1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "cpu.h" 18 #include "sysemu/kvm.h" 19 #include "exec/memory.h" 20 #include "sysemu/sysemu.h" 21 #include "exec/address-spaces.h" 22 #include "hw/boards.h" 23 #include "hw/s390x/sclp.h" 24 #include "hw/s390x/event-facility.h" 25 #include "hw/s390x/s390-pci-bus.h" 26 27 static inline SCLPDevice *get_sclp_device(void) 28 { 29 static SCLPDevice *sclp; 30 31 if (!sclp) { 32 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 33 } 34 return sclp; 35 } 36 37 /* Provide information about the configuration, CPUs and storage */ 38 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 39 { 40 ReadInfo *read_info = (ReadInfo *) sccb; 41 MachineState *machine = MACHINE(qdev_get_machine()); 42 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 43 CPUState *cpu; 44 int cpu_count = 0; 45 int i = 0; 46 int rnsize, rnmax; 47 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 48 49 CPU_FOREACH(cpu) { 50 cpu_count++; 51 } 52 53 /* CPU information */ 54 read_info->entries_cpu = cpu_to_be16(cpu_count); 55 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 56 read_info->highest_cpu = cpu_to_be16(max_cpus); 57 58 for (i = 0; i < cpu_count; i++) { 59 read_info->entries[i].address = i; 60 read_info->entries[i].type = 0; 61 } 62 63 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 64 SCLP_HAS_PCI_RECONFIG); 65 66 /* Memory Hotplug is only supported for the ccw machine type */ 67 if (mhd) { 68 mhd->standby_subregion_size = MEM_SECTION_SIZE; 69 /* Deduct the memory slot already used for core */ 70 if (slots > 0) { 71 while ((mhd->standby_subregion_size * (slots - 1) 72 < mhd->standby_mem_size)) { 73 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 74 } 75 } 76 /* 77 * Initialize mapping of guest standby memory sections indicating which 78 * are and are not online. Assume all standby memory begins offline. 79 */ 80 if (mhd->standby_state_map == 0) { 81 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 82 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 83 mhd->standby_subregion_size + 1) * 84 (mhd->standby_subregion_size / 85 MEM_SECTION_SIZE)); 86 } else { 87 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 88 MEM_SECTION_SIZE); 89 } 90 } 91 mhd->padded_ram_size = ram_size + mhd->pad_size; 92 mhd->rzm = 1 << mhd->increment_size; 93 94 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 95 } 96 97 rnsize = 1 << (sclp->increment_size - 20); 98 if (rnsize <= 128) { 99 read_info->rnsize = rnsize; 100 } else { 101 read_info->rnsize = 0; 102 read_info->rnsize2 = cpu_to_be32(rnsize); 103 } 104 105 rnmax = machine->maxram_size >> sclp->increment_size; 106 if (rnmax < 0x10000) { 107 read_info->rnmax = cpu_to_be16(rnmax); 108 } else { 109 read_info->rnmax = cpu_to_be16(0); 110 read_info->rnmax2 = cpu_to_be64(rnmax); 111 } 112 113 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 114 } 115 116 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 117 { 118 int i, assigned; 119 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 120 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 121 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 122 123 if (!mhd) { 124 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 125 return; 126 } 127 128 if ((ram_size >> mhd->increment_size) >= 0x10000) { 129 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 130 return; 131 } 132 133 /* Return information regarding core memory */ 134 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 135 assigned = ram_size >> mhd->increment_size; 136 storage_info->assigned = cpu_to_be16(assigned); 137 138 for (i = 0; i < assigned; i++) { 139 storage_info->entries[i] = cpu_to_be32(subincrement_id); 140 subincrement_id += SCLP_INCREMENT_UNIT; 141 } 142 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 143 } 144 145 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 146 { 147 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 148 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 149 150 if (!mhd) { 151 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 152 return; 153 } 154 155 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 156 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 157 return; 158 } 159 160 /* Return information regarding standby memory */ 161 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 162 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 163 mhd->increment_size); 164 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 165 mhd->increment_size); 166 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 167 } 168 169 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 170 uint16_t element) 171 { 172 int i, assigned, subincrement_id; 173 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 174 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 175 176 if (!mhd) { 177 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 178 return; 179 } 180 181 if (element != 1) { 182 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 183 return; 184 } 185 186 assigned = mhd->standby_mem_size >> mhd->increment_size; 187 attach_info->assigned = cpu_to_be16(assigned); 188 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 189 + SCLP_STARTING_SUBINCREMENT_ID; 190 for (i = 0; i < assigned; i++) { 191 attach_info->entries[i] = cpu_to_be32(subincrement_id); 192 subincrement_id += SCLP_INCREMENT_UNIT; 193 } 194 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 195 } 196 197 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 198 { 199 MemoryRegion *mr = NULL; 200 uint64_t this_subregion_size; 201 AssignStorage *assign_info = (AssignStorage *) sccb; 202 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 203 ram_addr_t assign_addr; 204 MemoryRegion *sysmem = get_system_memory(); 205 206 if (!mhd) { 207 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 208 return; 209 } 210 assign_addr = (assign_info->rn - 1) * mhd->rzm; 211 212 if ((assign_addr % MEM_SECTION_SIZE == 0) && 213 (assign_addr >= mhd->padded_ram_size)) { 214 /* Re-use existing memory region if found */ 215 mr = memory_region_find(sysmem, assign_addr, 1).mr; 216 memory_region_unref(mr); 217 if (!mr) { 218 219 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 220 221 /* offset to align to standby_subregion_size for allocation */ 222 ram_addr_t offset = assign_addr - 223 (assign_addr - mhd->padded_ram_size) 224 % mhd->standby_subregion_size; 225 226 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 227 char id[16]; 228 snprintf(id, 16, "standby.ram%d", 229 (int)((offset - mhd->padded_ram_size) / 230 mhd->standby_subregion_size) + 1); 231 232 /* Allocate a subregion of the calculated standby_subregion_size */ 233 if (offset + mhd->standby_subregion_size > 234 mhd->padded_ram_size + mhd->standby_mem_size) { 235 this_subregion_size = mhd->padded_ram_size + 236 mhd->standby_mem_size - offset; 237 } else { 238 this_subregion_size = mhd->standby_subregion_size; 239 } 240 241 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 242 &error_fatal); 243 /* This is a hack to make memory hotunplug work again. Once we have 244 * subdevices, we have to unparent them when unassigning memory, 245 * instead of doing it via the ref count of the MemoryRegion. */ 246 object_ref(OBJECT(standby_ram)); 247 object_unparent(OBJECT(standby_ram)); 248 vmstate_register_ram_global(standby_ram); 249 memory_region_add_subregion(sysmem, offset, standby_ram); 250 } 251 /* The specified subregion is no longer in standby */ 252 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 253 / MEM_SECTION_SIZE] = 1; 254 } 255 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 256 } 257 258 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 259 { 260 MemoryRegion *mr = NULL; 261 AssignStorage *assign_info = (AssignStorage *) sccb; 262 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 263 ram_addr_t unassign_addr; 264 MemoryRegion *sysmem = get_system_memory(); 265 266 if (!mhd) { 267 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 268 return; 269 } 270 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 271 272 /* if the addr is a multiple of 256 MB */ 273 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 274 (unassign_addr >= mhd->padded_ram_size)) { 275 mhd->standby_state_map[(unassign_addr - 276 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 277 278 /* find the specified memory region and destroy it */ 279 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 280 memory_region_unref(mr); 281 if (mr) { 282 int i; 283 int is_removable = 1; 284 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 285 (unassign_addr - mhd->padded_ram_size) 286 % mhd->standby_subregion_size); 287 /* Mark all affected subregions as 'standby' once again */ 288 for (i = 0; 289 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 290 i++) { 291 292 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 293 is_removable = 0; 294 break; 295 } 296 } 297 if (is_removable) { 298 memory_region_del_subregion(sysmem, mr); 299 object_unref(OBJECT(mr)); 300 } 301 } 302 } 303 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 304 } 305 306 /* Provide information about the CPU */ 307 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 308 { 309 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 310 CPUState *cpu; 311 int cpu_count = 0; 312 int i = 0; 313 314 CPU_FOREACH(cpu) { 315 cpu_count++; 316 } 317 318 cpu_info->nr_configured = cpu_to_be16(cpu_count); 319 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 320 cpu_info->nr_standby = cpu_to_be16(0); 321 322 /* The standby offset is 16-byte for each CPU */ 323 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 324 + cpu_info->nr_configured*sizeof(CPUEntry)); 325 326 for (i = 0; i < cpu_count; i++) { 327 cpu_info->entries[i].address = i; 328 cpu_info->entries[i].type = 0; 329 } 330 331 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 332 } 333 334 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 335 { 336 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 337 SCLPEventFacility *ef = sclp->event_facility; 338 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 339 340 switch (code & SCLP_CMD_CODE_MASK) { 341 case SCLP_CMDW_READ_SCP_INFO: 342 case SCLP_CMDW_READ_SCP_INFO_FORCED: 343 sclp_c->read_SCP_info(sclp, sccb); 344 break; 345 case SCLP_CMDW_READ_CPU_INFO: 346 sclp_c->read_cpu_info(sclp, sccb); 347 break; 348 case SCLP_READ_STORAGE_ELEMENT_INFO: 349 if (code & 0xff00) { 350 sclp_c->read_storage_element1_info(sclp, sccb); 351 } else { 352 sclp_c->read_storage_element0_info(sclp, sccb); 353 } 354 break; 355 case SCLP_ATTACH_STORAGE_ELEMENT: 356 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 357 break; 358 case SCLP_ASSIGN_STORAGE: 359 sclp_c->assign_storage(sclp, sccb); 360 break; 361 case SCLP_UNASSIGN_STORAGE: 362 sclp_c->unassign_storage(sclp, sccb); 363 break; 364 case SCLP_CMDW_CONFIGURE_PCI: 365 s390_pci_sclp_configure(sccb); 366 break; 367 case SCLP_CMDW_DECONFIGURE_PCI: 368 s390_pci_sclp_deconfigure(sccb); 369 break; 370 default: 371 efc->command_handler(ef, sccb, code); 372 break; 373 } 374 } 375 376 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 377 { 378 SCLPDevice *sclp = get_sclp_device(); 379 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 380 int r = 0; 381 SCCB work_sccb; 382 383 hwaddr sccb_len = sizeof(SCCB); 384 385 /* first some basic checks on program checks */ 386 if (env->psw.mask & PSW_MASK_PSTATE) { 387 r = -PGM_PRIVILEGED; 388 goto out; 389 } 390 if (cpu_physical_memory_is_io(sccb)) { 391 r = -PGM_ADDRESSING; 392 goto out; 393 } 394 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 395 || (sccb & ~0x7ffffff8UL) != 0) { 396 r = -PGM_SPECIFICATION; 397 goto out; 398 } 399 400 /* 401 * we want to work on a private copy of the sccb, to prevent guests 402 * from playing dirty tricks by modifying the memory content after 403 * the host has checked the values 404 */ 405 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 406 407 /* Valid sccb sizes */ 408 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 409 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 410 r = -PGM_SPECIFICATION; 411 goto out; 412 } 413 414 sclp_c->execute(sclp, (SCCB *)&work_sccb, code); 415 416 cpu_physical_memory_write(sccb, &work_sccb, 417 be16_to_cpu(work_sccb.h.length)); 418 419 sclp_c->service_interrupt(sclp, sccb); 420 421 out: 422 return r; 423 } 424 425 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 426 { 427 SCLPEventFacility *ef = sclp->event_facility; 428 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 429 430 uint32_t param = sccb & ~3; 431 432 /* Indicate whether an event is still pending */ 433 param |= efc->event_pending(ef) ? 1 : 0; 434 435 if (!param) { 436 /* No need to send an interrupt, there's nothing to be notified about */ 437 return; 438 } 439 s390_sclp_extint(param); 440 } 441 442 void sclp_service_interrupt(uint32_t sccb) 443 { 444 SCLPDevice *sclp = get_sclp_device(); 445 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 446 447 sclp_c->service_interrupt(sclp, sccb); 448 } 449 450 /* qemu object creation and initialization functions */ 451 452 void s390_sclp_init(void) 453 { 454 Object *new = object_new(TYPE_SCLP); 455 456 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 457 NULL); 458 object_unref(OBJECT(new)); 459 qdev_init_nofail(DEVICE(new)); 460 } 461 462 static void sclp_realize(DeviceState *dev, Error **errp) 463 { 464 MachineState *machine = MACHINE(qdev_get_machine()); 465 SCLPDevice *sclp = SCLP(dev); 466 Error *err = NULL; 467 uint64_t hw_limit; 468 int ret; 469 470 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 471 &err); 472 if (err) { 473 goto out; 474 } 475 /* 476 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long 477 * as we can't find a fitting bus via the qom tree, we have to add the 478 * event facility to the sysbus, so e.g. a sclp console can be created. 479 */ 480 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); 481 482 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 483 if (ret == -E2BIG) { 484 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 485 hw_limit >> 30); 486 } else if (ret) { 487 error_setg(&err, "qemu: setting the guest size failed"); 488 } 489 490 out: 491 error_propagate(errp, err); 492 } 493 494 static void sclp_memory_init(SCLPDevice *sclp) 495 { 496 MachineState *machine = MACHINE(qdev_get_machine()); 497 ram_addr_t initial_mem = machine->ram_size; 498 ram_addr_t max_mem = machine->maxram_size; 499 ram_addr_t standby_mem = max_mem - initial_mem; 500 ram_addr_t pad_mem = 0; 501 int increment_size = 20; 502 503 /* The storage increment size is a multiple of 1M and is a power of 2. 504 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 505 * The variable 'increment_size' is an exponent of 2 that can be 506 * used to calculate the size (in bytes) of an increment. */ 507 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 508 increment_size++; 509 } 510 if (machine->ram_slots) { 511 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 512 increment_size++; 513 } 514 } 515 sclp->increment_size = increment_size; 516 517 /* The core and standby memory areas need to be aligned with 518 * the increment size. In effect, this can cause the 519 * user-specified memory size to be rounded down to align 520 * with the nearest increment boundary. */ 521 initial_mem = initial_mem >> increment_size << increment_size; 522 standby_mem = standby_mem >> increment_size << increment_size; 523 524 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 525 calculate the pad size necessary to force this boundary. */ 526 if (machine->ram_slots && standby_mem) { 527 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 528 529 if (initial_mem % MEM_SECTION_SIZE) { 530 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 531 } 532 mhd->increment_size = increment_size; 533 mhd->pad_size = pad_mem; 534 mhd->standby_mem_size = standby_mem; 535 } 536 machine->ram_size = initial_mem; 537 machine->maxram_size = initial_mem + pad_mem + standby_mem; 538 /* let's propagate the changed ram size into the global variable. */ 539 ram_size = initial_mem; 540 } 541 542 static void sclp_init(Object *obj) 543 { 544 SCLPDevice *sclp = SCLP(obj); 545 Object *new; 546 547 new = object_new(TYPE_SCLP_EVENT_FACILITY); 548 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 549 object_unref(new); 550 sclp->event_facility = EVENT_FACILITY(new); 551 552 sclp_memory_init(sclp); 553 } 554 555 static void sclp_class_init(ObjectClass *oc, void *data) 556 { 557 SCLPDeviceClass *sc = SCLP_CLASS(oc); 558 DeviceClass *dc = DEVICE_CLASS(oc); 559 560 dc->desc = "SCLP (Service-Call Logical Processor)"; 561 dc->realize = sclp_realize; 562 dc->hotpluggable = false; 563 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 564 565 sc->read_SCP_info = read_SCP_info; 566 sc->read_storage_element0_info = read_storage_element0_info; 567 sc->read_storage_element1_info = read_storage_element1_info; 568 sc->attach_storage_element = attach_storage_element; 569 sc->assign_storage = assign_storage; 570 sc->unassign_storage = unassign_storage; 571 sc->read_cpu_info = sclp_read_cpu_info; 572 sc->execute = sclp_execute; 573 sc->service_interrupt = service_interrupt; 574 } 575 576 static TypeInfo sclp_info = { 577 .name = TYPE_SCLP, 578 .parent = TYPE_DEVICE, 579 .instance_init = sclp_init, 580 .instance_size = sizeof(SCLPDevice), 581 .class_init = sclp_class_init, 582 .class_size = sizeof(SCLPDeviceClass), 583 }; 584 585 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 586 { 587 DeviceState *dev; 588 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 589 object_property_add_child(qdev_get_machine(), 590 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 591 OBJECT(dev), NULL); 592 qdev_init_nofail(dev); 593 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 594 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 595 } 596 597 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 598 { 599 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 600 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 601 } 602 603 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 604 void *data) 605 { 606 DeviceClass *dc = DEVICE_CLASS(klass); 607 608 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 609 } 610 611 static TypeInfo sclp_memory_hotplug_dev_info = { 612 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 613 .parent = TYPE_SYS_BUS_DEVICE, 614 .instance_size = sizeof(sclpMemoryHotplugDev), 615 .class_init = sclp_memory_hotplug_dev_class_init, 616 }; 617 618 static void register_types(void) 619 { 620 type_register_static(&sclp_memory_hotplug_dev_info); 621 type_register_static(&sclp_info); 622 } 623 type_init(register_types); 624