xref: /openbmc/qemu/hw/s390x/sclp.c (revision e09484ef)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "sysemu/kvm.h"
19 #include "exec/memory.h"
20 #include "sysemu/sysemu.h"
21 #include "exec/address-spaces.h"
22 #include "hw/boards.h"
23 #include "hw/s390x/sclp.h"
24 #include "hw/s390x/event-facility.h"
25 #include "hw/s390x/s390-pci-bus.h"
26 
27 static inline SCLPDevice *get_sclp_device(void)
28 {
29     static SCLPDevice *sclp;
30 
31     if (!sclp) {
32         sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
33     }
34     return sclp;
35 }
36 
37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
38 {
39     uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
40     int i;
41 
42     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
43     for (i = 0; i < count; i++) {
44         entry[i].address = i;
45         entry[i].type = 0;
46         memcpy(entry[i].features, features, sizeof(entry[i].features));
47     }
48 }
49 
50 /* Provide information about the configuration, CPUs and storage */
51 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
52 {
53     ReadInfo *read_info = (ReadInfo *) sccb;
54     MachineState *machine = MACHINE(qdev_get_machine());
55     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
56     CPUState *cpu;
57     int cpu_count = 0;
58     int rnsize, rnmax;
59     int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
60 
61     CPU_FOREACH(cpu) {
62         cpu_count++;
63     }
64 
65     /* CPU information */
66     read_info->entries_cpu = cpu_to_be16(cpu_count);
67     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
68     read_info->highest_cpu = cpu_to_be16(max_cpus);
69 
70     read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
71 
72     /* Configuration Characteristic (Extension) */
73     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
74                          read_info->conf_char);
75     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
76                          read_info->conf_char_ext);
77 
78     prepare_cpu_entries(sclp, read_info->entries, cpu_count);
79 
80     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
81                                         SCLP_HAS_PCI_RECONFIG);
82 
83     /* Memory Hotplug is only supported for the ccw machine type */
84     if (mhd) {
85         mhd->standby_subregion_size = MEM_SECTION_SIZE;
86         /* Deduct the memory slot already used for core */
87         if (slots > 0) {
88             while ((mhd->standby_subregion_size * (slots - 1)
89                     < mhd->standby_mem_size)) {
90                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
91             }
92         }
93         /*
94          * Initialize mapping of guest standby memory sections indicating which
95          * are and are not online. Assume all standby memory begins offline.
96          */
97         if (mhd->standby_state_map == 0) {
98             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
99                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
100                                              mhd->standby_subregion_size + 1) *
101                                              (mhd->standby_subregion_size /
102                                              MEM_SECTION_SIZE));
103             } else {
104                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
105                                                    MEM_SECTION_SIZE);
106             }
107         }
108         mhd->padded_ram_size = ram_size + mhd->pad_size;
109         mhd->rzm = 1 << mhd->increment_size;
110 
111         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
112     }
113     read_info->mha_pow = s390_get_mha_pow();
114     read_info->hmfai = cpu_to_be32(s390_get_hmfai());
115 
116     rnsize = 1 << (sclp->increment_size - 20);
117     if (rnsize <= 128) {
118         read_info->rnsize = rnsize;
119     } else {
120         read_info->rnsize = 0;
121         read_info->rnsize2 = cpu_to_be32(rnsize);
122     }
123 
124     rnmax = machine->maxram_size >> sclp->increment_size;
125     if (rnmax < 0x10000) {
126         read_info->rnmax = cpu_to_be16(rnmax);
127     } else {
128         read_info->rnmax = cpu_to_be16(0);
129         read_info->rnmax2 = cpu_to_be64(rnmax);
130     }
131 
132     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
133 }
134 
135 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
136 {
137     int i, assigned;
138     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
139     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
140     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
141 
142     if (!mhd) {
143         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
144         return;
145     }
146 
147     if ((ram_size >> mhd->increment_size) >= 0x10000) {
148         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
149         return;
150     }
151 
152     /* Return information regarding core memory */
153     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
154     assigned = ram_size >> mhd->increment_size;
155     storage_info->assigned = cpu_to_be16(assigned);
156 
157     for (i = 0; i < assigned; i++) {
158         storage_info->entries[i] = cpu_to_be32(subincrement_id);
159         subincrement_id += SCLP_INCREMENT_UNIT;
160     }
161     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
162 }
163 
164 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
165 {
166     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
167     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
168 
169     if (!mhd) {
170         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
171         return;
172     }
173 
174     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
175         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
176         return;
177     }
178 
179     /* Return information regarding standby memory */
180     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
181     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
182                                          mhd->increment_size);
183     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
184                                         mhd->increment_size);
185     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
186 }
187 
188 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
189                                    uint16_t element)
190 {
191     int i, assigned, subincrement_id;
192     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
193     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
194 
195     if (!mhd) {
196         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
197         return;
198     }
199 
200     if (element != 1) {
201         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
202         return;
203     }
204 
205     assigned = mhd->standby_mem_size >> mhd->increment_size;
206     attach_info->assigned = cpu_to_be16(assigned);
207     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
208                       + SCLP_STARTING_SUBINCREMENT_ID;
209     for (i = 0; i < assigned; i++) {
210         attach_info->entries[i] = cpu_to_be32(subincrement_id);
211         subincrement_id += SCLP_INCREMENT_UNIT;
212     }
213     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
214 }
215 
216 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
217 {
218     MemoryRegion *mr = NULL;
219     uint64_t this_subregion_size;
220     AssignStorage *assign_info = (AssignStorage *) sccb;
221     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
222     ram_addr_t assign_addr;
223     MemoryRegion *sysmem = get_system_memory();
224 
225     if (!mhd) {
226         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
227         return;
228     }
229     assign_addr = (assign_info->rn - 1) * mhd->rzm;
230 
231     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
232         (assign_addr >= mhd->padded_ram_size)) {
233         /* Re-use existing memory region if found */
234         mr = memory_region_find(sysmem, assign_addr, 1).mr;
235         memory_region_unref(mr);
236         if (!mr) {
237 
238             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
239 
240             /* offset to align to standby_subregion_size for allocation */
241             ram_addr_t offset = assign_addr -
242                                 (assign_addr - mhd->padded_ram_size)
243                                 % mhd->standby_subregion_size;
244 
245             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
246             char id[16];
247             snprintf(id, 16, "standby.ram%d",
248                      (int)((offset - mhd->padded_ram_size) /
249                      mhd->standby_subregion_size) + 1);
250 
251             /* Allocate a subregion of the calculated standby_subregion_size */
252             if (offset + mhd->standby_subregion_size >
253                 mhd->padded_ram_size + mhd->standby_mem_size) {
254                 this_subregion_size = mhd->padded_ram_size +
255                   mhd->standby_mem_size - offset;
256             } else {
257                 this_subregion_size = mhd->standby_subregion_size;
258             }
259 
260             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
261                                    &error_fatal);
262             /* This is a hack to make memory hotunplug work again. Once we have
263              * subdevices, we have to unparent them when unassigning memory,
264              * instead of doing it via the ref count of the MemoryRegion. */
265             object_ref(OBJECT(standby_ram));
266             object_unparent(OBJECT(standby_ram));
267             vmstate_register_ram_global(standby_ram);
268             memory_region_add_subregion(sysmem, offset, standby_ram);
269         }
270         /* The specified subregion is no longer in standby */
271         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
272                                / MEM_SECTION_SIZE] = 1;
273     }
274     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
275 }
276 
277 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
278 {
279     MemoryRegion *mr = NULL;
280     AssignStorage *assign_info = (AssignStorage *) sccb;
281     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
282     ram_addr_t unassign_addr;
283     MemoryRegion *sysmem = get_system_memory();
284 
285     if (!mhd) {
286         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
287         return;
288     }
289     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
290 
291     /* if the addr is a multiple of 256 MB */
292     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
293         (unassign_addr >= mhd->padded_ram_size)) {
294         mhd->standby_state_map[(unassign_addr -
295                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
296 
297         /* find the specified memory region and destroy it */
298         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
299         memory_region_unref(mr);
300         if (mr) {
301             int i;
302             int is_removable = 1;
303             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
304                                      (unassign_addr - mhd->padded_ram_size)
305                                      % mhd->standby_subregion_size);
306             /* Mark all affected subregions as 'standby' once again */
307             for (i = 0;
308                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
309                  i++) {
310 
311                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
312                     is_removable = 0;
313                     break;
314                 }
315             }
316             if (is_removable) {
317                 memory_region_del_subregion(sysmem, mr);
318                 object_unref(OBJECT(mr));
319             }
320         }
321     }
322     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
323 }
324 
325 /* Provide information about the CPU */
326 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
327 {
328     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
329     CPUState *cpu;
330     int cpu_count = 0;
331 
332     CPU_FOREACH(cpu) {
333         cpu_count++;
334     }
335 
336     cpu_info->nr_configured = cpu_to_be16(cpu_count);
337     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
338     cpu_info->nr_standby = cpu_to_be16(0);
339 
340     /* The standby offset is 16-byte for each CPU */
341     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
342         + cpu_info->nr_configured*sizeof(CPUEntry));
343 
344     prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
345 
346     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
347 }
348 
349 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
350 {
351     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
352     SCLPEventFacility *ef = sclp->event_facility;
353     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
354 
355     switch (code & SCLP_CMD_CODE_MASK) {
356     case SCLP_CMDW_READ_SCP_INFO:
357     case SCLP_CMDW_READ_SCP_INFO_FORCED:
358         sclp_c->read_SCP_info(sclp, sccb);
359         break;
360     case SCLP_CMDW_READ_CPU_INFO:
361         sclp_c->read_cpu_info(sclp, sccb);
362         break;
363     case SCLP_READ_STORAGE_ELEMENT_INFO:
364         if (code & 0xff00) {
365             sclp_c->read_storage_element1_info(sclp, sccb);
366         } else {
367             sclp_c->read_storage_element0_info(sclp, sccb);
368         }
369         break;
370     case SCLP_ATTACH_STORAGE_ELEMENT:
371         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
372         break;
373     case SCLP_ASSIGN_STORAGE:
374         sclp_c->assign_storage(sclp, sccb);
375         break;
376     case SCLP_UNASSIGN_STORAGE:
377         sclp_c->unassign_storage(sclp, sccb);
378         break;
379     case SCLP_CMDW_CONFIGURE_PCI:
380         s390_pci_sclp_configure(sccb);
381         break;
382     case SCLP_CMDW_DECONFIGURE_PCI:
383         s390_pci_sclp_deconfigure(sccb);
384         break;
385     default:
386         efc->command_handler(ef, sccb, code);
387         break;
388     }
389 }
390 
391 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
392 {
393     SCLPDevice *sclp = get_sclp_device();
394     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
395     int r = 0;
396     SCCB work_sccb;
397 
398     hwaddr sccb_len = sizeof(SCCB);
399 
400     /* first some basic checks on program checks */
401     if (env->psw.mask & PSW_MASK_PSTATE) {
402         r = -PGM_PRIVILEGED;
403         goto out;
404     }
405     if (cpu_physical_memory_is_io(sccb)) {
406         r = -PGM_ADDRESSING;
407         goto out;
408     }
409     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
410         || (sccb & ~0x7ffffff8UL) != 0) {
411         r = -PGM_SPECIFICATION;
412         goto out;
413     }
414 
415     /*
416      * we want to work on a private copy of the sccb, to prevent guests
417      * from playing dirty tricks by modifying the memory content after
418      * the host has checked the values
419      */
420     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
421 
422     /* Valid sccb sizes */
423     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
424         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
425         r = -PGM_SPECIFICATION;
426         goto out;
427     }
428 
429     sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
430 
431     cpu_physical_memory_write(sccb, &work_sccb,
432                               be16_to_cpu(work_sccb.h.length));
433 
434     sclp_c->service_interrupt(sclp, sccb);
435 
436 out:
437     return r;
438 }
439 
440 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
441 {
442     SCLPEventFacility *ef = sclp->event_facility;
443     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
444 
445     uint32_t param = sccb & ~3;
446 
447     /* Indicate whether an event is still pending */
448     param |= efc->event_pending(ef) ? 1 : 0;
449 
450     if (!param) {
451         /* No need to send an interrupt, there's nothing to be notified about */
452         return;
453     }
454     s390_sclp_extint(param);
455 }
456 
457 void sclp_service_interrupt(uint32_t sccb)
458 {
459     SCLPDevice *sclp = get_sclp_device();
460     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
461 
462     sclp_c->service_interrupt(sclp, sccb);
463 }
464 
465 /* qemu object creation and initialization functions */
466 
467 void s390_sclp_init(void)
468 {
469     Object *new = object_new(TYPE_SCLP);
470 
471     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
472                               NULL);
473     object_unref(OBJECT(new));
474     qdev_init_nofail(DEVICE(new));
475 }
476 
477 static void sclp_realize(DeviceState *dev, Error **errp)
478 {
479     MachineState *machine = MACHINE(qdev_get_machine());
480     SCLPDevice *sclp = SCLP(dev);
481     Error *err = NULL;
482     uint64_t hw_limit;
483     int ret;
484 
485     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
486                              &err);
487     if (err) {
488         goto out;
489     }
490     /*
491      * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
492      * as we can't find a fitting bus via the qom tree, we have to add the
493      * event facility to the sysbus, so e.g. a sclp console can be created.
494      */
495     qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
496 
497     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
498     if (ret == -E2BIG) {
499         error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
500                    hw_limit >> 30);
501     } else if (ret) {
502         error_setg(&err, "qemu: setting the guest size failed");
503     }
504 
505 out:
506     error_propagate(errp, err);
507 }
508 
509 static void sclp_memory_init(SCLPDevice *sclp)
510 {
511     MachineState *machine = MACHINE(qdev_get_machine());
512     ram_addr_t initial_mem = machine->ram_size;
513     ram_addr_t max_mem = machine->maxram_size;
514     ram_addr_t standby_mem = max_mem - initial_mem;
515     ram_addr_t pad_mem = 0;
516     int increment_size = 20;
517 
518     /* The storage increment size is a multiple of 1M and is a power of 2.
519      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
520      * The variable 'increment_size' is an exponent of 2 that can be
521      * used to calculate the size (in bytes) of an increment. */
522     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
523         increment_size++;
524     }
525     if (machine->ram_slots) {
526         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
527             increment_size++;
528         }
529     }
530     sclp->increment_size = increment_size;
531 
532     /* The core and standby memory areas need to be aligned with
533      * the increment size.  In effect, this can cause the
534      * user-specified memory size to be rounded down to align
535      * with the nearest increment boundary. */
536     initial_mem = initial_mem >> increment_size << increment_size;
537     standby_mem = standby_mem >> increment_size << increment_size;
538 
539     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
540        calculate the pad size necessary to force this boundary. */
541     if (machine->ram_slots && standby_mem) {
542         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
543 
544         if (initial_mem % MEM_SECTION_SIZE) {
545             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
546         }
547         mhd->increment_size = increment_size;
548         mhd->pad_size = pad_mem;
549         mhd->standby_mem_size = standby_mem;
550     }
551     machine->ram_size = initial_mem;
552     machine->maxram_size = initial_mem + pad_mem + standby_mem;
553     /* let's propagate the changed ram size into the global variable. */
554     ram_size = initial_mem;
555 }
556 
557 static void sclp_init(Object *obj)
558 {
559     SCLPDevice *sclp = SCLP(obj);
560     Object *new;
561 
562     new = object_new(TYPE_SCLP_EVENT_FACILITY);
563     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
564     object_unref(new);
565     sclp->event_facility = EVENT_FACILITY(new);
566 
567     sclp_memory_init(sclp);
568 }
569 
570 static void sclp_class_init(ObjectClass *oc, void *data)
571 {
572     SCLPDeviceClass *sc = SCLP_CLASS(oc);
573     DeviceClass *dc = DEVICE_CLASS(oc);
574 
575     dc->desc = "SCLP (Service-Call Logical Processor)";
576     dc->realize = sclp_realize;
577     dc->hotpluggable = false;
578     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
579 
580     sc->read_SCP_info = read_SCP_info;
581     sc->read_storage_element0_info = read_storage_element0_info;
582     sc->read_storage_element1_info = read_storage_element1_info;
583     sc->attach_storage_element = attach_storage_element;
584     sc->assign_storage = assign_storage;
585     sc->unassign_storage = unassign_storage;
586     sc->read_cpu_info = sclp_read_cpu_info;
587     sc->execute = sclp_execute;
588     sc->service_interrupt = service_interrupt;
589 }
590 
591 static TypeInfo sclp_info = {
592     .name = TYPE_SCLP,
593     .parent = TYPE_DEVICE,
594     .instance_init = sclp_init,
595     .instance_size = sizeof(SCLPDevice),
596     .class_init = sclp_class_init,
597     .class_size = sizeof(SCLPDeviceClass),
598 };
599 
600 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
601 {
602     DeviceState *dev;
603     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
604     object_property_add_child(qdev_get_machine(),
605                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
606                               OBJECT(dev), NULL);
607     qdev_init_nofail(dev);
608     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
609                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
610 }
611 
612 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
613 {
614     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
615                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
616 }
617 
618 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
619                                                void *data)
620 {
621     DeviceClass *dc = DEVICE_CLASS(klass);
622 
623     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
624 }
625 
626 static TypeInfo sclp_memory_hotplug_dev_info = {
627     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
628     .parent = TYPE_SYS_BUS_DEVICE,
629     .instance_size = sizeof(sclpMemoryHotplugDev),
630     .class_init = sclp_memory_hotplug_dev_class_init,
631 };
632 
633 static void register_types(void)
634 {
635     type_register_static(&sclp_memory_hotplug_dev_info);
636     type_register_static(&sclp_info);
637 }
638 type_init(register_types);
639