xref: /openbmc/qemu/hw/scsi/esp.c (revision 8f3cd250)
1 /*
2  * QEMU ESP/NCR53C9x emulation
3  *
4  * Copyright (c) 2005-2006 Fabrice Bellard
5  * Copyright (c) 2012 Herve Poussineau
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/sysbus.h"
28 #include "hw/scsi/esp.h"
29 #include "trace.h"
30 #include "qemu/log.h"
31 
32 /*
33  * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
34  * also produced as NCR89C100. See
35  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
36  * and
37  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
38  */
39 
40 static void esp_raise_irq(ESPState *s)
41 {
42     if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
43         s->rregs[ESP_RSTAT] |= STAT_INT;
44         qemu_irq_raise(s->irq);
45         trace_esp_raise_irq();
46     }
47 }
48 
49 static void esp_lower_irq(ESPState *s)
50 {
51     if (s->rregs[ESP_RSTAT] & STAT_INT) {
52         s->rregs[ESP_RSTAT] &= ~STAT_INT;
53         qemu_irq_lower(s->irq);
54         trace_esp_lower_irq();
55     }
56 }
57 
58 void esp_dma_enable(ESPState *s, int irq, int level)
59 {
60     if (level) {
61         s->dma_enabled = 1;
62         trace_esp_dma_enable();
63         if (s->dma_cb) {
64             s->dma_cb(s);
65             s->dma_cb = NULL;
66         }
67     } else {
68         trace_esp_dma_disable();
69         s->dma_enabled = 0;
70     }
71 }
72 
73 void esp_request_cancelled(SCSIRequest *req)
74 {
75     ESPState *s = req->hba_private;
76 
77     if (req == s->current_req) {
78         scsi_req_unref(s->current_req);
79         s->current_req = NULL;
80         s->current_dev = NULL;
81     }
82 }
83 
84 static uint32_t get_cmd(ESPState *s, uint8_t *buf, uint8_t buflen)
85 {
86     uint32_t dmalen;
87     int target;
88 
89     target = s->wregs[ESP_WBUSID] & BUSID_DID;
90     if (s->dma) {
91         dmalen = s->rregs[ESP_TCLO];
92         dmalen |= s->rregs[ESP_TCMID] << 8;
93         dmalen |= s->rregs[ESP_TCHI] << 16;
94         if (dmalen > buflen) {
95             return 0;
96         }
97         s->dma_memory_read(s->dma_opaque, buf, dmalen);
98     } else {
99         dmalen = s->ti_size;
100         if (dmalen > TI_BUFSZ) {
101             return 0;
102         }
103         memcpy(buf, s->ti_buf, dmalen);
104         buf[0] = buf[2] >> 5;
105     }
106     trace_esp_get_cmd(dmalen, target);
107 
108     s->ti_size = 0;
109     s->ti_rptr = 0;
110     s->ti_wptr = 0;
111 
112     if (s->current_req) {
113         /* Started a new command before the old one finished.  Cancel it.  */
114         scsi_req_cancel(s->current_req);
115         s->async_len = 0;
116     }
117 
118     s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
119     if (!s->current_dev) {
120         // No such drive
121         s->rregs[ESP_RSTAT] = 0;
122         s->rregs[ESP_RINTR] = INTR_DC;
123         s->rregs[ESP_RSEQ] = SEQ_0;
124         esp_raise_irq(s);
125         return 0;
126     }
127     return dmalen;
128 }
129 
130 static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid)
131 {
132     int32_t datalen;
133     int lun;
134     SCSIDevice *current_lun;
135 
136     trace_esp_do_busid_cmd(busid);
137     lun = busid & 7;
138     current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, lun);
139     s->current_req = scsi_req_new(current_lun, 0, lun, buf, s);
140     datalen = scsi_req_enqueue(s->current_req);
141     s->ti_size = datalen;
142     if (datalen != 0) {
143         s->rregs[ESP_RSTAT] = STAT_TC;
144         s->dma_left = 0;
145         s->dma_counter = 0;
146         if (datalen > 0) {
147             s->rregs[ESP_RSTAT] |= STAT_DI;
148         } else {
149             s->rregs[ESP_RSTAT] |= STAT_DO;
150         }
151         scsi_req_continue(s->current_req);
152     }
153     s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
154     s->rregs[ESP_RSEQ] = SEQ_CD;
155     esp_raise_irq(s);
156 }
157 
158 static void do_cmd(ESPState *s, uint8_t *buf)
159 {
160     uint8_t busid = buf[0];
161 
162     do_busid_cmd(s, &buf[1], busid);
163 }
164 
165 static void handle_satn(ESPState *s)
166 {
167     uint8_t buf[32];
168     int len;
169 
170     if (s->dma && !s->dma_enabled) {
171         s->dma_cb = handle_satn;
172         return;
173     }
174     len = get_cmd(s, buf, sizeof(buf));
175     if (len)
176         do_cmd(s, buf);
177 }
178 
179 static void handle_s_without_atn(ESPState *s)
180 {
181     uint8_t buf[32];
182     int len;
183 
184     if (s->dma && !s->dma_enabled) {
185         s->dma_cb = handle_s_without_atn;
186         return;
187     }
188     len = get_cmd(s, buf, sizeof(buf));
189     if (len) {
190         do_busid_cmd(s, buf, 0);
191     }
192 }
193 
194 static void handle_satn_stop(ESPState *s)
195 {
196     if (s->dma && !s->dma_enabled) {
197         s->dma_cb = handle_satn_stop;
198         return;
199     }
200     s->cmdlen = get_cmd(s, s->cmdbuf, sizeof(s->cmdbuf));
201     if (s->cmdlen) {
202         trace_esp_handle_satn_stop(s->cmdlen);
203         s->do_cmd = 1;
204         s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
205         s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
206         s->rregs[ESP_RSEQ] = SEQ_CD;
207         esp_raise_irq(s);
208     }
209 }
210 
211 static void write_response(ESPState *s)
212 {
213     trace_esp_write_response(s->status);
214     s->ti_buf[0] = s->status;
215     s->ti_buf[1] = 0;
216     if (s->dma) {
217         s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
218         s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
219         s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
220         s->rregs[ESP_RSEQ] = SEQ_CD;
221     } else {
222         s->ti_size = 2;
223         s->ti_rptr = 0;
224         s->ti_wptr = 2;
225         s->rregs[ESP_RFLAGS] = 2;
226     }
227     esp_raise_irq(s);
228 }
229 
230 static void esp_dma_done(ESPState *s)
231 {
232     s->rregs[ESP_RSTAT] |= STAT_TC;
233     s->rregs[ESP_RINTR] = INTR_BS;
234     s->rregs[ESP_RSEQ] = 0;
235     s->rregs[ESP_RFLAGS] = 0;
236     s->rregs[ESP_TCLO] = 0;
237     s->rregs[ESP_TCMID] = 0;
238     s->rregs[ESP_TCHI] = 0;
239     esp_raise_irq(s);
240 }
241 
242 static void esp_do_dma(ESPState *s)
243 {
244     uint32_t len;
245     int to_device;
246 
247     len = s->dma_left;
248     if (s->do_cmd) {
249         trace_esp_do_dma(s->cmdlen, len);
250         assert (s->cmdlen <= sizeof(s->cmdbuf) &&
251                 len <= sizeof(s->cmdbuf) - s->cmdlen);
252         s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
253         return;
254     }
255     if (s->async_len == 0) {
256         /* Defer until data is available.  */
257         return;
258     }
259     if (len > s->async_len) {
260         len = s->async_len;
261     }
262     to_device = (s->ti_size < 0);
263     if (to_device) {
264         s->dma_memory_read(s->dma_opaque, s->async_buf, len);
265     } else {
266         s->dma_memory_write(s->dma_opaque, s->async_buf, len);
267     }
268     s->dma_left -= len;
269     s->async_buf += len;
270     s->async_len -= len;
271     if (to_device)
272         s->ti_size += len;
273     else
274         s->ti_size -= len;
275     if (s->async_len == 0) {
276         scsi_req_continue(s->current_req);
277         /* If there is still data to be read from the device then
278            complete the DMA operation immediately.  Otherwise defer
279            until the scsi layer has completed.  */
280         if (to_device || s->dma_left != 0 || s->ti_size == 0) {
281             return;
282         }
283     }
284 
285     /* Partially filled a scsi buffer. Complete immediately.  */
286     esp_dma_done(s);
287 }
288 
289 void esp_command_complete(SCSIRequest *req, uint32_t status,
290                                  size_t resid)
291 {
292     ESPState *s = req->hba_private;
293 
294     trace_esp_command_complete();
295     if (s->ti_size != 0) {
296         trace_esp_command_complete_unexpected();
297     }
298     s->ti_size = 0;
299     s->dma_left = 0;
300     s->async_len = 0;
301     if (status) {
302         trace_esp_command_complete_fail();
303     }
304     s->status = status;
305     s->rregs[ESP_RSTAT] = STAT_ST;
306     esp_dma_done(s);
307     if (s->current_req) {
308         scsi_req_unref(s->current_req);
309         s->current_req = NULL;
310         s->current_dev = NULL;
311     }
312 }
313 
314 void esp_transfer_data(SCSIRequest *req, uint32_t len)
315 {
316     ESPState *s = req->hba_private;
317 
318     assert(!s->do_cmd);
319     trace_esp_transfer_data(s->dma_left, s->ti_size);
320     s->async_len = len;
321     s->async_buf = scsi_req_get_buf(req);
322     if (s->dma_left) {
323         esp_do_dma(s);
324     } else if (s->dma_counter != 0 && s->ti_size <= 0) {
325         /* If this was the last part of a DMA transfer then the
326            completion interrupt is deferred to here.  */
327         esp_dma_done(s);
328     }
329 }
330 
331 static void handle_ti(ESPState *s)
332 {
333     uint32_t dmalen, minlen;
334 
335     if (s->dma && !s->dma_enabled) {
336         s->dma_cb = handle_ti;
337         return;
338     }
339 
340     dmalen = s->rregs[ESP_TCLO];
341     dmalen |= s->rregs[ESP_TCMID] << 8;
342     dmalen |= s->rregs[ESP_TCHI] << 16;
343     if (dmalen==0) {
344       dmalen=0x10000;
345     }
346     s->dma_counter = dmalen;
347 
348     if (s->do_cmd)
349         minlen = (dmalen < ESP_CMDBUF_SZ) ? dmalen : ESP_CMDBUF_SZ;
350     else if (s->ti_size < 0)
351         minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
352     else
353         minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
354     trace_esp_handle_ti(minlen);
355     if (s->dma) {
356         s->dma_left = minlen;
357         s->rregs[ESP_RSTAT] &= ~STAT_TC;
358         esp_do_dma(s);
359     }
360     if (s->do_cmd) {
361         trace_esp_handle_ti_cmd(s->cmdlen);
362         s->ti_size = 0;
363         s->cmdlen = 0;
364         s->do_cmd = 0;
365         do_cmd(s, s->cmdbuf);
366     }
367 }
368 
369 void esp_hard_reset(ESPState *s)
370 {
371     memset(s->rregs, 0, ESP_REGS);
372     memset(s->wregs, 0, ESP_REGS);
373     s->tchi_written = 0;
374     s->ti_size = 0;
375     s->ti_rptr = 0;
376     s->ti_wptr = 0;
377     s->dma = 0;
378     s->do_cmd = 0;
379     s->dma_cb = NULL;
380 
381     s->rregs[ESP_CFG1] = 7;
382 }
383 
384 static void esp_soft_reset(ESPState *s)
385 {
386     qemu_irq_lower(s->irq);
387     esp_hard_reset(s);
388 }
389 
390 static void parent_esp_reset(ESPState *s, int irq, int level)
391 {
392     if (level) {
393         esp_soft_reset(s);
394     }
395 }
396 
397 uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
398 {
399     uint32_t old_val;
400 
401     trace_esp_mem_readb(saddr, s->rregs[saddr]);
402     switch (saddr) {
403     case ESP_FIFO:
404         if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
405             /* Data out.  */
406             qemu_log_mask(LOG_UNIMP, "esp: PIO data read not implemented\n");
407             s->rregs[ESP_FIFO] = 0;
408         } else if (s->ti_rptr < s->ti_wptr) {
409             s->ti_size--;
410             s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
411         }
412         if (s->ti_rptr == s->ti_wptr) {
413             s->ti_rptr = 0;
414             s->ti_wptr = 0;
415         }
416         break;
417     case ESP_RINTR:
418         /* Clear sequence step, interrupt register and all status bits
419            except TC */
420         old_val = s->rregs[ESP_RINTR];
421         s->rregs[ESP_RINTR] = 0;
422         s->rregs[ESP_RSTAT] &= ~STAT_TC;
423         s->rregs[ESP_RSEQ] = SEQ_CD;
424         esp_lower_irq(s);
425 
426         return old_val;
427     case ESP_TCHI:
428         /* Return the unique id if the value has never been written */
429         if (!s->tchi_written) {
430             return s->chip_id;
431         }
432     default:
433         break;
434     }
435     return s->rregs[saddr];
436 }
437 
438 void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
439 {
440     trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
441     switch (saddr) {
442     case ESP_TCHI:
443         s->tchi_written = true;
444         /* fall through */
445     case ESP_TCLO:
446     case ESP_TCMID:
447         s->rregs[ESP_RSTAT] &= ~STAT_TC;
448         break;
449     case ESP_FIFO:
450         if (s->do_cmd) {
451             if (s->cmdlen < ESP_CMDBUF_SZ) {
452                 s->cmdbuf[s->cmdlen++] = val & 0xff;
453             } else {
454                 trace_esp_error_fifo_overrun();
455             }
456         } else if (s->ti_wptr == TI_BUFSZ - 1) {
457             trace_esp_error_fifo_overrun();
458         } else {
459             s->ti_size++;
460             s->ti_buf[s->ti_wptr++] = val & 0xff;
461         }
462         break;
463     case ESP_CMD:
464         s->rregs[saddr] = val;
465         if (val & CMD_DMA) {
466             s->dma = 1;
467             /* Reload DMA counter.  */
468             s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
469             s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
470             s->rregs[ESP_TCHI] = s->wregs[ESP_TCHI];
471         } else {
472             s->dma = 0;
473         }
474         switch(val & CMD_CMD) {
475         case CMD_NOP:
476             trace_esp_mem_writeb_cmd_nop(val);
477             break;
478         case CMD_FLUSH:
479             trace_esp_mem_writeb_cmd_flush(val);
480             //s->ti_size = 0;
481             s->rregs[ESP_RINTR] = INTR_FC;
482             s->rregs[ESP_RSEQ] = 0;
483             s->rregs[ESP_RFLAGS] = 0;
484             break;
485         case CMD_RESET:
486             trace_esp_mem_writeb_cmd_reset(val);
487             esp_soft_reset(s);
488             break;
489         case CMD_BUSRESET:
490             trace_esp_mem_writeb_cmd_bus_reset(val);
491             s->rregs[ESP_RINTR] = INTR_RST;
492             if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
493                 esp_raise_irq(s);
494             }
495             break;
496         case CMD_TI:
497             handle_ti(s);
498             break;
499         case CMD_ICCS:
500             trace_esp_mem_writeb_cmd_iccs(val);
501             write_response(s);
502             s->rregs[ESP_RINTR] = INTR_FC;
503             s->rregs[ESP_RSTAT] |= STAT_MI;
504             break;
505         case CMD_MSGACC:
506             trace_esp_mem_writeb_cmd_msgacc(val);
507             s->rregs[ESP_RINTR] = INTR_DC;
508             s->rregs[ESP_RSEQ] = 0;
509             s->rregs[ESP_RFLAGS] = 0;
510             esp_raise_irq(s);
511             break;
512         case CMD_PAD:
513             trace_esp_mem_writeb_cmd_pad(val);
514             s->rregs[ESP_RSTAT] = STAT_TC;
515             s->rregs[ESP_RINTR] = INTR_FC;
516             s->rregs[ESP_RSEQ] = 0;
517             break;
518         case CMD_SATN:
519             trace_esp_mem_writeb_cmd_satn(val);
520             break;
521         case CMD_RSTATN:
522             trace_esp_mem_writeb_cmd_rstatn(val);
523             break;
524         case CMD_SEL:
525             trace_esp_mem_writeb_cmd_sel(val);
526             handle_s_without_atn(s);
527             break;
528         case CMD_SELATN:
529             trace_esp_mem_writeb_cmd_selatn(val);
530             handle_satn(s);
531             break;
532         case CMD_SELATNS:
533             trace_esp_mem_writeb_cmd_selatns(val);
534             handle_satn_stop(s);
535             break;
536         case CMD_ENSEL:
537             trace_esp_mem_writeb_cmd_ensel(val);
538             s->rregs[ESP_RINTR] = 0;
539             break;
540         case CMD_DISSEL:
541             trace_esp_mem_writeb_cmd_dissel(val);
542             s->rregs[ESP_RINTR] = 0;
543             esp_raise_irq(s);
544             break;
545         default:
546             trace_esp_error_unhandled_command(val);
547             break;
548         }
549         break;
550     case ESP_WBUSID ... ESP_WSYNO:
551         break;
552     case ESP_CFG1:
553     case ESP_CFG2: case ESP_CFG3:
554     case ESP_RES3: case ESP_RES4:
555         s->rregs[saddr] = val;
556         break;
557     case ESP_WCCF ... ESP_WTEST:
558         break;
559     default:
560         trace_esp_error_invalid_write(val, saddr);
561         return;
562     }
563     s->wregs[saddr] = val;
564 }
565 
566 static bool esp_mem_accepts(void *opaque, hwaddr addr,
567                             unsigned size, bool is_write,
568                             MemTxAttrs attrs)
569 {
570     return (size == 1) || (is_write && size == 4);
571 }
572 
573 const VMStateDescription vmstate_esp = {
574     .name ="esp",
575     .version_id = 4,
576     .minimum_version_id = 3,
577     .fields = (VMStateField[]) {
578         VMSTATE_BUFFER(rregs, ESPState),
579         VMSTATE_BUFFER(wregs, ESPState),
580         VMSTATE_INT32(ti_size, ESPState),
581         VMSTATE_UINT32(ti_rptr, ESPState),
582         VMSTATE_UINT32(ti_wptr, ESPState),
583         VMSTATE_BUFFER(ti_buf, ESPState),
584         VMSTATE_UINT32(status, ESPState),
585         VMSTATE_UINT32(dma, ESPState),
586         VMSTATE_PARTIAL_BUFFER(cmdbuf, ESPState, 16),
587         VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf, ESPState, 16, 4),
588         VMSTATE_UINT32(cmdlen, ESPState),
589         VMSTATE_UINT32(do_cmd, ESPState),
590         VMSTATE_UINT32(dma_left, ESPState),
591         VMSTATE_END_OF_LIST()
592     }
593 };
594 
595 static void sysbus_esp_mem_write(void *opaque, hwaddr addr,
596                                  uint64_t val, unsigned int size)
597 {
598     SysBusESPState *sysbus = opaque;
599     uint32_t saddr;
600 
601     saddr = addr >> sysbus->it_shift;
602     esp_reg_write(&sysbus->esp, saddr, val);
603 }
604 
605 static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr,
606                                     unsigned int size)
607 {
608     SysBusESPState *sysbus = opaque;
609     uint32_t saddr;
610 
611     saddr = addr >> sysbus->it_shift;
612     return esp_reg_read(&sysbus->esp, saddr);
613 }
614 
615 static const MemoryRegionOps sysbus_esp_mem_ops = {
616     .read = sysbus_esp_mem_read,
617     .write = sysbus_esp_mem_write,
618     .endianness = DEVICE_NATIVE_ENDIAN,
619     .valid.accepts = esp_mem_accepts,
620 };
621 
622 static const struct SCSIBusInfo esp_scsi_info = {
623     .tcq = false,
624     .max_target = ESP_MAX_DEVS,
625     .max_lun = 7,
626 
627     .transfer_data = esp_transfer_data,
628     .complete = esp_command_complete,
629     .cancel = esp_request_cancelled
630 };
631 
632 static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
633 {
634     SysBusESPState *sysbus = ESP_STATE(opaque);
635     ESPState *s = &sysbus->esp;
636 
637     switch (irq) {
638     case 0:
639         parent_esp_reset(s, irq, level);
640         break;
641     case 1:
642         esp_dma_enable(opaque, irq, level);
643         break;
644     }
645 }
646 
647 static void sysbus_esp_realize(DeviceState *dev, Error **errp)
648 {
649     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
650     SysBusESPState *sysbus = ESP_STATE(dev);
651     ESPState *s = &sysbus->esp;
652 
653     sysbus_init_irq(sbd, &s->irq);
654     assert(sysbus->it_shift != -1);
655 
656     s->chip_id = TCHI_FAS100A;
657     memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops,
658                           sysbus, "esp", ESP_REGS << sysbus->it_shift);
659     sysbus_init_mmio(sbd, &sysbus->iomem);
660 
661     qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2);
662 
663     scsi_bus_new(&s->bus, sizeof(s->bus), dev, &esp_scsi_info, NULL);
664 }
665 
666 static void sysbus_esp_hard_reset(DeviceState *dev)
667 {
668     SysBusESPState *sysbus = ESP_STATE(dev);
669     esp_hard_reset(&sysbus->esp);
670 }
671 
672 static const VMStateDescription vmstate_sysbus_esp_scsi = {
673     .name = "sysbusespscsi",
674     .version_id = 0,
675     .minimum_version_id = 0,
676     .fields = (VMStateField[]) {
677         VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
678         VMSTATE_END_OF_LIST()
679     }
680 };
681 
682 static void sysbus_esp_class_init(ObjectClass *klass, void *data)
683 {
684     DeviceClass *dc = DEVICE_CLASS(klass);
685 
686     dc->realize = sysbus_esp_realize;
687     dc->reset = sysbus_esp_hard_reset;
688     dc->vmsd = &vmstate_sysbus_esp_scsi;
689     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
690 }
691 
692 static const TypeInfo sysbus_esp_info = {
693     .name          = TYPE_ESP,
694     .parent        = TYPE_SYS_BUS_DEVICE,
695     .instance_size = sizeof(SysBusESPState),
696     .class_init    = sysbus_esp_class_init,
697 };
698 
699 static void esp_register_types(void)
700 {
701     type_register_static(&sysbus_esp_info);
702 }
703 
704 type_init(esp_register_types)
705