1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "cpu.h" 17 #include "sysemu/kvm.h" 18 #include "exec/memory.h" 19 #include "sysemu/sysemu.h" 20 #include "exec/address-spaces.h" 21 #include "hw/boards.h" 22 #include "hw/s390x/sclp.h" 23 #include "hw/s390x/event-facility.h" 24 #include "hw/s390x/s390-pci-bus.h" 25 26 static inline SCLPDevice *get_sclp_device(void) 27 { 28 return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 29 } 30 31 /* Provide information about the configuration, CPUs and storage */ 32 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 33 { 34 ReadInfo *read_info = (ReadInfo *) sccb; 35 MachineState *machine = MACHINE(qdev_get_machine()); 36 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 37 CPUState *cpu; 38 int cpu_count = 0; 39 int i = 0; 40 int rnsize, rnmax; 41 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 42 43 CPU_FOREACH(cpu) { 44 cpu_count++; 45 } 46 47 /* CPU information */ 48 read_info->entries_cpu = cpu_to_be16(cpu_count); 49 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 50 read_info->highest_cpu = cpu_to_be16(max_cpus); 51 52 for (i = 0; i < cpu_count; i++) { 53 read_info->entries[i].address = i; 54 read_info->entries[i].type = 0; 55 } 56 57 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 58 SCLP_HAS_PCI_RECONFIG); 59 60 /* Memory Hotplug is only supported for the ccw machine type */ 61 if (mhd) { 62 mhd->standby_subregion_size = MEM_SECTION_SIZE; 63 /* Deduct the memory slot already used for core */ 64 if (slots > 0) { 65 while ((mhd->standby_subregion_size * (slots - 1) 66 < mhd->standby_mem_size)) { 67 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 68 } 69 } 70 /* 71 * Initialize mapping of guest standby memory sections indicating which 72 * are and are not online. Assume all standby memory begins offline. 73 */ 74 if (mhd->standby_state_map == 0) { 75 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 76 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 77 mhd->standby_subregion_size + 1) * 78 (mhd->standby_subregion_size / 79 MEM_SECTION_SIZE)); 80 } else { 81 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 82 MEM_SECTION_SIZE); 83 } 84 } 85 mhd->padded_ram_size = ram_size + mhd->pad_size; 86 mhd->rzm = 1 << mhd->increment_size; 87 88 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 89 } 90 91 rnsize = 1 << (sclp->increment_size - 20); 92 if (rnsize <= 128) { 93 read_info->rnsize = rnsize; 94 } else { 95 read_info->rnsize = 0; 96 read_info->rnsize2 = cpu_to_be32(rnsize); 97 } 98 99 rnmax = machine->maxram_size >> sclp->increment_size; 100 if (rnmax < 0x10000) { 101 read_info->rnmax = cpu_to_be16(rnmax); 102 } else { 103 read_info->rnmax = cpu_to_be16(0); 104 read_info->rnmax2 = cpu_to_be64(rnmax); 105 } 106 107 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 108 } 109 110 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 111 { 112 int i, assigned; 113 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 114 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 115 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 116 117 if (!mhd) { 118 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 119 return; 120 } 121 122 if ((ram_size >> mhd->increment_size) >= 0x10000) { 123 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 124 return; 125 } 126 127 /* Return information regarding core memory */ 128 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 129 assigned = ram_size >> mhd->increment_size; 130 storage_info->assigned = cpu_to_be16(assigned); 131 132 for (i = 0; i < assigned; i++) { 133 storage_info->entries[i] = cpu_to_be32(subincrement_id); 134 subincrement_id += SCLP_INCREMENT_UNIT; 135 } 136 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 137 } 138 139 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 140 { 141 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 142 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 143 144 if (!mhd) { 145 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 146 return; 147 } 148 149 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 150 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 151 return; 152 } 153 154 /* Return information regarding standby memory */ 155 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 156 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 157 mhd->increment_size); 158 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 159 mhd->increment_size); 160 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 161 } 162 163 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 164 uint16_t element) 165 { 166 int i, assigned, subincrement_id; 167 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 168 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 169 170 if (!mhd) { 171 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 172 return; 173 } 174 175 if (element != 1) { 176 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 177 return; 178 } 179 180 assigned = mhd->standby_mem_size >> mhd->increment_size; 181 attach_info->assigned = cpu_to_be16(assigned); 182 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 183 + SCLP_STARTING_SUBINCREMENT_ID; 184 for (i = 0; i < assigned; i++) { 185 attach_info->entries[i] = cpu_to_be32(subincrement_id); 186 subincrement_id += SCLP_INCREMENT_UNIT; 187 } 188 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 189 } 190 191 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 192 { 193 MemoryRegion *mr = NULL; 194 uint64_t this_subregion_size; 195 AssignStorage *assign_info = (AssignStorage *) sccb; 196 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 197 ram_addr_t assign_addr; 198 MemoryRegion *sysmem = get_system_memory(); 199 200 if (!mhd) { 201 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 202 return; 203 } 204 assign_addr = (assign_info->rn - 1) * mhd->rzm; 205 206 if ((assign_addr % MEM_SECTION_SIZE == 0) && 207 (assign_addr >= mhd->padded_ram_size)) { 208 /* Re-use existing memory region if found */ 209 mr = memory_region_find(sysmem, assign_addr, 1).mr; 210 memory_region_unref(mr); 211 if (!mr) { 212 213 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 214 215 /* offset to align to standby_subregion_size for allocation */ 216 ram_addr_t offset = assign_addr - 217 (assign_addr - mhd->padded_ram_size) 218 % mhd->standby_subregion_size; 219 220 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 221 char id[16]; 222 snprintf(id, 16, "standby.ram%d", 223 (int)((offset - mhd->padded_ram_size) / 224 mhd->standby_subregion_size) + 1); 225 226 /* Allocate a subregion of the calculated standby_subregion_size */ 227 if (offset + mhd->standby_subregion_size > 228 mhd->padded_ram_size + mhd->standby_mem_size) { 229 this_subregion_size = mhd->padded_ram_size + 230 mhd->standby_mem_size - offset; 231 } else { 232 this_subregion_size = mhd->standby_subregion_size; 233 } 234 235 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 236 &error_fatal); 237 /* This is a hack to make memory hotunplug work again. Once we have 238 * subdevices, we have to unparent them when unassigning memory, 239 * instead of doing it via the ref count of the MemoryRegion. */ 240 object_ref(OBJECT(standby_ram)); 241 object_unparent(OBJECT(standby_ram)); 242 vmstate_register_ram_global(standby_ram); 243 memory_region_add_subregion(sysmem, offset, standby_ram); 244 } 245 /* The specified subregion is no longer in standby */ 246 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 247 / MEM_SECTION_SIZE] = 1; 248 } 249 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 250 } 251 252 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 253 { 254 MemoryRegion *mr = NULL; 255 AssignStorage *assign_info = (AssignStorage *) sccb; 256 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 257 ram_addr_t unassign_addr; 258 MemoryRegion *sysmem = get_system_memory(); 259 260 if (!mhd) { 261 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 262 return; 263 } 264 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 265 266 /* if the addr is a multiple of 256 MB */ 267 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 268 (unassign_addr >= mhd->padded_ram_size)) { 269 mhd->standby_state_map[(unassign_addr - 270 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 271 272 /* find the specified memory region and destroy it */ 273 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 274 memory_region_unref(mr); 275 if (mr) { 276 int i; 277 int is_removable = 1; 278 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 279 (unassign_addr - mhd->padded_ram_size) 280 % mhd->standby_subregion_size); 281 /* Mark all affected subregions as 'standby' once again */ 282 for (i = 0; 283 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 284 i++) { 285 286 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 287 is_removable = 0; 288 break; 289 } 290 } 291 if (is_removable) { 292 memory_region_del_subregion(sysmem, mr); 293 object_unref(OBJECT(mr)); 294 } 295 } 296 } 297 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 298 } 299 300 /* Provide information about the CPU */ 301 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 302 { 303 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 304 CPUState *cpu; 305 int cpu_count = 0; 306 int i = 0; 307 308 CPU_FOREACH(cpu) { 309 cpu_count++; 310 } 311 312 cpu_info->nr_configured = cpu_to_be16(cpu_count); 313 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 314 cpu_info->nr_standby = cpu_to_be16(0); 315 316 /* The standby offset is 16-byte for each CPU */ 317 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 318 + cpu_info->nr_configured*sizeof(CPUEntry)); 319 320 for (i = 0; i < cpu_count; i++) { 321 cpu_info->entries[i].address = i; 322 cpu_info->entries[i].type = 0; 323 } 324 325 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 326 } 327 328 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 329 { 330 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 331 SCLPEventFacility *ef = sclp->event_facility; 332 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 333 334 switch (code & SCLP_CMD_CODE_MASK) { 335 case SCLP_CMDW_READ_SCP_INFO: 336 case SCLP_CMDW_READ_SCP_INFO_FORCED: 337 sclp_c->read_SCP_info(sclp, sccb); 338 break; 339 case SCLP_CMDW_READ_CPU_INFO: 340 sclp_c->read_cpu_info(sclp, sccb); 341 break; 342 case SCLP_READ_STORAGE_ELEMENT_INFO: 343 if (code & 0xff00) { 344 sclp_c->read_storage_element1_info(sclp, sccb); 345 } else { 346 sclp_c->read_storage_element0_info(sclp, sccb); 347 } 348 break; 349 case SCLP_ATTACH_STORAGE_ELEMENT: 350 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 351 break; 352 case SCLP_ASSIGN_STORAGE: 353 sclp_c->assign_storage(sclp, sccb); 354 break; 355 case SCLP_UNASSIGN_STORAGE: 356 sclp_c->unassign_storage(sclp, sccb); 357 break; 358 case SCLP_CMDW_CONFIGURE_PCI: 359 s390_pci_sclp_configure(1, sccb); 360 break; 361 case SCLP_CMDW_DECONFIGURE_PCI: 362 s390_pci_sclp_configure(0, sccb); 363 break; 364 default: 365 efc->command_handler(ef, sccb, code); 366 break; 367 } 368 } 369 370 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 371 { 372 SCLPDevice *sclp = get_sclp_device(); 373 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 374 int r = 0; 375 SCCB work_sccb; 376 377 hwaddr sccb_len = sizeof(SCCB); 378 379 /* first some basic checks on program checks */ 380 if (env->psw.mask & PSW_MASK_PSTATE) { 381 r = -PGM_PRIVILEGED; 382 goto out; 383 } 384 if (cpu_physical_memory_is_io(sccb)) { 385 r = -PGM_ADDRESSING; 386 goto out; 387 } 388 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 389 || (sccb & ~0x7ffffff8UL) != 0) { 390 r = -PGM_SPECIFICATION; 391 goto out; 392 } 393 394 /* 395 * we want to work on a private copy of the sccb, to prevent guests 396 * from playing dirty tricks by modifying the memory content after 397 * the host has checked the values 398 */ 399 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 400 401 /* Valid sccb sizes */ 402 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 403 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 404 r = -PGM_SPECIFICATION; 405 goto out; 406 } 407 408 sclp_c->execute(sclp, (SCCB *)&work_sccb, code); 409 410 cpu_physical_memory_write(sccb, &work_sccb, 411 be16_to_cpu(work_sccb.h.length)); 412 413 sclp_c->service_interrupt(sclp, sccb); 414 415 out: 416 return r; 417 } 418 419 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 420 { 421 SCLPEventFacility *ef = sclp->event_facility; 422 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 423 424 uint32_t param = sccb & ~3; 425 426 /* Indicate whether an event is still pending */ 427 param |= efc->event_pending(ef) ? 1 : 0; 428 429 if (!param) { 430 /* No need to send an interrupt, there's nothing to be notified about */ 431 return; 432 } 433 s390_sclp_extint(param); 434 } 435 436 void sclp_service_interrupt(uint32_t sccb) 437 { 438 SCLPDevice *sclp = get_sclp_device(); 439 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 440 441 sclp_c->service_interrupt(sclp, sccb); 442 } 443 444 /* qemu object creation and initialization functions */ 445 446 void s390_sclp_init(void) 447 { 448 Object *new = object_new(TYPE_SCLP); 449 450 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 451 NULL); 452 object_unref(OBJECT(new)); 453 qdev_init_nofail(DEVICE(new)); 454 } 455 456 static void sclp_realize(DeviceState *dev, Error **errp) 457 { 458 MachineState *machine = MACHINE(qdev_get_machine()); 459 SCLPDevice *sclp = SCLP(dev); 460 Error *err = NULL; 461 uint64_t hw_limit; 462 int ret; 463 464 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 465 &err); 466 if (err) { 467 goto out; 468 } 469 /* 470 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long 471 * as we can't find a fitting bus via the qom tree, we have to add the 472 * event facility to the sysbus, so e.g. a sclp console can be created. 473 */ 474 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); 475 476 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 477 if (ret == -E2BIG) { 478 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 479 hw_limit >> 30); 480 } else if (ret) { 481 error_setg(&err, "qemu: setting the guest size failed"); 482 } 483 484 out: 485 error_propagate(errp, err); 486 } 487 488 static void sclp_memory_init(SCLPDevice *sclp) 489 { 490 MachineState *machine = MACHINE(qdev_get_machine()); 491 ram_addr_t initial_mem = machine->ram_size; 492 ram_addr_t max_mem = machine->maxram_size; 493 ram_addr_t standby_mem = max_mem - initial_mem; 494 ram_addr_t pad_mem = 0; 495 int increment_size = 20; 496 497 /* The storage increment size is a multiple of 1M and is a power of 2. 498 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 499 * The variable 'increment_size' is an exponent of 2 that can be 500 * used to calculate the size (in bytes) of an increment. */ 501 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 502 increment_size++; 503 } 504 if (machine->ram_slots) { 505 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 506 increment_size++; 507 } 508 } 509 sclp->increment_size = increment_size; 510 511 /* The core and standby memory areas need to be aligned with 512 * the increment size. In effect, this can cause the 513 * user-specified memory size to be rounded down to align 514 * with the nearest increment boundary. */ 515 initial_mem = initial_mem >> increment_size << increment_size; 516 standby_mem = standby_mem >> increment_size << increment_size; 517 518 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 519 calculate the pad size necessary to force this boundary. */ 520 if (machine->ram_slots && standby_mem) { 521 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 522 523 if (initial_mem % MEM_SECTION_SIZE) { 524 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 525 } 526 mhd->increment_size = increment_size; 527 mhd->pad_size = pad_mem; 528 mhd->standby_mem_size = standby_mem; 529 } 530 machine->ram_size = initial_mem; 531 machine->maxram_size = initial_mem + pad_mem + standby_mem; 532 /* let's propagate the changed ram size into the global variable. */ 533 ram_size = initial_mem; 534 } 535 536 static void sclp_init(Object *obj) 537 { 538 SCLPDevice *sclp = SCLP(obj); 539 Object *new; 540 541 new = object_new(TYPE_SCLP_EVENT_FACILITY); 542 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 543 object_unref(new); 544 sclp->event_facility = EVENT_FACILITY(new); 545 546 sclp_memory_init(sclp); 547 } 548 549 static void sclp_class_init(ObjectClass *oc, void *data) 550 { 551 SCLPDeviceClass *sc = SCLP_CLASS(oc); 552 DeviceClass *dc = DEVICE_CLASS(oc); 553 554 dc->desc = "SCLP (Service-Call Logical Processor)"; 555 dc->realize = sclp_realize; 556 dc->hotpluggable = false; 557 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 558 559 sc->read_SCP_info = read_SCP_info; 560 sc->read_storage_element0_info = read_storage_element0_info; 561 sc->read_storage_element1_info = read_storage_element1_info; 562 sc->attach_storage_element = attach_storage_element; 563 sc->assign_storage = assign_storage; 564 sc->unassign_storage = unassign_storage; 565 sc->read_cpu_info = sclp_read_cpu_info; 566 sc->execute = sclp_execute; 567 sc->service_interrupt = service_interrupt; 568 } 569 570 static TypeInfo sclp_info = { 571 .name = TYPE_SCLP, 572 .parent = TYPE_DEVICE, 573 .instance_init = sclp_init, 574 .instance_size = sizeof(SCLPDevice), 575 .class_init = sclp_class_init, 576 .class_size = sizeof(SCLPDeviceClass), 577 }; 578 579 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 580 { 581 DeviceState *dev; 582 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 583 object_property_add_child(qdev_get_machine(), 584 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 585 OBJECT(dev), NULL); 586 qdev_init_nofail(dev); 587 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 588 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 589 } 590 591 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 592 { 593 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 594 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 595 } 596 597 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 598 void *data) 599 { 600 DeviceClass *dc = DEVICE_CLASS(klass); 601 602 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 603 } 604 605 static TypeInfo sclp_memory_hotplug_dev_info = { 606 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 607 .parent = TYPE_SYS_BUS_DEVICE, 608 .instance_size = sizeof(sclpMemoryHotplugDev), 609 .class_init = sclp_memory_hotplug_dev_class_init, 610 }; 611 612 static void register_types(void) 613 { 614 type_register_static(&sclp_memory_hotplug_dev_info); 615 type_register_static(&sclp_info); 616 } 617 type_init(register_types); 618