, src, buf, n); 1017 pci_dma_write(d, dest, buf, n); 1018 src += n; 1019 dest += n; 1020 count -= n; 1021 } 1022 } 1023 1024 static void lsi_wait_reselect(LSIState *s) 1025 { 1026 lsi_request *p; 1027 1028 DPRINTF("Wait Reselect\n"); 1029 1030 QTAILQ_FOREACH(p, &s->queue, next) { 1031 if (p->pending) { 1032 lsi_reselect(s, p); 1033 break; 1034 } 1035 } 1036 if (s->current == NULL) { 1037 s->waiting = 1; 1038 } 1039 } 1040 1041 static void lsi_execute_script(LSIState *s) 1042 { 1043 PCIDevice *pci_dev = PCI_DEVICE(s); 1044 uint32_t insn; 1045 uint32_t addr, addr_high; 1046 int opcode; 1047 int insn_processed = 0; 1048 1049 s->istat1 |= LSI_ISTAT1_SRUN; 1050 again: 1051 insn_processed++; 1052 insn = read_dword(s, s->dsp); 1053 if (!insn) { 1054 /* If we receive an empty opcode increment the DSP by 4 bytes 1055 instead of 8 and execute the next opcode at that location */ 1056 s->dsp += 4; 1057 goto again; 1058 } 1059 addr = read_dword(s, s->dsp + 4); 1060 addr_high = 0; 1061 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr); 1062 s->dsps = addr; 1063 s->dcmd = insn >> 24; 1064 s->dsp += 8; 1065 switch (insn >> 30) { 1066 case 0: /* Block move. */ 1067 if (s->sist1 & LSI_SIST1_STO) { 1068 DPRINTF("Delayed select timeout\n"); 1069 lsi_stop_script(s); 1070 break; 1071 } 1072 s->dbc = insn & 0xffffff; 1073 s->rbc = s->dbc; 1074 /* ??? Set ESA. */ 1075 s->ia = s->dsp - 8; 1076 if (insn & (1 << 29)) { 1077 /* Indirect addressing. */ 1078 addr = read_dword(s, addr); 1079 } else if (insn & (1 << 28)) { 1080 uint32_t buf[2]; 1081 int32_t offset; 1082 /* Table indirect addressing. */ 1083 1084 /* 32-bit Table indirect */ 1085 offset = sextract32(addr, 0, 24); 1086 pci_dma_read(pci_dev, s->dsa + offset, buf, 8); 1087 /* byte count is stored in bits 0:23 only */ 1088 s->dbc = cpu_to_le32(buf[0]) & 0xffffff; 1089 s->rbc = s->dbc; 1090 addr = cpu_to_le32(buf[1]); 1091 1092 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of 1093 * table, bits [31:24] */ 1094 if (lsi_dma_40bit(s)) 1095 addr_high = cpu_to_le32(buf[0]) >> 24; 1096 else if (lsi_dma_ti64bit(s)) { 1097 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f; 1098 switch (selector) { 1099 case 0 ... 0x0f: 1100 /* offset index into scratch registers since 1101 * TI64 mode can use registers C to R */ 1102 addr_high = s->scratch[2 + selector]; 1103 break; 1104 case 0x10: 1105 addr_high = s->mmrs; 1106 break; 1107 case 0x11: 1108 addr_high = s->mmws; 1109 break; 1110 case 0x12: 1111 addr_high = s->sfs; 1112 break; 1113 case 0x13: 1114 addr_high = s->drs; 1115 break; 1116 case 0x14: 1117 addr_high = s->sbms; 1118 break; 1119 case 0x15: 1120 addr_high = s->dbms; 1121 break; 1122 default: 1123 BADF("Illegal selector specified (0x%x > 0x15)" 1124 " for 64-bit DMA block move", selector); 1125 break; 1126 } 1127 } 1128 } else if (lsi_dma_64bit(s)) { 1129 /* fetch a 3rd dword if 64-bit direct move is enabled and 1130 only if we're not doing table indirect or indirect addressing */ 1131 s->dbms = read_dword(s, s->dsp); 1132 s->dsp += 4; 1133 s->ia = s->dsp - 12; 1134 } 1135 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) { 1136 DPRINTF("Wrong phase got %d expected %d\n", 1137 s->sstat1 & PHASE_MASK, (insn >> 24) & 7); 1138 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0); 1139 break; 1140 } 1141 s->dnad = addr; 1142 s->dnad64 = addr_high; 1143 switch (s->sstat1 & 0x7) { 1144 case PHASE_DO: 1145 s->waiting = 2; 1146 lsi_do_dma(s, 1); 1147 if (s->waiting) 1148 s->waiting = 3; 1149 break; 1150 case PHASE_DI: 1151 s->waiting = 2; 1152 lsi_do_dma(s, 0); 1153 if (s->waiting) 1154 s->waiting = 3; 1155 break; 1156 case PHASE_CMD: 1157 lsi_do_command(s); 1158 break; 1159 case PHASE_ST: 1160 lsi_do_status(s); 1161 break; 1162 case PHASE_MO: 1163 lsi_do_msgout(s); 1164 break; 1165 case PHASE_MI: 1166 lsi_do_msgin(s); 1167 break; 1168 default: 1169 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK); 1170 exit(1); 1171 } 1172 s->dfifo = s->dbc & 0xff; 1173 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3); 1174 s->sbc = s->dbc; 1175 s->rbc -= s->dbc; 1176 s->ua = addr + s->dbc; 1177 break; 1178 1179 case 1: /* IO or Read/Write instruction. */ 1180 opcode = (insn >> 27) & 7; 1181 if (opcode < 5) { 1182 uint32_t id; 1183 1184 if (insn & (1 << 25)) { 1185 id = read_dword(s, s->dsa + sextract32(insn, 0, 24)); 1186 } else { 1187 id = insn; 1188 } 1189 id = (id >> 16) & 0xf; 1190 if (insn & (1 << 26)) { 1191 addr = s->dsp + sextract32(addr, 0, 24); 1192 } 1193 s->dnad = addr; 1194 switch (opcode) { 1195 case 0: /* Select */ 1196 s->sdid = id; 1197 if (s->scntl1 & LSI_SCNTL1_CON) { 1198 DPRINTF("Already reselected, jumping to alternative address\n"); 1199 s->dsp = s->dnad; 1200 break; 1201 } 1202 s->sstat0 |= LSI_SSTAT0_WOA; 1203 s->scntl1 &= ~LSI_SCNTL1_IARB; 1204 if (!scsi_device_find(&s->bus, 0, id, 0)) { 1205 lsi_bad_selection(s, id); 1206 break; 1207 } 1208 DPRINTF("Selected target %d%s\n", 1209 id, insn & (1 << 3) ? " ATN" : ""); 1210 /* ??? Linux drivers compain when this is set. Maybe 1211 it only applies in low-level mode (unimplemented). 1212 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */ 1213 s->select_tag = id << 8; 1214 s->scntl1 |= LSI_SCNTL1_CON; 1215 if (insn & (1 << 3)) { 1216 s->socl |= LSI_SOCL_ATN; 1217 } 1218 lsi_set_phase(s, PHASE_MO); 1219 break; 1220 case 1: /* Disconnect */ 1221 DPRINTF("Wait Disconnect\n"); 1222 s->scntl1 &= ~LSI_SCNTL1_CON; 1223 break; 1224 case 2: /* Wait Reselect */ 1225 if (!lsi_irq_on_rsl(s)) { 1226 lsi_wait_reselect(s); 1227 } 1228 break; 1229 case 3: /* Set */ 1230 DPRINTF("Set%s%s%s%s\n", 1231 insn & (1 << 3) ? " ATN" : "", 1232 insn & (1 << 6) ? " ACK" : "", 1233 insn & (1 << 9) ? " TM" : "", 1234 insn & (1 << 10) ? " CC" : ""); 1235 if (insn & (1 << 3)) { 1236 s->socl |= LSI_SOCL_ATN; 1237 lsi_set_phase(s, PHASE_MO); 1238 } 1239 if (insn & (1 << 9)) { 1240 BADF("Target mode not implemented\n"); 1241 exit(1); 1242 } 1243 if (insn & (1 << 10)) 1244 s->carry = 1; 1245 break; 1246 case 4: /* Clear */ 1247 DPRINTF("Clear%s%s%s%s\n", 1248 insn & (1 << 3) ? " ATN" : "", 1249 insn & (1 << 6) ? " ACK" : "", 1250 insn & (1 << 9) ? " TM" : "", 1251 insn & (1 << 10) ? " CC" : ""); 1252 if (insn & (1 << 3)) { 1253 s->socl &= ~LSI_SOCL_ATN; 1254 } 1255 if (insn & (1 << 10)) 1256 s->carry = 0; 1257 break; 1258 } 1259 } else { 1260 uint8_t op0; 1261 uint8_t op1; 1262 uint8_t data8; 1263 int reg; 1264 int operator; 1265 #ifdef DEBUG_LSI 1266 static const char *opcode_names[3] = 1267 {"Write", "Read", "Read-Modify-Write"}; 1268 static const char *operator_names[8] = 1269 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"}; 1270 #endif 1271 1272 reg = ((insn >> 16) & 0x7f) | (insn & 0x80); 1273 data8 = (insn >> 8) & 0xff; 1274 opcode = (insn >> 27) & 7; 1275 operator = (insn >> 24) & 7; 1276 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n", 1277 opcode_names[opcode - 5], reg, 1278 operator_names[operator], data8, s->sfbr, 1279 (insn & (1 << 23)) ? " SFBR" : ""); 1280 op0 = op1 = 0; 1281 switch (opcode) { 1282 case 5: /* From SFBR */ 1283 op0 = s->sfbr; 1284 op1 = data8; 1285 break; 1286 case 6: /* To SFBR */ 1287 if (operator) 1288 op0 = lsi_reg_readb(s, reg); 1289 op1 = data8; 1290 break; 1291 case 7: /* Read-modify-write */ 1292 if (operator) 1293 op0 = lsi_reg_readb(s, reg); 1294 if (insn & (1 << 23)) { 1295 op1 = s->sfbr; 1296 } else { 1297 op1 = data8; 1298 } 1299 break; 1300 } 1301 1302 switch (operator) { 1303 case 0: /* move */ 1304 op0 = op1; 1305 break; 1306 case 1: /* Shift left */ 1307 op1 = op0 >> 7; 1308 op0 = (op0 << 1) | s->carry; 1309 s->carry = op1; 1310 break; 1311 case 2: /* OR */ 1312 op0 |= op1; 1313 break; 1314 case 3: /* XOR */ 1315 op0 ^= op1; 1316 break; 1317 case 4: /* AND */ 1318 op0 &= op1; 1319 break; 1320 case 5: /* SHR */ 1321 op1 = op0 & 1; 1322 op0 = (op0 >> 1) | (s->carry << 7); 1323 s->carry = op1; 1324 break; 1325 case 6: /* ADD */ 1326 op0 += op1; 1327 s->carry = op0 < op1; 1328 break; 1329 case 7: /* ADC */ 1330 op0 += op1 + s->carry; 1331 if (s->carry) 1332 s->carry = op0 <= op1; 1333 else 1334 s->carry = op0 < op1; 1335 break; 1336 } 1337 1338 switch (opcode) { 1339 case 5: /* From SFBR */ 1340 case 7: /* Read-modify-write */ 1341 lsi_reg_writeb(s, reg, op0); 1342 break; 1343 case 6: /* To SFBR */ 1344 s->sfbr = op0; 1345 break; 1346 } 1347 } 1348 break; 1349 1350 case 2: /* Transfer Control. */ 1351 { 1352 int cond; 1353 int jmp; 1354 1355 if ((insn & 0x002e0000) == 0) { 1356 DPRINTF("NOP\n"); 1357 break; 1358 } 1359 if (s->sist1 & LSI_SIST1_STO) { 1360 DPRINTF("Delayed select timeout\n"); 1361 lsi_stop_script(s); 1362 break; 1363 } 1364 cond = jmp = (insn & (1 << 19)) != 0; 1365 if (cond == jmp && (insn & (1 << 21))) { 1366 DPRINTF("Compare carry %d\n", s->carry == jmp); 1367 cond = s->carry != 0; 1368 } 1369 if (cond == jmp && (insn & (1 << 17))) { 1370 DPRINTF("Compare phase %d %c= %d\n", 1371 (s->sstat1 & PHASE_MASK), 1372 jmp ? '=' : '!', 1373 ((insn >> 24) & 7)); 1374 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7); 1375 } 1376 if (cond == jmp && (insn & (1 << 18))) { 1377 uint8_t mask; 1378 1379 mask = (~insn >> 8) & 0xff; 1380 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n", 1381 s->sfbr, mask, jmp ? '=' : '!', insn & mask); 1382 cond = (s->sfbr & mask) == (insn & mask); 1383 } 1384 if (cond == jmp) { 1385 if (insn & (1 << 23)) { 1386 /* Relative address. */ 1387 addr = s->dsp + sextract32(addr, 0, 24); 1388 } 1389 switch ((insn >> 27) & 7) { 1390 case 0: /* Jump */ 1391 DPRINTF("Jump to 0x%08x\n", addr); 1392 s->dsp = addr; 1393 break; 1394 case 1: /* Call */ 1395 DPRINTF("Call 0x%08x\n", addr); 1396 s->temp = s->dsp; 1397 s->dsp = addr; 1398 break; 1399 case 2: /* Return */ 1400 DPRINTF("Return to 0x%08x\n", s->temp); 1401 s->dsp = s->temp; 1402 break; 1403 case 3: /* Interrupt */ 1404 DPRINTF("Interrupt 0x%08x\n", s->dsps); 1405 if ((insn & (1 << 20)) != 0) { 1406 s->istat0 |= LSI_ISTAT0_INTF; 1407 lsi_update_irq(s); 1408 } else { 1409 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR); 1410 } 1411 break; 1412 default: 1413 DPRINTF("Illegal transfer control\n"); 1414 lsi_script_dma_interrupt(s, LSI_DSTAT_IID); 1415 break; 1416 } 1417 } else { 1418 DPRINTF("Control condition failed\n"); 1419 } 1420 } 1421 break; 1422 1423 case 3: 1424 if ((insn & (1 << 29)) == 0) { 1425 /* Memory move. */ 1426 uint32_t dest; 1427 /* ??? The docs imply the destination address is loaded into 1428 the TEMP register. However the Linux drivers rely on 1429 the value being presrved. */ 1430 dest = read_dword(s, s->dsp); 1431 s->dsp += 4; 1432 lsi_memcpy(s, dest, addr, insn & 0xffffff); 1433 } else { 1434 uint8_t data[7]; 1435 int reg; 1436 int n; 1437 int i; 1438 1439 if (insn & (1 << 28)) { 1440 addr = s->dsa + sextract32(addr, 0, 24); 1441 } 1442 n = (insn & 7); 1443 reg = (insn >> 16) & 0xff; 1444 if (insn & (1 << 24)) { 1445 pci_dma_read(pci_dev, addr, data, n); 1446 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n, 1447 addr, *(int *)data); 1448 for (i = 0; i < n; i++) { 1449 lsi_reg_writeb(s, reg + i, data[i]); 1450 } 1451 } else { 1452 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr); 1453 for (i = 0; i < n; i++) { 1454 data[i] = lsi_reg_readb(s, reg + i); 1455 } 1456 pci_dma_write(pci_dev, addr, data, n); 1457 } 1458 } 1459 } 1460 if (insn_processed > 10000 && !s->waiting) { 1461 /* Some windows drivers make the device spin waiting for a memory 1462 location to change. If we have been executed a lot of code then 1463 assume this is the case and force an unexpected device disconnect. 1464 This is apparently sufficient to beat the drivers into submission. 1465 */ 1466 if (!(s->sien0 & LSI_SIST0_UDC)) 1467 fprintf(stderr, "inf. loop with UDC masked\n"); 1468 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0); 1469 lsi_disconnect(s); 1470 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) { 1471 if (s->dcntl & LSI_DCNTL_SSM) { 1472 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI); 1473 } else { 1474 goto again; 1475 } 1476 } 1477 DPRINTF("SCRIPTS execution stopped\n"); 1478 } 1479 1480 static uint8_t lsi_reg_readb(LSIState *s, int offset) 1481 { 1482 uint8_t tmp; 1483 #define CASE_GET_REG24(name, addr) \ 1484 case addr: return s->name & 0xff; \ 1485 case addr + 1: return (s->name >> 8) & 0xff; \ 1486 case addr + 2: return (s->name >> 16) & 0xff; 1487 1488 #define CASE_GET_REG32(name, addr) \ 1489 case addr: return s->name & 0xff; \ 1490 case addr + 1: return (s->name >> 8) & 0xff; \ 1491 case addr + 2: return (s->name >> 16) & 0xff; \ 1492 case addr + 3: return (s->name >> 24) & 0xff; 1493 1494 #ifdef DEBUG_LSI_REG 1495 DPRINTF("Read reg %x\n", offset); 1496 #endif 1497 switch (offset) { 1498 case 0x00: /* SCNTL0 */ 1499 return s->scntl0; 1500 case 0x01: /* SCNTL1 */ 1501 return s->scntl1; 1502 case 0x02: /* SCNTL2 */ 1503 return s->scntl2; 1504 case 0x03: /* SCNTL3 */ 1505 return s->scntl3; 1506 case 0x04: /* SCID */ 1507 return s->scid; 1508 case 0x05: /* SXFER */ 1509 return s->sxfer; 1510 case 0x06: /* SDID */ 1511 return s->sdid; 1512 case 0x07: /* GPREG0 */ 1513 return 0x7f; 1514 case 0x08: /* Revision ID */ 1515 return 0x00; 1516 case 0xa: /* SSID */ 1517 return s->ssid; 1518 case 0xb: /* SBCL */ 1519 /* ??? This is not correct. However it's (hopefully) only 1520 used for diagnostics, so should be ok. */ 1521 return 0; 1522 case 0xc: /* DSTAT */ 1523 tmp = s->dstat | LSI_DSTAT_DFE; 1524 if ((s->istat0 & LSI_ISTAT0_INTF) == 0) 1525 s->dstat = 0; 1526 lsi_update_irq(s); 1527 return tmp; 1528 case 0x0d: /* SSTAT0 */ 1529 return s->sstat0; 1530 case 0x0e: /* SSTAT1 */ 1531 return s->sstat1; 1532 case 0x0f: /* SSTAT2 */ 1533 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2; 1534 CASE_GET_REG32(dsa, 0x10) 1535 case 0x14: /* ISTAT0 */ 1536 return s->istat0; 1537 case 0x15: /* ISTAT1 */ 1538 return s->istat1; 1539 case 0x16: /* MBOX0 */ 1540 return s->mbox0; 1541 case 0x17: /* MBOX1 */ 1542 return s->mbox1; 1543 case 0x18: /* CTEST0 */ 1544 return 0xff; 1545 case 0x19: /* CTEST1 */ 1546 return 0; 1547 case 0x1a: /* CTEST2 */ 1548 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM; 1549 if (s->istat0 & LSI_ISTAT0_SIGP) { 1550 s->istat0 &= ~LSI_ISTAT0_SIGP; 1551 tmp |= LSI_CTEST2_SIGP; 1552 } 1553 return tmp; 1554 case 0x1b: /* CTEST3 */ 1555 return s->ctest3; 1556 CASE_GET_REG32(temp, 0x1c) 1557 case 0x20: /* DFIFO */ 1558 return 0; 1559 case 0x21: /* CTEST4 */ 1560 return s->ctest4; 1561 case 0x22: /* CTEST5 */ 1562 return s->ctest5; 1563 case 0x23: /* CTEST6 */ 1564 return 0; 1565 CASE_GET_REG24(dbc, 0x24) 1566 case 0x27: /* DCMD */ 1567 return s->dcmd; 1568 CASE_GET_REG32(dnad, 0x28) 1569 CASE_GET_REG32(dsp, 0x2c) 1570 CASE_GET_REG32(dsps, 0x30) 1571 CASE_GET_REG32(scratch[0], 0x34) 1572 case 0x38: /* DMODE */ 1573 return s->dmode; 1574 case 0x39: /* DIEN */ 1575 return s->dien; 1576 case 0x3a: /* SBR */ 1577 return s->sbr; 1578 case 0x3b: /* DCNTL */ 1579 return s->dcntl; 1580 case 0x40: /* SIEN0 */ 1581 return s->sien0; 1582 case 0x41: /* SIEN1 */ 1583 return s->sien1; 1584 case 0x42: /* SIST0 */ 1585 tmp = s->sist0; 1586 s->sist0 = 0; 1587 lsi_update_irq(s); 1588 return tmp; 1589 case 0x43: /* SIST1 */ 1590 tmp = s->sist1; 1591 s->sist1 = 0; 1592 lsi_update_irq(s); 1593 return tmp; 1594 case 0x46: /* MACNTL */ 1595 return 0x0f; 1596 case 0x47: /* GPCNTL0 */ 1597 return 0x0f; 1598 case 0x48: /* STIME0 */ 1599 return s->stime0; 1600 case 0x4a: /* RESPID0 */ 1601 return s->respid0; 1602 case 0x4b: /* RESPID1 */ 1603 return s->respid1; 1604 case 0x4d: /* STEST1 */ 1605 return s->stest1; 1606 case 0x4e: /* STEST2 */ 1607 return s->stest2; 1608 case 0x4f: /* STEST3 */ 1609 return s->stest3; 1610 case 0x50: /* SIDL */ 1611 /* This is needed by the linux drivers. We currently only update it 1612 during the MSG IN phase. */ 1613 return s->sidl; 1614 case 0x52: /* STEST4 */ 1615 return 0xe0; 1616 case 0x56: /* CCNTL0 */ 1617 return s->ccntl0; 1618 case 0x57: /* CCNTL1 */ 1619 return s->ccntl1; 1620 case 0x58: /* SBDL */ 1621 /* Some drivers peek at the data bus during the MSG IN phase. */ 1622 if ((s->sstat1 & PHASE_MASK) == PHASE_MI) 1623 return s->msg[0]; 1624 return 0; 1625 case 0x59: /* SBDL high */ 1626 return 0; 1627 CASE_GET_REG32(mmrs, 0xa0) 1628 CASE_GET_REG32(mmws, 0xa4) 1629 CASE_GET_REG32(sfs, 0xa8) 1630 CASE_GET_REG32(drs, 0xac) 1631 CASE_GET_REG32(sbms, 0xb0) 1632 CASE_GET_REG32(dbms, 0xb4) 1633 CASE_GET_REG32(dnad64, 0xb8) 1634 CASE_GET_REG32(pmjad1, 0xc0) 1635 CASE_GET_REG32(pmjad2, 0xc4) 1636 CASE_GET_REG32(rbc, 0xc8) 1637 CASE_GET_REG32(ua, 0xcc) 1638 CASE_GET_REG32(ia, 0xd4) 1639 CASE_GET_REG32(sbc, 0xd8) 1640 CASE_GET_REG32(csbc, 0xdc) 1641 } 1642 if (offset >= 0x5c && offset < 0xa0) { 1643 int n; 1644 int shift; 1645 n = (offset - 0x58) >> 2; 1646 shift = (offset & 3) * 8; 1647 return (s->scratch[n] >> shift) & 0xff; 1648 } 1649 BADF("readb 0x%x\n", offset); 1650 exit(1); 1651 #undef CASE_GET_REG24 1652 #undef CASE_GET_REG32 1653 } 1654 1655 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val) 1656 { 1657 #define CASE_SET_REG24(name, addr) \ 1658 case addr : s->name &= 0xffffff00; s->name |= val; break; \ 1659 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \ 1660 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; 1661 1662 #define CASE_SET_REG32(name, addr) \ 1663 case addr : s->name &= 0xffffff00; s->name |= val; break; \ 1664 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \ 1665 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \ 1666 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break; 1667 1668 #ifdef DEBUG_LSI_REG 1669 DPRINTF("Write reg %x = %02x\n", offset, val); 1670 #endif 1671 switch (offset) { 1672 case 0x00: /* SCNTL0 */ 1673 s->scntl0 = val; 1674 if (val & LSI_SCNTL0_START) { 1675 BADF("Start sequence not implemented\n"); 1676 } 1677 break; 1678 case 0x01: /* SCNTL1 */ 1679 s->scntl1 = val & ~LSI_SCNTL1_SST; 1680 if (val & LSI_SCNTL1_IARB) { 1681 BADF("Immediate Arbritration not implemented\n"); 1682 } 1683 if (val & LSI_SCNTL1_RST) { 1684 if (!(s->sstat0 & LSI_SSTAT0_RST)) { 1685 qbus_reset_all(&s->bus.qbus); 1686 s->sstat0 |= LSI_SSTAT0_RST; 1687 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0); 1688 } 1689 } else { 1690 s->sstat0 &= ~LSI_SSTAT0_RST; 1691 } 1692 break; 1693 case 0x02: /* SCNTL2 */ 1694 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS); 1695 s->scntl2 = val; 1696 break; 1697 case 0x03: /* SCNTL3 */ 1698 s->scntl3 = val; 1699 break; 1700 case 0x04: /* SCID */ 1701 s->scid = val; 1702 break; 1703 case 0x05: /* SXFER */ 1704 s->sxfer = val; 1705 break; 1706 case 0x06: /* SDID */ 1707 if ((s->ssid & 0x80) && (val & 0xf) != (s->ssid & 0xf)) { 1708 BADF("Destination ID does not match SSID\n"); 1709 } 1710 s->sdid = val & 0xf; 1711 break; 1712 case 0x07: /* GPREG0 */ 1713 break; 1714 case 0x08: /* SFBR */ 1715 /* The CPU is not allowed to write to this register. However the 1716 SCRIPTS register move instructions are. */ 1717 s->sfbr = val; 1718 break; 1719 case 0x0a: case 0x0b: 1720 /* Openserver writes to these readonly registers on startup */ 1721 return; 1722 case 0x0c: case 0x0d: case 0x0e: case 0x0f: 1723 /* Linux writes to these readonly registers on startup. */ 1724 return; 1725 CASE_SET_REG32(dsa, 0x10) 1726 case 0x14: /* ISTAT0 */ 1727 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0); 1728 if (val & LSI_ISTAT0_ABRT) { 1729 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT); 1730 } 1731 if (val & LSI_ISTAT0_INTF) { 1732 s->istat0 &= ~LSI_ISTAT0_INTF; 1733 lsi_update_irq(s); 1734 } 1735 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) { 1736 DPRINTF("Woken by SIGP\n"); 1737 s->waiting = 0; 1738 s->dsp = s->dnad; 1739 lsi_execute_script(s); 1740 } 1741 if (val & LSI_ISTAT0_SRST) { 1742 qdev_reset_all(DEVICE(s)); 1743 } 1744 break; 1745 case 0x16: /* MBOX0 */ 1746 s->mbox0 = val; 1747 break; 1748 case 0x17: /* MBOX1 */ 1749 s->mbox1 = val; 1750 break; 1751 case 0x18: /* CTEST0 */ 1752 /* nothing to do */ 1753 break; 1754 case 0x1a: /* CTEST2 */ 1755 s->ctest2 = val & LSI_CTEST2_PCICIE; 1756 break; 1757 case 0x1b: /* CTEST3 */ 1758 s->ctest3 = val & 0x0f; 1759 break; 1760 CASE_SET_REG32(temp, 0x1c) 1761 case 0x21: /* CTEST4 */ 1762 if (val & 7) { 1763 BADF("Unimplemented CTEST4-FBL 0x%x\n", val); 1764 } 1765 s->ctest4 = val; 1766 break; 1767 case 0x22: /* CTEST5 */ 1768 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) { 1769 BADF("CTEST5 DMA increment not implemented\n"); 1770 } 1771 s->ctest5 = val; 1772 break; 1773 CASE_SET_REG24(dbc, 0x24) 1774 CASE_SET_REG32(dnad, 0x28) 1775 case 0x2c: /* DSP[0:7] */ 1776 s->dsp &= 0xffffff00; 1777 s->dsp |= val; 1778 break; 1779 case 0x2d: /* DSP[8:15] */ 1780 s->dsp &= 0xffff00ff; 1781 s->dsp |= val << 8; 1782 break; 1783 case 0x2e: /* DSP[16:23] */ 1784 s->dsp &= 0xff00ffff; 1785 s->dsp |= val << 16; 1786 break; 1787 case 0x2f: /* DSP[24:31] */ 1788 s->dsp &= 0x00ffffff; 1789 s->dsp |= val << 24; 1790 if ((s->dmode & LSI_DMODE_MAN) == 0 1791 && (s->istat1 & LSI_ISTAT1_SRUN) == 0) 1792 lsi_execute_script(s); 1793 break; 1794 CASE_SET_REG32(dsps, 0x30) 1795 CASE_SET_REG32(scratch[0], 0x34) 1796 case 0x38: /* DMODE */ 1797 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) { 1798 BADF("IO mappings not implemented\n"); 1799 } 1800 s->dmode = val; 1801 break; 1802 case 0x39: /* DIEN */ 1803 s->dien = val; 1804 lsi_update_irq(s); 1805 break; 1806 case 0x3a: /* SBR */ 1807 s->sbr = val; 1808 break; 1809 case 0x3b: /* DCNTL */ 1810 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD); 1811 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0) 1812 lsi_execute_script(s); 1813 break; 1814 case 0x40: /* SIEN0 */ 1815 s->sien0 = val; 1816 lsi_update_irq(s); 1817 break; 1818 case 0x41: /* SIEN1 */ 1819 s->sien1 = val; 1820 lsi_update_irq(s); 1821 break; 1822 case 0x47: /* GPCNTL0 */ 1823 break; 1824 case 0x48: /* STIME0 */ 1825 s->stime0 = val; 1826 break; 1827 case 0x49: /* STIME1 */ 1828 if (val & 0xf) { 1829 DPRINTF("General purpose timer not implemented\n"); 1830 /* ??? Raising the interrupt immediately seems to be sufficient 1831 to keep the FreeBSD driver happy. */ 1832 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN); 1833 } 1834 break; 1835 case 0x4a: /* RESPID0 */ 1836 s->respid0 = val; 1837 break; 1838 case 0x4b: /* RESPID1 */ 1839 s->respid1 = val; 1840 break; 1841 case 0x4d: /* STEST1 */ 1842 s->stest1 = val; 1843 break; 1844 case 0x4e: /* STEST2 */ 1845 if (val & 1) { 1846 BADF("Low level mode not implemented\n"); 1847 } 1848 s->stest2 = val; 1849 break; 1850 case 0x4f: /* STEST3 */ 1851 if (val & 0x41) { 1852 BADF("SCSI FIFO test mode not implemented\n"); 1853 } 1854 s->stest3 = val; 1855 break; 1856 case 0x56: /* CCNTL0 */ 1857 s->ccntl0 = val; 1858 break; 1859 case 0x57: /* CCNTL1 */ 1860 s->ccntl1 = val; 1861 break; 1862 CASE_SET_REG32(mmrs, 0xa0) 1863 CASE_SET_REG32(mmws, 0xa4) 1864 CASE_SET_REG32(sfs, 0xa8) 1865 CASE_SET_REG32(drs, 0xac) 1866 CASE_SET_REG32(sbms, 0xb0) 1867 CASE_SET_REG32(dbms, 0xb4) 1868 CASE_SET_REG32(dnad64, 0xb8) 1869 CASE_SET_REG32(pmjad1, 0xc0) 1870 CASE_SET_REG32(pmjad2, 0xc4) 1871 CASE_SET_REG32(rbc, 0xc8) 1872 CASE_SET_REG32(ua, 0xcc) 1873 CASE_SET_REG32(ia, 0xd4) 1874 CASE_SET_REG32(sbc, 0xd8) 1875 CASE_SET_REG32(csbc, 0xdc) 1876 default: 1877 if (offset >= 0x5c && offset < 0xa0) { 1878 int n; 1879 int shift; 1880 n = (offset - 0x58) >> 2; 1881 shift = (offset & 3) * 8; 1882 s->scratch[n] = deposit32(s->scratch[n], shift, 8, val); 1883 } else { 1884 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val); 1885 } 1886 } 1887 #undef CASE_SET_REG24 1888 #undef CASE_SET_REG32 1889 } 1890 1891 static void lsi_mmio_write(void *opaque, hwaddr addr, 1892 uint64_t val, unsigned size) 1893 { 1894 LSIState *s = opaque; 1895 1896 lsi_reg_writeb(s, addr & 0xff, val); 1897 } 1898 1899 static uint64_t lsi_mmio_read(void *opaque, hwaddr addr, 1900 unsigned size) 1901 { 1902 LSIState *s = opaque; 1903 1904 return lsi_reg_readb(s, addr & 0xff); 1905 } 1906 1907 static const MemoryRegionOps lsi_mmio_ops = { 1908 .read = lsi_mmio_read, 1909 .write = lsi_mmio_write, 1910 .endianness = DEVICE_NATIVE_ENDIAN, 1911 .impl = { 1912 .min_access_size = 1, 1913 .max_access_size = 1, 1914 }, 1915 }; 1916 1917 static void lsi_ram_write(void *opaque, hwaddr addr, 1918 uint64_t val, unsigned size) 1919 { 1920 LSIState *s = opaque; 1921 uint32_t newval; 1922 uint32_t mask; 1923 int shift; 1924 1925 newval = s->script_ram[addr >> 2]; 1926 shift = (addr & 3) * 8; 1927 mask = ((uint64_t)1 << (size * 8)) - 1; 1928 newval &= ~(mask << shift); 1929 newval |= val << shift; 1930 s->script_ram[addr >> 2] = newval; 1931 } 1932 1933 static uint64_t lsi_ram_read(void *opaque, hwaddr addr, 1934 unsigned size) 1935 { 1936 LSIState *s = opaque; 1937 uint32_t val; 1938 uint32_t mask; 1939 1940 val = s->script_ram[addr >> 2]; 1941 mask = ((uint64_t)1 << (size * 8)) - 1; 1942 val >>= (addr & 3) * 8; 1943 return val & mask; 1944 } 1945 1946 static const MemoryRegionOps lsi_ram_ops = { 1947 .read = lsi_ram_read, 1948 .write = lsi_ram_write, 1949 .endianness = DEVICE_NATIVE_ENDIAN, 1950 }; 1951 1952 static uint64_t lsi_io_read(void *opaque, hwaddr addr, 1953 unsigned size) 1954 { 1955 LSIState *s = opaque; 1956 return lsi_reg_readb(s, addr & 0xff); 1957 } 1958 1959 static void lsi_io_write(void *opaque, hwaddr addr, 1960 uint64_t val, unsigned size) 1961 { 1962 LSIState *s = opaque; 1963 lsi_reg_writeb(s, addr & 0xff, val); 1964 } 1965 1966 static const MemoryRegionOps lsi_io_ops = { 1967 .read = lsi_io_read, 1968 .write = lsi_io_write, 1969 .endianness = DEVICE_NATIVE_ENDIAN, 1970 .impl = { 1971 .min_access_size = 1, 1972 .max_access_size = 1, 1973 }, 1974 }; 1975 1976 static void lsi_scsi_reset(DeviceState *dev) 1977 { 1978 LSIState *s = LSI53C895A(dev); 1979 1980 lsi_soft_reset(s); 1981 } 1982 1983 static void lsi_pre_save(void *opaque) 1984 { 1985 LSIState *s = opaque; 1986 1987 if (s->current) { 1988 assert(s->current->dma_buf == NULL); 1989 assert(s->current->dma_len == 0); 1990 } 1991 assert(QTAILQ_EMPTY(&s->queue)); 1992 } 1993 1994 static const VMStateDescription vmstate_lsi_scsi = { 1995 .name = "lsiscsi", 1996 .version_id = 0, 1997 .minimum_version_id = 0, 1998 .pre_save = lsi_pre_save, 1999 .fields = (VMStateField[]) { 2000 VMSTATE_PCI_DEVICE(parent_obj, LSIState), 2001 2002 VMSTATE_INT32(carry, LSIState), 2003 VMSTATE_INT32(status, LSIState), 2004 VMSTATE_INT32(msg_action, LSIState), 2005 VMSTATE_INT32(msg_len, LSIState), 2006 VMSTATE_BUFFER(msg, LSIState), 2007 VMSTATE_INT32(waiting, LSIState), 2008 2009 VMSTATE_UINT32(dsa, LSIState), 2010 VMSTATE_UINT32(temp, LSIState), 2011 VMSTATE_UINT32(dnad, LSIState), 2012 VMSTATE_UINT32(dbc, LSIState), 2013 VMSTATE_UINT8(istat0, LSIState), 2014 VMSTATE_UINT8(istat1, LSIState), 2015 VMSTATE_UINT8(dcmd, LSIState), 2016 VMSTATE_UINT8(dstat, LSIState), 2017 VMSTATE_UINT8(dien, LSIState), 2018 VMSTATE_UINT8(sist0, LSIState), 2019 VMSTATE_UINT8(sist1, LSIState), 2020 VMSTATE_UINT8(sien0, LSIState), 2021 VMSTATE_UINT8(sien1, LSIState), 2022 VMSTATE_UINT8(mbox0, LSIState), 2023 VMSTATE_UINT8(mbox1, LSIState), 2024 VMSTATE_UINT8(dfifo, LSIState), 2025 VMSTATE_UINT8(ctest2, LSIState), 2026 VMSTATE_UINT8(ctest3, LSIState), 2027 VMSTATE_UINT8(ctest4, LSIState), 2028 VMSTATE_UINT8(ctest5, LSIState), 2029 VMSTATE_UINT8(ccntl0, LSIState), 2030 VMSTATE_UINT8(ccntl1, LSIState), 2031 VMSTATE_UINT32(dsp, LSIState), 2032 VMSTATE_UINT32(dsps, LSIState), 2033 VMSTATE_UINT8(dmode, LSIState), 2034 VMSTATE_UINT8(dcntl, LSIState), 2035 VMSTATE_UINT8(scntl0, LSIState), 2036 VMSTATE_UINT8(scntl1, LSIState), 2037 VMSTATE_UINT8(scntl2, LSIState), 2038 VMSTATE_UINT8(scntl3, LSIState), 2039 VMSTATE_UINT8(sstat0, LSIState), 2040 VMSTATE_UINT8(sstat1, LSIState), 2041 VMSTATE_UINT8(scid, LSIState), 2042 VMSTATE_UINT8(sxfer, LSIState), 2043 VMSTATE_UINT8(socl, LSIState), 2044 VMSTATE_UINT8(sdid, LSIState), 2045 VMSTATE_UINT8(ssid, LSIState), 2046 VMSTATE_UINT8(sfbr, LSIState), 2047 VMSTATE_UINT8(stest1, LSIState), 2048 VMSTATE_UINT8(stest2, LSIState), 2049 VMSTATE_UINT8(stest3, LSIState), 2050 VMSTATE_UINT8(sidl, LSIState), 2051 VMSTATE_UINT8(stime0, LSIState), 2052 VMSTATE_UINT8(respid0, LSIState), 2053 VMSTATE_UINT8(respid1, LSIState), 2054 VMSTATE_UINT32(mmrs, LSIState), 2055 VMSTATE_UINT32(mmws, LSIState), 2056 VMSTATE_UINT32(sfs, LSIState), 2057 VMSTATE_UINT32(drs, LSIState), 2058 VMSTATE_UINT32(sbms, LSIState), 2059 VMSTATE_UINT32(dbms, LSIState), 2060 VMSTATE_UINT32(dnad64, LSIState), 2061 VMSTATE_UINT32(pmjad1, LSIState), 2062 VMSTATE_UINT32(pmjad2, LSIState), 2063 VMSTATE_UINT32(rbc, LSIState), 2064 VMSTATE_UINT32(ua, LSIState), 2065 VMSTATE_UINT32(ia, LSIState), 2066 VMSTATE_UINT32(sbc, LSIState), 2067 VMSTATE_UINT32(csbc, LSIState), 2068 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)), 2069 VMSTATE_UINT8(sbr, LSIState), 2070 2071 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)), 2072 VMSTATE_END_OF_LIST() 2073 } 2074 }; 2075 2076 static const struct SCSIBusInfo lsi_scsi_info = { 2077 .tcq = true, 2078 .max_target = LSI_MAX_DEVS, 2079 .max_lun = 0, /* LUN support is buggy */ 2080 2081 .transfer_data = lsi_transfer_data, 2082 .complete = lsi_command_complete, 2083 .cancel = lsi_request_cancelled 2084 }; 2085 2086 static int lsi_scsi_init(PCIDevice *dev) 2087 { 2088 LSIState *s = LSI53C895A(dev); 2089 DeviceState *d = DEVICE(dev); 2090 uint8_t *pci_conf; 2091 Error *err = NULL; 2092 2093 pci_conf = dev->config; 2094 2095 /* PCI latency timer = 255 */ 2096 pci_conf[PCI_LATENCY_TIMER] = 0xff; 2097 /* Interrupt pin A */ 2098 pci_conf[PCI_INTERRUPT_PIN] = 0x01; 2099 2100 memory_region_init_io(&s->mmio_io, OBJECT(s), &lsi_mmio_ops, s, 2101 "lsi-mmio", 0x400); 2102 memory_region_init_io(&s->ram_io, OBJECT(s), &lsi_ram_ops, s, 2103 "lsi-ram", 0x2000); 2104 memory_region_init_io(&s->io_io, OBJECT(s), &lsi_io_ops, s, 2105 "lsi-io", 256); 2106 2107 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io); 2108 pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio_io); 2109 pci_register_bar(dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io); 2110 QTAILQ_INIT(&s->queue); 2111 2112 scsi_bus_new(&s->bus, sizeof(s->bus), d, &lsi_scsi_info, NULL); 2113 if (!d->hotplugged) { 2114 scsi_bus_legacy_handle_cmdline(&s->bus, &err); 2115 if (err != NULL) { 2116 error_free(err); 2117 return -1; 2118 } 2119 } 2120 return 0; 2121 } 2122 2123 static void lsi_class_init(ObjectClass *klass, void *data) 2124 { 2125 DeviceClass *dc = DEVICE_CLASS(klass); 2126 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2127 2128 k->init = lsi_scsi_init; 2129 k->vendor_id = PCI_VENDOR_ID_LSI_LOGIC; 2130 k->device_id = PCI_DEVICE_ID_LSI_53C895A; 2131 k->class_id = PCI_CLASS_STORAGE_SCSI; 2132 k->subsystem_id = 0x1000; 2133 dc->reset = lsi_scsi_reset; 2134 dc->vmsd = &vmstate_lsi_scsi; 2135 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); 2136 } 2137 2138 static const TypeInfo lsi_info = { 2139 .name = TYPE_LSI53C895A, 2140 .parent = TYPE_PCI_DEVICE, 2141 .instance_size = sizeof(LSIState), 2142 .class_init = lsi_class_init, 2143 }; 2144 2145 static void lsi53c810_class_init(ObjectClass *klass, void *data) 2146 { 2147 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2148 2149 k->device_id = PCI_DEVICE_ID_LSI_53C810; 2150 } 2151 2152 static TypeInfo lsi53c810_info = { 2153 .name = TYPE_LSI53C810, 2154 .parent = TYPE_LSI53C895A, 2155 .class_init = lsi53c810_class_init, 2156 }; 2157 2158 static void lsi53c895a_register_types(void) 2159 { 2160 type_register_static(&lsi_info); 2161 type_register_static(&lsi53c810_info); 2162 } 2163 2164 type_init(lsi53c895a_register_types) 2165