1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "cpu.h" 18 #include "sysemu/kvm.h" 19 #include "exec/memory.h" 20 #include "sysemu/sysemu.h" 21 #include "exec/address-spaces.h" 22 #include "hw/boards.h" 23 #include "hw/s390x/sclp.h" 24 #include "hw/s390x/event-facility.h" 25 #include "hw/s390x/s390-pci-bus.h" 26 27 static inline SCLPDevice *get_sclp_device(void) 28 { 29 static SCLPDevice *sclp; 30 31 if (!sclp) { 32 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 33 } 34 return sclp; 35 } 36 37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count) 38 { 39 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 }; 40 int i; 41 42 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features); 43 for (i = 0; i < count; i++) { 44 entry[i].address = i; 45 entry[i].type = 0; 46 memcpy(entry[i].features, features, sizeof(entry[i].features)); 47 } 48 } 49 50 /* Provide information about the configuration, CPUs and storage */ 51 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 52 { 53 ReadInfo *read_info = (ReadInfo *) sccb; 54 MachineState *machine = MACHINE(qdev_get_machine()); 55 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 56 CPUState *cpu; 57 int cpu_count = 0; 58 int rnsize, rnmax; 59 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 60 61 CPU_FOREACH(cpu) { 62 cpu_count++; 63 } 64 65 /* CPU information */ 66 read_info->entries_cpu = cpu_to_be16(cpu_count); 67 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 68 read_info->highest_cpu = cpu_to_be16(max_cpus); 69 70 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val()); 71 72 /* Configuration Characteristic (Extension) */ 73 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR, 74 read_info->conf_char); 75 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 76 read_info->conf_char_ext); 77 78 prepare_cpu_entries(sclp, read_info->entries, cpu_count); 79 80 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 81 SCLP_HAS_PCI_RECONFIG); 82 83 /* Memory Hotplug is only supported for the ccw machine type */ 84 if (mhd) { 85 mhd->standby_subregion_size = MEM_SECTION_SIZE; 86 /* Deduct the memory slot already used for core */ 87 if (slots > 0) { 88 while ((mhd->standby_subregion_size * (slots - 1) 89 < mhd->standby_mem_size)) { 90 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 91 } 92 } 93 /* 94 * Initialize mapping of guest standby memory sections indicating which 95 * are and are not online. Assume all standby memory begins offline. 96 */ 97 if (mhd->standby_state_map == 0) { 98 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 99 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 100 mhd->standby_subregion_size + 1) * 101 (mhd->standby_subregion_size / 102 MEM_SECTION_SIZE)); 103 } else { 104 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 105 MEM_SECTION_SIZE); 106 } 107 } 108 mhd->padded_ram_size = ram_size + mhd->pad_size; 109 mhd->rzm = 1 << mhd->increment_size; 110 111 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 112 } 113 read_info->mha_pow = s390_get_mha_pow(); 114 read_info->hmfai = cpu_to_be32(s390_get_hmfai()); 115 116 rnsize = 1 << (sclp->increment_size - 20); 117 if (rnsize <= 128) { 118 read_info->rnsize = rnsize; 119 } else { 120 read_info->rnsize = 0; 121 read_info->rnsize2 = cpu_to_be32(rnsize); 122 } 123 124 rnmax = machine->maxram_size >> sclp->increment_size; 125 if (rnmax < 0x10000) { 126 read_info->rnmax = cpu_to_be16(rnmax); 127 } else { 128 read_info->rnmax = cpu_to_be16(0); 129 read_info->rnmax2 = cpu_to_be64(rnmax); 130 } 131 132 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 133 } 134 135 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 136 { 137 int i, assigned; 138 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 139 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 140 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 141 142 if (!mhd) { 143 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 144 return; 145 } 146 147 if ((ram_size >> mhd->increment_size) >= 0x10000) { 148 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 149 return; 150 } 151 152 /* Return information regarding core memory */ 153 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 154 assigned = ram_size >> mhd->increment_size; 155 storage_info->assigned = cpu_to_be16(assigned); 156 157 for (i = 0; i < assigned; i++) { 158 storage_info->entries[i] = cpu_to_be32(subincrement_id); 159 subincrement_id += SCLP_INCREMENT_UNIT; 160 } 161 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 162 } 163 164 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 165 { 166 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 167 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 168 169 if (!mhd) { 170 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 171 return; 172 } 173 174 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 175 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 176 return; 177 } 178 179 /* Return information regarding standby memory */ 180 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 181 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 182 mhd->increment_size); 183 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 184 mhd->increment_size); 185 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 186 } 187 188 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 189 uint16_t element) 190 { 191 int i, assigned, subincrement_id; 192 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 193 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 194 195 if (!mhd) { 196 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 197 return; 198 } 199 200 if (element != 1) { 201 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 202 return; 203 } 204 205 assigned = mhd->standby_mem_size >> mhd->increment_size; 206 attach_info->assigned = cpu_to_be16(assigned); 207 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 208 + SCLP_STARTING_SUBINCREMENT_ID; 209 for (i = 0; i < assigned; i++) { 210 attach_info->entries[i] = cpu_to_be32(subincrement_id); 211 subincrement_id += SCLP_INCREMENT_UNIT; 212 } 213 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 214 } 215 216 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 217 { 218 MemoryRegion *mr = NULL; 219 uint64_t this_subregion_size; 220 AssignStorage *assign_info = (AssignStorage *) sccb; 221 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 222 ram_addr_t assign_addr; 223 MemoryRegion *sysmem = get_system_memory(); 224 225 if (!mhd) { 226 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 227 return; 228 } 229 assign_addr = (assign_info->rn - 1) * mhd->rzm; 230 231 if ((assign_addr % MEM_SECTION_SIZE == 0) && 232 (assign_addr >= mhd->padded_ram_size)) { 233 /* Re-use existing memory region if found */ 234 mr = memory_region_find(sysmem, assign_addr, 1).mr; 235 memory_region_unref(mr); 236 if (!mr) { 237 238 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 239 240 /* offset to align to standby_subregion_size for allocation */ 241 ram_addr_t offset = assign_addr - 242 (assign_addr - mhd->padded_ram_size) 243 % mhd->standby_subregion_size; 244 245 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 246 char id[16]; 247 snprintf(id, 16, "standby.ram%d", 248 (int)((offset - mhd->padded_ram_size) / 249 mhd->standby_subregion_size) + 1); 250 251 /* Allocate a subregion of the calculated standby_subregion_size */ 252 if (offset + mhd->standby_subregion_size > 253 mhd->padded_ram_size + mhd->standby_mem_size) { 254 this_subregion_size = mhd->padded_ram_size + 255 mhd->standby_mem_size - offset; 256 } else { 257 this_subregion_size = mhd->standby_subregion_size; 258 } 259 260 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 261 &error_fatal); 262 /* This is a hack to make memory hotunplug work again. Once we have 263 * subdevices, we have to unparent them when unassigning memory, 264 * instead of doing it via the ref count of the MemoryRegion. */ 265 object_ref(OBJECT(standby_ram)); 266 object_unparent(OBJECT(standby_ram)); 267 vmstate_register_ram_global(standby_ram); 268 memory_region_add_subregion(sysmem, offset, standby_ram); 269 } 270 /* The specified subregion is no longer in standby */ 271 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 272 / MEM_SECTION_SIZE] = 1; 273 } 274 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 275 } 276 277 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 278 { 279 MemoryRegion *mr = NULL; 280 AssignStorage *assign_info = (AssignStorage *) sccb; 281 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 282 ram_addr_t unassign_addr; 283 MemoryRegion *sysmem = get_system_memory(); 284 285 if (!mhd) { 286 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 287 return; 288 } 289 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 290 291 /* if the addr is a multiple of 256 MB */ 292 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 293 (unassign_addr >= mhd->padded_ram_size)) { 294 mhd->standby_state_map[(unassign_addr - 295 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 296 297 /* find the specified memory region and destroy it */ 298 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 299 memory_region_unref(mr); 300 if (mr) { 301 int i; 302 int is_removable = 1; 303 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 304 (unassign_addr - mhd->padded_ram_size) 305 % mhd->standby_subregion_size); 306 /* Mark all affected subregions as 'standby' once again */ 307 for (i = 0; 308 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 309 i++) { 310 311 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 312 is_removable = 0; 313 break; 314 } 315 } 316 if (is_removable) { 317 memory_region_del_subregion(sysmem, mr); 318 object_unref(OBJECT(mr)); 319 } 320 } 321 } 322 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 323 } 324 325 /* Provide information about the CPU */ 326 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 327 { 328 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 329 CPUState *cpu; 330 int cpu_count = 0; 331 332 CPU_FOREACH(cpu) { 333 cpu_count++; 334 } 335 336 cpu_info->nr_configured = cpu_to_be16(cpu_count); 337 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 338 cpu_info->nr_standby = cpu_to_be16(0); 339 340 /* The standby offset is 16-byte for each CPU */ 341 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 342 + cpu_info->nr_configured*sizeof(CPUEntry)); 343 344 prepare_cpu_entries(sclp, cpu_info->entries, cpu_count); 345 346 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 347 } 348 349 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 350 { 351 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 352 SCLPEventFacility *ef = sclp->event_facility; 353 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 354 355 switch (code & SCLP_CMD_CODE_MASK) { 356 case SCLP_CMDW_READ_SCP_INFO: 357 case SCLP_CMDW_READ_SCP_INFO_FORCED: 358 sclp_c->read_SCP_info(sclp, sccb); 359 break; 360 case SCLP_CMDW_READ_CPU_INFO: 361 sclp_c->read_cpu_info(sclp, sccb); 362 break; 363 case SCLP_READ_STORAGE_ELEMENT_INFO: 364 if (code & 0xff00) { 365 sclp_c->read_storage_element1_info(sclp, sccb); 366 } else { 367 sclp_c->read_storage_element0_info(sclp, sccb); 368 } 369 break; 370 case SCLP_ATTACH_STORAGE_ELEMENT: 371 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 372 break; 373 case SCLP_ASSIGN_STORAGE: 374 sclp_c->assign_storage(sclp, sccb); 375 break; 376 case SCLP_UNASSIGN_STORAGE: 377 sclp_c->unassign_storage(sclp, sccb); 378 break; 379 case SCLP_CMDW_CONFIGURE_PCI: 380 s390_pci_sclp_configure(sccb); 381 break; 382 case SCLP_CMDW_DECONFIGURE_PCI: 383 s390_pci_sclp_deconfigure(sccb); 384 break; 385 default: 386 efc->command_handler(ef, sccb, code); 387 break; 388 } 389 } 390 391 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 392 { 393 SCLPDevice *sclp = get_sclp_device(); 394 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 395 int r = 0; 396 SCCB work_sccb; 397 398 hwaddr sccb_len = sizeof(SCCB); 399 400 /* first some basic checks on program checks */ 401 if (env->psw.mask & PSW_MASK_PSTATE) { 402 r = -PGM_PRIVILEGED; 403 goto out; 404 } 405 if (cpu_physical_memory_is_io(sccb)) { 406 r = -PGM_ADDRESSING; 407 goto out; 408 } 409 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 410 || (sccb & ~0x7ffffff8UL) != 0) { 411 r = -PGM_SPECIFICATION; 412 goto out; 413 } 414 415 /* 416 * we want to work on a private copy of the sccb, to prevent guests 417 * from playing dirty tricks by modifying the memory content after 418 * the host has checked the values 419 */ 420 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 421 422 /* Valid sccb sizes */ 423 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 424 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 425 r = -PGM_SPECIFICATION; 426 goto out; 427 } 428 429 sclp_c->execute(sclp, (SCCB *)&work_sccb, code); 430 431 cpu_physical_memory_write(sccb, &work_sccb, 432 be16_to_cpu(work_sccb.h.length)); 433 434 sclp_c->service_interrupt(sclp, sccb); 435 436 out: 437 return r; 438 } 439 440 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 441 { 442 SCLPEventFacility *ef = sclp->event_facility; 443 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 444 445 uint32_t param = sccb & ~3; 446 447 /* Indicate whether an event is still pending */ 448 param |= efc->event_pending(ef) ? 1 : 0; 449 450 if (!param) { 451 /* No need to send an interrupt, there's nothing to be notified about */ 452 return; 453 } 454 s390_sclp_extint(param); 455 } 456 457 void sclp_service_interrupt(uint32_t sccb) 458 { 459 SCLPDevice *sclp = get_sclp_device(); 460 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 461 462 sclp_c->service_interrupt(sclp, sccb); 463 } 464 465 /* qemu object creation and initialization functions */ 466 467 void s390_sclp_init(void) 468 { 469 Object *new = object_new(TYPE_SCLP); 470 471 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 472 NULL); 473 object_unref(OBJECT(new)); 474 qdev_init_nofail(DEVICE(new)); 475 } 476 477 static void sclp_realize(DeviceState *dev, Error **errp) 478 { 479 MachineState *machine = MACHINE(qdev_get_machine()); 480 SCLPDevice *sclp = SCLP(dev); 481 Error *err = NULL; 482 uint64_t hw_limit; 483 int ret; 484 485 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 486 &err); 487 if (err) { 488 goto out; 489 } 490 /* 491 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long 492 * as we can't find a fitting bus via the qom tree, we have to add the 493 * event facility to the sysbus, so e.g. a sclp console can be created. 494 */ 495 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); 496 497 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 498 if (ret == -E2BIG) { 499 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 500 hw_limit >> 30); 501 } else if (ret) { 502 error_setg(&err, "qemu: setting the guest size failed"); 503 } 504 505 out: 506 error_propagate(errp, err); 507 } 508 509 static void sclp_memory_init(SCLPDevice *sclp) 510 { 511 MachineState *machine = MACHINE(qdev_get_machine()); 512 ram_addr_t initial_mem = machine->ram_size; 513 ram_addr_t max_mem = machine->maxram_size; 514 ram_addr_t standby_mem = max_mem - initial_mem; 515 ram_addr_t pad_mem = 0; 516 int increment_size = 20; 517 518 /* The storage increment size is a multiple of 1M and is a power of 2. 519 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 520 * The variable 'increment_size' is an exponent of 2 that can be 521 * used to calculate the size (in bytes) of an increment. */ 522 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 523 increment_size++; 524 } 525 if (machine->ram_slots) { 526 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 527 increment_size++; 528 } 529 } 530 sclp->increment_size = increment_size; 531 532 /* The core and standby memory areas need to be aligned with 533 * the increment size. In effect, this can cause the 534 * user-specified memory size to be rounded down to align 535 * with the nearest increment boundary. */ 536 initial_mem = initial_mem >> increment_size << increment_size; 537 standby_mem = standby_mem >> increment_size << increment_size; 538 539 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 540 calculate the pad size necessary to force this boundary. */ 541 if (machine->ram_slots && standby_mem) { 542 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 543 544 if (initial_mem % MEM_SECTION_SIZE) { 545 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 546 } 547 mhd->increment_size = increment_size; 548 mhd->pad_size = pad_mem; 549 mhd->standby_mem_size = standby_mem; 550 } 551 machine->ram_size = initial_mem; 552 machine->maxram_size = initial_mem + pad_mem + standby_mem; 553 /* let's propagate the changed ram size into the global variable. */ 554 ram_size = initial_mem; 555 } 556 557 static void sclp_init(Object *obj) 558 { 559 SCLPDevice *sclp = SCLP(obj); 560 Object *new; 561 562 new = object_new(TYPE_SCLP_EVENT_FACILITY); 563 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 564 object_unref(new); 565 sclp->event_facility = EVENT_FACILITY(new); 566 567 sclp_memory_init(sclp); 568 } 569 570 static void sclp_class_init(ObjectClass *oc, void *data) 571 { 572 SCLPDeviceClass *sc = SCLP_CLASS(oc); 573 DeviceClass *dc = DEVICE_CLASS(oc); 574 575 dc->desc = "SCLP (Service-Call Logical Processor)"; 576 dc->realize = sclp_realize; 577 dc->hotpluggable = false; 578 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 579 580 sc->read_SCP_info = read_SCP_info; 581 sc->read_storage_element0_info = read_storage_element0_info; 582 sc->read_storage_element1_info = read_storage_element1_info; 583 sc->attach_storage_element = attach_storage_element; 584 sc->assign_storage = assign_storage; 585 sc->unassign_storage = unassign_storage; 586 sc->read_cpu_info = sclp_read_cpu_info; 587 sc->execute = sclp_execute; 588 sc->service_interrupt = service_interrupt; 589 } 590 591 static TypeInfo sclp_info = { 592 .name = TYPE_SCLP, 593 .parent = TYPE_DEVICE, 594 .instance_init = sclp_init, 595 .instance_size = sizeof(SCLPDevice), 596 .class_init = sclp_class_init, 597 .class_size = sizeof(SCLPDeviceClass), 598 }; 599 600 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 601 { 602 DeviceState *dev; 603 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 604 object_property_add_child(qdev_get_machine(), 605 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 606 OBJECT(dev), NULL); 607 qdev_init_nofail(dev); 608 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 609 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 610 } 611 612 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 613 { 614 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 615 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 616 } 617 618 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 619 void *data) 620 { 621 DeviceClass *dc = DEVICE_CLASS(klass); 622 623 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 624 } 625 626 static TypeInfo sclp_memory_hotplug_dev_info = { 627 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 628 .parent = TYPE_SYS_BUS_DEVICE, 629 .instance_size = sizeof(sclpMemoryHotplugDev), 630 .class_init = sclp_memory_hotplug_dev_class_init, 631 }; 632 633 static void register_types(void) 634 { 635 type_register_static(&sclp_memory_hotplug_dev_info); 636 type_register_static(&sclp_info); 637 } 638 type_init(register_types); 639