xref: /openbmc/qemu/hw/s390x/sclp.c (revision d7646f24)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "cpu.h"
16 #include "sysemu/kvm.h"
17 #include "exec/memory.h"
18 #include "sysemu/sysemu.h"
19 #include "exec/address-spaces.h"
20 #include "hw/boards.h"
21 #include "hw/s390x/sclp.h"
22 #include "hw/s390x/event-facility.h"
23 #include "hw/s390x/s390-pci-bus.h"
24 
25 static inline SCLPDevice *get_sclp_device(void)
26 {
27     return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
28 }
29 
30 /* Provide information about the configuration, CPUs and storage */
31 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
32 {
33     ReadInfo *read_info = (ReadInfo *) sccb;
34     MachineState *machine = MACHINE(qdev_get_machine());
35     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
36     CPUState *cpu;
37     int cpu_count = 0;
38     int i = 0;
39     int rnsize, rnmax;
40     int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
41 
42     CPU_FOREACH(cpu) {
43         cpu_count++;
44     }
45 
46     /* CPU information */
47     read_info->entries_cpu = cpu_to_be16(cpu_count);
48     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
49     read_info->highest_cpu = cpu_to_be16(max_cpus);
50 
51     for (i = 0; i < cpu_count; i++) {
52         read_info->entries[i].address = i;
53         read_info->entries[i].type = 0;
54     }
55 
56     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
57                                         SCLP_HAS_PCI_RECONFIG);
58 
59     /* Memory Hotplug is only supported for the ccw machine type */
60     if (mhd) {
61         mhd->standby_subregion_size = MEM_SECTION_SIZE;
62         /* Deduct the memory slot already used for core */
63         if (slots > 0) {
64             while ((mhd->standby_subregion_size * (slots - 1)
65                     < mhd->standby_mem_size)) {
66                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
67             }
68         }
69         /*
70          * Initialize mapping of guest standby memory sections indicating which
71          * are and are not online. Assume all standby memory begins offline.
72          */
73         if (mhd->standby_state_map == 0) {
74             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
75                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
76                                              mhd->standby_subregion_size + 1) *
77                                              (mhd->standby_subregion_size /
78                                              MEM_SECTION_SIZE));
79             } else {
80                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
81                                                    MEM_SECTION_SIZE);
82             }
83         }
84         mhd->padded_ram_size = ram_size + mhd->pad_size;
85         mhd->rzm = 1 << mhd->increment_size;
86 
87         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
88     }
89 
90     rnsize = 1 << (sclp->increment_size - 20);
91     if (rnsize <= 128) {
92         read_info->rnsize = rnsize;
93     } else {
94         read_info->rnsize = 0;
95         read_info->rnsize2 = cpu_to_be32(rnsize);
96     }
97 
98     rnmax = machine->maxram_size >> sclp->increment_size;
99     if (rnmax < 0x10000) {
100         read_info->rnmax = cpu_to_be16(rnmax);
101     } else {
102         read_info->rnmax = cpu_to_be16(0);
103         read_info->rnmax2 = cpu_to_be64(rnmax);
104     }
105 
106     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
107 }
108 
109 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
110 {
111     int i, assigned;
112     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
113     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
114     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
115 
116     if (!mhd) {
117         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
118         return;
119     }
120 
121     if ((ram_size >> mhd->increment_size) >= 0x10000) {
122         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
123         return;
124     }
125 
126     /* Return information regarding core memory */
127     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
128     assigned = ram_size >> mhd->increment_size;
129     storage_info->assigned = cpu_to_be16(assigned);
130 
131     for (i = 0; i < assigned; i++) {
132         storage_info->entries[i] = cpu_to_be32(subincrement_id);
133         subincrement_id += SCLP_INCREMENT_UNIT;
134     }
135     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
136 }
137 
138 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
139 {
140     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
141     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
142 
143     if (!mhd) {
144         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
145         return;
146     }
147 
148     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
149         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
150         return;
151     }
152 
153     /* Return information regarding standby memory */
154     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
155     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
156                                          mhd->increment_size);
157     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
158                                         mhd->increment_size);
159     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
160 }
161 
162 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
163                                    uint16_t element)
164 {
165     int i, assigned, subincrement_id;
166     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
167     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
168 
169     if (!mhd) {
170         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
171         return;
172     }
173 
174     if (element != 1) {
175         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
176         return;
177     }
178 
179     assigned = mhd->standby_mem_size >> mhd->increment_size;
180     attach_info->assigned = cpu_to_be16(assigned);
181     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
182                       + SCLP_STARTING_SUBINCREMENT_ID;
183     for (i = 0; i < assigned; i++) {
184         attach_info->entries[i] = cpu_to_be32(subincrement_id);
185         subincrement_id += SCLP_INCREMENT_UNIT;
186     }
187     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
188 }
189 
190 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
191 {
192     MemoryRegion *mr = NULL;
193     uint64_t this_subregion_size;
194     AssignStorage *assign_info = (AssignStorage *) sccb;
195     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
196     ram_addr_t assign_addr;
197     MemoryRegion *sysmem = get_system_memory();
198 
199     if (!mhd) {
200         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
201         return;
202     }
203     assign_addr = (assign_info->rn - 1) * mhd->rzm;
204 
205     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
206         (assign_addr >= mhd->padded_ram_size)) {
207         /* Re-use existing memory region if found */
208         mr = memory_region_find(sysmem, assign_addr, 1).mr;
209         memory_region_unref(mr);
210         if (!mr) {
211 
212             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
213 
214             /* offset to align to standby_subregion_size for allocation */
215             ram_addr_t offset = assign_addr -
216                                 (assign_addr - mhd->padded_ram_size)
217                                 % mhd->standby_subregion_size;
218 
219             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
220             char id[16];
221             snprintf(id, 16, "standby.ram%d",
222                      (int)((offset - mhd->padded_ram_size) /
223                      mhd->standby_subregion_size) + 1);
224 
225             /* Allocate a subregion of the calculated standby_subregion_size */
226             if (offset + mhd->standby_subregion_size >
227                 mhd->padded_ram_size + mhd->standby_mem_size) {
228                 this_subregion_size = mhd->padded_ram_size +
229                   mhd->standby_mem_size - offset;
230             } else {
231                 this_subregion_size = mhd->standby_subregion_size;
232             }
233 
234             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, &error_abort);
235             /* This is a hack to make memory hotunplug work again. Once we have
236              * subdevices, we have to unparent them when unassigning memory,
237              * instead of doing it via the ref count of the MemoryRegion. */
238             object_ref(OBJECT(standby_ram));
239             object_unparent(OBJECT(standby_ram));
240             vmstate_register_ram_global(standby_ram);
241             memory_region_add_subregion(sysmem, offset, standby_ram);
242         }
243         /* The specified subregion is no longer in standby */
244         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
245                                / MEM_SECTION_SIZE] = 1;
246     }
247     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
248 }
249 
250 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
251 {
252     MemoryRegion *mr = NULL;
253     AssignStorage *assign_info = (AssignStorage *) sccb;
254     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
255     ram_addr_t unassign_addr;
256     MemoryRegion *sysmem = get_system_memory();
257 
258     if (!mhd) {
259         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
260         return;
261     }
262     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
263 
264     /* if the addr is a multiple of 256 MB */
265     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
266         (unassign_addr >= mhd->padded_ram_size)) {
267         mhd->standby_state_map[(unassign_addr -
268                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
269 
270         /* find the specified memory region and destroy it */
271         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
272         memory_region_unref(mr);
273         if (mr) {
274             int i;
275             int is_removable = 1;
276             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
277                                      (unassign_addr - mhd->padded_ram_size)
278                                      % mhd->standby_subregion_size);
279             /* Mark all affected subregions as 'standby' once again */
280             for (i = 0;
281                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
282                  i++) {
283 
284                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
285                     is_removable = 0;
286                     break;
287                 }
288             }
289             if (is_removable) {
290                 memory_region_del_subregion(sysmem, mr);
291                 object_unref(OBJECT(mr));
292             }
293         }
294     }
295     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
296 }
297 
298 /* Provide information about the CPU */
299 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
300 {
301     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
302     CPUState *cpu;
303     int cpu_count = 0;
304     int i = 0;
305 
306     CPU_FOREACH(cpu) {
307         cpu_count++;
308     }
309 
310     cpu_info->nr_configured = cpu_to_be16(cpu_count);
311     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
312     cpu_info->nr_standby = cpu_to_be16(0);
313 
314     /* The standby offset is 16-byte for each CPU */
315     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
316         + cpu_info->nr_configured*sizeof(CPUEntry));
317 
318     for (i = 0; i < cpu_count; i++) {
319         cpu_info->entries[i].address = i;
320         cpu_info->entries[i].type = 0;
321     }
322 
323     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
324 }
325 
326 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
327 {
328     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
329     SCLPEventFacility *ef = sclp->event_facility;
330     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
331 
332     switch (code & SCLP_CMD_CODE_MASK) {
333     case SCLP_CMDW_READ_SCP_INFO:
334     case SCLP_CMDW_READ_SCP_INFO_FORCED:
335         sclp_c->read_SCP_info(sclp, sccb);
336         break;
337     case SCLP_CMDW_READ_CPU_INFO:
338         sclp_c->read_cpu_info(sclp, sccb);
339         break;
340     case SCLP_READ_STORAGE_ELEMENT_INFO:
341         if (code & 0xff00) {
342             sclp_c->read_storage_element1_info(sclp, sccb);
343         } else {
344             sclp_c->read_storage_element0_info(sclp, sccb);
345         }
346         break;
347     case SCLP_ATTACH_STORAGE_ELEMENT:
348         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
349         break;
350     case SCLP_ASSIGN_STORAGE:
351         sclp_c->assign_storage(sclp, sccb);
352         break;
353     case SCLP_UNASSIGN_STORAGE:
354         sclp_c->unassign_storage(sclp, sccb);
355         break;
356     case SCLP_CMDW_CONFIGURE_PCI:
357         s390_pci_sclp_configure(1, sccb);
358         break;
359     case SCLP_CMDW_DECONFIGURE_PCI:
360         s390_pci_sclp_configure(0, sccb);
361         break;
362     default:
363         efc->command_handler(ef, sccb, code);
364         break;
365     }
366 }
367 
368 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
369 {
370     SCLPDevice *sclp = get_sclp_device();
371     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
372     int r = 0;
373     SCCB work_sccb;
374 
375     hwaddr sccb_len = sizeof(SCCB);
376 
377     /* first some basic checks on program checks */
378     if (env->psw.mask & PSW_MASK_PSTATE) {
379         r = -PGM_PRIVILEGED;
380         goto out;
381     }
382     if (cpu_physical_memory_is_io(sccb)) {
383         r = -PGM_ADDRESSING;
384         goto out;
385     }
386     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
387         || (sccb & ~0x7ffffff8UL) != 0) {
388         r = -PGM_SPECIFICATION;
389         goto out;
390     }
391 
392     /*
393      * we want to work on a private copy of the sccb, to prevent guests
394      * from playing dirty tricks by modifying the memory content after
395      * the host has checked the values
396      */
397     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
398 
399     /* Valid sccb sizes */
400     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
401         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
402         r = -PGM_SPECIFICATION;
403         goto out;
404     }
405 
406     sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
407 
408     cpu_physical_memory_write(sccb, &work_sccb,
409                               be16_to_cpu(work_sccb.h.length));
410 
411     sclp_c->service_interrupt(sclp, sccb);
412 
413 out:
414     return r;
415 }
416 
417 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
418 {
419     SCLPEventFacility *ef = sclp->event_facility;
420     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
421 
422     uint32_t param = sccb & ~3;
423 
424     /* Indicate whether an event is still pending */
425     param |= efc->event_pending(ef) ? 1 : 0;
426 
427     if (!param) {
428         /* No need to send an interrupt, there's nothing to be notified about */
429         return;
430     }
431     s390_sclp_extint(param);
432 }
433 
434 void sclp_service_interrupt(uint32_t sccb)
435 {
436     SCLPDevice *sclp = get_sclp_device();
437     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
438 
439     sclp_c->service_interrupt(sclp, sccb);
440 }
441 
442 /* qemu object creation and initialization functions */
443 
444 void s390_sclp_init(void)
445 {
446     Object *new = object_new(TYPE_SCLP);
447 
448     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
449                               NULL);
450     object_unref(OBJECT(new));
451     qdev_init_nofail(DEVICE(new));
452 }
453 
454 static void sclp_realize(DeviceState *dev, Error **errp)
455 {
456     MachineState *machine = MACHINE(qdev_get_machine());
457     SCLPDevice *sclp = SCLP(dev);
458     Error *l_err = NULL;
459     uint64_t hw_limit;
460     int ret;
461 
462     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
463                              &l_err);
464     if (l_err) {
465         goto error;
466     }
467 
468     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
469     if (ret == -E2BIG) {
470         error_setg(&l_err, "qemu: host supports a maximum of %" PRIu64 " GB",
471                    hw_limit >> 30);
472         goto error;
473     } else if (ret) {
474         error_setg(&l_err, "qemu: setting the guest size failed");
475         goto error;
476     }
477     return;
478 error:
479     assert(l_err);
480     error_propagate(errp, l_err);
481 }
482 
483 static void sclp_memory_init(SCLPDevice *sclp)
484 {
485     MachineState *machine = MACHINE(qdev_get_machine());
486     ram_addr_t initial_mem = machine->ram_size;
487     ram_addr_t max_mem = machine->maxram_size;
488     ram_addr_t standby_mem = max_mem - initial_mem;
489     ram_addr_t pad_mem = 0;
490     int increment_size = 20;
491 
492     /* The storage increment size is a multiple of 1M and is a power of 2.
493      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
494      * The variable 'increment_size' is an exponent of 2 that can be
495      * used to calculate the size (in bytes) of an increment. */
496     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
497         increment_size++;
498     }
499     if (machine->ram_slots) {
500         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
501             increment_size++;
502         }
503     }
504     sclp->increment_size = increment_size;
505 
506     /* The core and standby memory areas need to be aligned with
507      * the increment size.  In effect, this can cause the
508      * user-specified memory size to be rounded down to align
509      * with the nearest increment boundary. */
510     initial_mem = initial_mem >> increment_size << increment_size;
511     standby_mem = standby_mem >> increment_size << increment_size;
512 
513     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
514        calculate the pad size necessary to force this boundary. */
515     if (machine->ram_slots && standby_mem) {
516         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
517 
518         if (initial_mem % MEM_SECTION_SIZE) {
519             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
520         }
521         mhd->increment_size = increment_size;
522         mhd->pad_size = pad_mem;
523         mhd->standby_mem_size = standby_mem;
524     }
525     machine->ram_size = initial_mem;
526     machine->maxram_size = initial_mem + pad_mem + standby_mem;
527     /* let's propagate the changed ram size into the global variable. */
528     ram_size = initial_mem;
529 }
530 
531 static void sclp_init(Object *obj)
532 {
533     SCLPDevice *sclp = SCLP(obj);
534     Object *new;
535 
536     new = object_new(TYPE_SCLP_EVENT_FACILITY);
537     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
538     /* qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS */
539     qdev_set_parent_bus(DEVICE(new), sysbus_get_default());
540     object_unref(new);
541     sclp->event_facility = EVENT_FACILITY(new);
542 
543     sclp_memory_init(sclp);
544 }
545 
546 static void sclp_class_init(ObjectClass *oc, void *data)
547 {
548     SCLPDeviceClass *sc = SCLP_CLASS(oc);
549     DeviceClass *dc = DEVICE_CLASS(oc);
550 
551     dc->desc = "SCLP (Service-Call Logical Processor)";
552     dc->realize = sclp_realize;
553     dc->hotpluggable = false;
554     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
555 
556     sc->read_SCP_info = read_SCP_info;
557     sc->read_storage_element0_info = read_storage_element0_info;
558     sc->read_storage_element1_info = read_storage_element1_info;
559     sc->attach_storage_element = attach_storage_element;
560     sc->assign_storage = assign_storage;
561     sc->unassign_storage = unassign_storage;
562     sc->read_cpu_info = sclp_read_cpu_info;
563     sc->execute = sclp_execute;
564     sc->service_interrupt = service_interrupt;
565 }
566 
567 static TypeInfo sclp_info = {
568     .name = TYPE_SCLP,
569     .parent = TYPE_DEVICE,
570     .instance_init = sclp_init,
571     .instance_size = sizeof(SCLPDevice),
572     .class_init = sclp_class_init,
573     .class_size = sizeof(SCLPDeviceClass),
574 };
575 
576 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
577 {
578     DeviceState *dev;
579     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
580     object_property_add_child(qdev_get_machine(),
581                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
582                               OBJECT(dev), NULL);
583     qdev_init_nofail(dev);
584     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
585                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
586 }
587 
588 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
589 {
590     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
591                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
592 }
593 
594 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
595                                                void *data)
596 {
597     DeviceClass *dc = DEVICE_CLASS(klass);
598 
599     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
600 }
601 
602 static TypeInfo sclp_memory_hotplug_dev_info = {
603     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
604     .parent = TYPE_SYS_BUS_DEVICE,
605     .instance_size = sizeof(sclpMemoryHotplugDev),
606     .class_init = sclp_memory_hotplug_dev_class_init,
607 };
608 
609 static void register_types(void)
610 {
611     type_register_static(&sclp_memory_hotplug_dev_info);
612     type_register_static(&sclp_info);
613 }
614 type_init(register_types);
615