xref: /openbmc/qemu/hw/s390x/sclp.c (revision d38ea87a)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "cpu.h"
17 #include "sysemu/kvm.h"
18 #include "exec/memory.h"
19 #include "sysemu/sysemu.h"
20 #include "exec/address-spaces.h"
21 #include "hw/boards.h"
22 #include "hw/s390x/sclp.h"
23 #include "hw/s390x/event-facility.h"
24 #include "hw/s390x/s390-pci-bus.h"
25 
26 static inline SCLPDevice *get_sclp_device(void)
27 {
28     return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
29 }
30 
31 /* Provide information about the configuration, CPUs and storage */
32 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
33 {
34     ReadInfo *read_info = (ReadInfo *) sccb;
35     MachineState *machine = MACHINE(qdev_get_machine());
36     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
37     CPUState *cpu;
38     int cpu_count = 0;
39     int i = 0;
40     int rnsize, rnmax;
41     int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
42 
43     CPU_FOREACH(cpu) {
44         cpu_count++;
45     }
46 
47     /* CPU information */
48     read_info->entries_cpu = cpu_to_be16(cpu_count);
49     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
50     read_info->highest_cpu = cpu_to_be16(max_cpus);
51 
52     for (i = 0; i < cpu_count; i++) {
53         read_info->entries[i].address = i;
54         read_info->entries[i].type = 0;
55     }
56 
57     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
58                                         SCLP_HAS_PCI_RECONFIG);
59 
60     /* Memory Hotplug is only supported for the ccw machine type */
61     if (mhd) {
62         mhd->standby_subregion_size = MEM_SECTION_SIZE;
63         /* Deduct the memory slot already used for core */
64         if (slots > 0) {
65             while ((mhd->standby_subregion_size * (slots - 1)
66                     < mhd->standby_mem_size)) {
67                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
68             }
69         }
70         /*
71          * Initialize mapping of guest standby memory sections indicating which
72          * are and are not online. Assume all standby memory begins offline.
73          */
74         if (mhd->standby_state_map == 0) {
75             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
76                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
77                                              mhd->standby_subregion_size + 1) *
78                                              (mhd->standby_subregion_size /
79                                              MEM_SECTION_SIZE));
80             } else {
81                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
82                                                    MEM_SECTION_SIZE);
83             }
84         }
85         mhd->padded_ram_size = ram_size + mhd->pad_size;
86         mhd->rzm = 1 << mhd->increment_size;
87 
88         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
89     }
90 
91     rnsize = 1 << (sclp->increment_size - 20);
92     if (rnsize <= 128) {
93         read_info->rnsize = rnsize;
94     } else {
95         read_info->rnsize = 0;
96         read_info->rnsize2 = cpu_to_be32(rnsize);
97     }
98 
99     rnmax = machine->maxram_size >> sclp->increment_size;
100     if (rnmax < 0x10000) {
101         read_info->rnmax = cpu_to_be16(rnmax);
102     } else {
103         read_info->rnmax = cpu_to_be16(0);
104         read_info->rnmax2 = cpu_to_be64(rnmax);
105     }
106 
107     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
108 }
109 
110 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
111 {
112     int i, assigned;
113     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
114     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
115     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
116 
117     if (!mhd) {
118         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
119         return;
120     }
121 
122     if ((ram_size >> mhd->increment_size) >= 0x10000) {
123         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
124         return;
125     }
126 
127     /* Return information regarding core memory */
128     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
129     assigned = ram_size >> mhd->increment_size;
130     storage_info->assigned = cpu_to_be16(assigned);
131 
132     for (i = 0; i < assigned; i++) {
133         storage_info->entries[i] = cpu_to_be32(subincrement_id);
134         subincrement_id += SCLP_INCREMENT_UNIT;
135     }
136     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
137 }
138 
139 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
140 {
141     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
142     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
143 
144     if (!mhd) {
145         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
146         return;
147     }
148 
149     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
150         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
151         return;
152     }
153 
154     /* Return information regarding standby memory */
155     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
156     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
157                                          mhd->increment_size);
158     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
159                                         mhd->increment_size);
160     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
161 }
162 
163 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
164                                    uint16_t element)
165 {
166     int i, assigned, subincrement_id;
167     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
168     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
169 
170     if (!mhd) {
171         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
172         return;
173     }
174 
175     if (element != 1) {
176         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
177         return;
178     }
179 
180     assigned = mhd->standby_mem_size >> mhd->increment_size;
181     attach_info->assigned = cpu_to_be16(assigned);
182     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
183                       + SCLP_STARTING_SUBINCREMENT_ID;
184     for (i = 0; i < assigned; i++) {
185         attach_info->entries[i] = cpu_to_be32(subincrement_id);
186         subincrement_id += SCLP_INCREMENT_UNIT;
187     }
188     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
189 }
190 
191 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
192 {
193     MemoryRegion *mr = NULL;
194     uint64_t this_subregion_size;
195     AssignStorage *assign_info = (AssignStorage *) sccb;
196     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
197     ram_addr_t assign_addr;
198     MemoryRegion *sysmem = get_system_memory();
199 
200     if (!mhd) {
201         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
202         return;
203     }
204     assign_addr = (assign_info->rn - 1) * mhd->rzm;
205 
206     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
207         (assign_addr >= mhd->padded_ram_size)) {
208         /* Re-use existing memory region if found */
209         mr = memory_region_find(sysmem, assign_addr, 1).mr;
210         memory_region_unref(mr);
211         if (!mr) {
212 
213             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
214 
215             /* offset to align to standby_subregion_size for allocation */
216             ram_addr_t offset = assign_addr -
217                                 (assign_addr - mhd->padded_ram_size)
218                                 % mhd->standby_subregion_size;
219 
220             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
221             char id[16];
222             snprintf(id, 16, "standby.ram%d",
223                      (int)((offset - mhd->padded_ram_size) /
224                      mhd->standby_subregion_size) + 1);
225 
226             /* Allocate a subregion of the calculated standby_subregion_size */
227             if (offset + mhd->standby_subregion_size >
228                 mhd->padded_ram_size + mhd->standby_mem_size) {
229                 this_subregion_size = mhd->padded_ram_size +
230                   mhd->standby_mem_size - offset;
231             } else {
232                 this_subregion_size = mhd->standby_subregion_size;
233             }
234 
235             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
236                                    &error_fatal);
237             /* This is a hack to make memory hotunplug work again. Once we have
238              * subdevices, we have to unparent them when unassigning memory,
239              * instead of doing it via the ref count of the MemoryRegion. */
240             object_ref(OBJECT(standby_ram));
241             object_unparent(OBJECT(standby_ram));
242             vmstate_register_ram_global(standby_ram);
243             memory_region_add_subregion(sysmem, offset, standby_ram);
244         }
245         /* The specified subregion is no longer in standby */
246         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
247                                / MEM_SECTION_SIZE] = 1;
248     }
249     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
250 }
251 
252 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
253 {
254     MemoryRegion *mr = NULL;
255     AssignStorage *assign_info = (AssignStorage *) sccb;
256     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
257     ram_addr_t unassign_addr;
258     MemoryRegion *sysmem = get_system_memory();
259 
260     if (!mhd) {
261         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
262         return;
263     }
264     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
265 
266     /* if the addr is a multiple of 256 MB */
267     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
268         (unassign_addr >= mhd->padded_ram_size)) {
269         mhd->standby_state_map[(unassign_addr -
270                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
271 
272         /* find the specified memory region and destroy it */
273         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
274         memory_region_unref(mr);
275         if (mr) {
276             int i;
277             int is_removable = 1;
278             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
279                                      (unassign_addr - mhd->padded_ram_size)
280                                      % mhd->standby_subregion_size);
281             /* Mark all affected subregions as 'standby' once again */
282             for (i = 0;
283                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
284                  i++) {
285 
286                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
287                     is_removable = 0;
288                     break;
289                 }
290             }
291             if (is_removable) {
292                 memory_region_del_subregion(sysmem, mr);
293                 object_unref(OBJECT(mr));
294             }
295         }
296     }
297     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
298 }
299 
300 /* Provide information about the CPU */
301 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
302 {
303     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
304     CPUState *cpu;
305     int cpu_count = 0;
306     int i = 0;
307 
308     CPU_FOREACH(cpu) {
309         cpu_count++;
310     }
311 
312     cpu_info->nr_configured = cpu_to_be16(cpu_count);
313     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
314     cpu_info->nr_standby = cpu_to_be16(0);
315 
316     /* The standby offset is 16-byte for each CPU */
317     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
318         + cpu_info->nr_configured*sizeof(CPUEntry));
319 
320     for (i = 0; i < cpu_count; i++) {
321         cpu_info->entries[i].address = i;
322         cpu_info->entries[i].type = 0;
323     }
324 
325     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
326 }
327 
328 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
329 {
330     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
331     SCLPEventFacility *ef = sclp->event_facility;
332     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
333 
334     switch (code & SCLP_CMD_CODE_MASK) {
335     case SCLP_CMDW_READ_SCP_INFO:
336     case SCLP_CMDW_READ_SCP_INFO_FORCED:
337         sclp_c->read_SCP_info(sclp, sccb);
338         break;
339     case SCLP_CMDW_READ_CPU_INFO:
340         sclp_c->read_cpu_info(sclp, sccb);
341         break;
342     case SCLP_READ_STORAGE_ELEMENT_INFO:
343         if (code & 0xff00) {
344             sclp_c->read_storage_element1_info(sclp, sccb);
345         } else {
346             sclp_c->read_storage_element0_info(sclp, sccb);
347         }
348         break;
349     case SCLP_ATTACH_STORAGE_ELEMENT:
350         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
351         break;
352     case SCLP_ASSIGN_STORAGE:
353         sclp_c->assign_storage(sclp, sccb);
354         break;
355     case SCLP_UNASSIGN_STORAGE:
356         sclp_c->unassign_storage(sclp, sccb);
357         break;
358     case SCLP_CMDW_CONFIGURE_PCI:
359         s390_pci_sclp_configure(1, sccb);
360         break;
361     case SCLP_CMDW_DECONFIGURE_PCI:
362         s390_pci_sclp_configure(0, sccb);
363         break;
364     default:
365         efc->command_handler(ef, sccb, code);
366         break;
367     }
368 }
369 
370 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
371 {
372     SCLPDevice *sclp = get_sclp_device();
373     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
374     int r = 0;
375     SCCB work_sccb;
376 
377     hwaddr sccb_len = sizeof(SCCB);
378 
379     /* first some basic checks on program checks */
380     if (env->psw.mask & PSW_MASK_PSTATE) {
381         r = -PGM_PRIVILEGED;
382         goto out;
383     }
384     if (cpu_physical_memory_is_io(sccb)) {
385         r = -PGM_ADDRESSING;
386         goto out;
387     }
388     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
389         || (sccb & ~0x7ffffff8UL) != 0) {
390         r = -PGM_SPECIFICATION;
391         goto out;
392     }
393 
394     /*
395      * we want to work on a private copy of the sccb, to prevent guests
396      * from playing dirty tricks by modifying the memory content after
397      * the host has checked the values
398      */
399     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
400 
401     /* Valid sccb sizes */
402     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
403         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
404         r = -PGM_SPECIFICATION;
405         goto out;
406     }
407 
408     sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
409 
410     cpu_physical_memory_write(sccb, &work_sccb,
411                               be16_to_cpu(work_sccb.h.length));
412 
413     sclp_c->service_interrupt(sclp, sccb);
414 
415 out:
416     return r;
417 }
418 
419 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
420 {
421     SCLPEventFacility *ef = sclp->event_facility;
422     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
423 
424     uint32_t param = sccb & ~3;
425 
426     /* Indicate whether an event is still pending */
427     param |= efc->event_pending(ef) ? 1 : 0;
428 
429     if (!param) {
430         /* No need to send an interrupt, there's nothing to be notified about */
431         return;
432     }
433     s390_sclp_extint(param);
434 }
435 
436 void sclp_service_interrupt(uint32_t sccb)
437 {
438     SCLPDevice *sclp = get_sclp_device();
439     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
440 
441     sclp_c->service_interrupt(sclp, sccb);
442 }
443 
444 /* qemu object creation and initialization functions */
445 
446 void s390_sclp_init(void)
447 {
448     Object *new = object_new(TYPE_SCLP);
449 
450     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
451                               NULL);
452     object_unref(OBJECT(new));
453     qdev_init_nofail(DEVICE(new));
454 }
455 
456 static void sclp_realize(DeviceState *dev, Error **errp)
457 {
458     MachineState *machine = MACHINE(qdev_get_machine());
459     SCLPDevice *sclp = SCLP(dev);
460     Error *err = NULL;
461     uint64_t hw_limit;
462     int ret;
463 
464     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
465                              &err);
466     if (err) {
467         goto out;
468     }
469     /*
470      * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
471      * as we can't find a fitting bus via the qom tree, we have to add the
472      * event facility to the sysbus, so e.g. a sclp console can be created.
473      */
474     qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
475 
476     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
477     if (ret == -E2BIG) {
478         error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
479                    hw_limit >> 30);
480     } else if (ret) {
481         error_setg(&err, "qemu: setting the guest size failed");
482     }
483 
484 out:
485     error_propagate(errp, err);
486 }
487 
488 static void sclp_memory_init(SCLPDevice *sclp)
489 {
490     MachineState *machine = MACHINE(qdev_get_machine());
491     ram_addr_t initial_mem = machine->ram_size;
492     ram_addr_t max_mem = machine->maxram_size;
493     ram_addr_t standby_mem = max_mem - initial_mem;
494     ram_addr_t pad_mem = 0;
495     int increment_size = 20;
496 
497     /* The storage increment size is a multiple of 1M and is a power of 2.
498      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
499      * The variable 'increment_size' is an exponent of 2 that can be
500      * used to calculate the size (in bytes) of an increment. */
501     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
502         increment_size++;
503     }
504     if (machine->ram_slots) {
505         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
506             increment_size++;
507         }
508     }
509     sclp->increment_size = increment_size;
510 
511     /* The core and standby memory areas need to be aligned with
512      * the increment size.  In effect, this can cause the
513      * user-specified memory size to be rounded down to align
514      * with the nearest increment boundary. */
515     initial_mem = initial_mem >> increment_size << increment_size;
516     standby_mem = standby_mem >> increment_size << increment_size;
517 
518     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
519        calculate the pad size necessary to force this boundary. */
520     if (machine->ram_slots && standby_mem) {
521         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
522 
523         if (initial_mem % MEM_SECTION_SIZE) {
524             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
525         }
526         mhd->increment_size = increment_size;
527         mhd->pad_size = pad_mem;
528         mhd->standby_mem_size = standby_mem;
529     }
530     machine->ram_size = initial_mem;
531     machine->maxram_size = initial_mem + pad_mem + standby_mem;
532     /* let's propagate the changed ram size into the global variable. */
533     ram_size = initial_mem;
534 }
535 
536 static void sclp_init(Object *obj)
537 {
538     SCLPDevice *sclp = SCLP(obj);
539     Object *new;
540 
541     new = object_new(TYPE_SCLP_EVENT_FACILITY);
542     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
543     object_unref(new);
544     sclp->event_facility = EVENT_FACILITY(new);
545 
546     sclp_memory_init(sclp);
547 }
548 
549 static void sclp_class_init(ObjectClass *oc, void *data)
550 {
551     SCLPDeviceClass *sc = SCLP_CLASS(oc);
552     DeviceClass *dc = DEVICE_CLASS(oc);
553 
554     dc->desc = "SCLP (Service-Call Logical Processor)";
555     dc->realize = sclp_realize;
556     dc->hotpluggable = false;
557     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
558 
559     sc->read_SCP_info = read_SCP_info;
560     sc->read_storage_element0_info = read_storage_element0_info;
561     sc->read_storage_element1_info = read_storage_element1_info;
562     sc->attach_storage_element = attach_storage_element;
563     sc->assign_storage = assign_storage;
564     sc->unassign_storage = unassign_storage;
565     sc->read_cpu_info = sclp_read_cpu_info;
566     sc->execute = sclp_execute;
567     sc->service_interrupt = service_interrupt;
568 }
569 
570 static TypeInfo sclp_info = {
571     .name = TYPE_SCLP,
572     .parent = TYPE_DEVICE,
573     .instance_init = sclp_init,
574     .instance_size = sizeof(SCLPDevice),
575     .class_init = sclp_class_init,
576     .class_size = sizeof(SCLPDeviceClass),
577 };
578 
579 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
580 {
581     DeviceState *dev;
582     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
583     object_property_add_child(qdev_get_machine(),
584                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
585                               OBJECT(dev), NULL);
586     qdev_init_nofail(dev);
587     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
588                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
589 }
590 
591 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
592 {
593     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
594                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
595 }
596 
597 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
598                                                void *data)
599 {
600     DeviceClass *dc = DEVICE_CLASS(klass);
601 
602     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
603 }
604 
605 static TypeInfo sclp_memory_hotplug_dev_info = {
606     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
607     .parent = TYPE_SYS_BUS_DEVICE,
608     .instance_size = sizeof(sclpMemoryHotplugDev),
609     .class_init = sclp_memory_hotplug_dev_class_init,
610 };
611 
612 static void register_types(void)
613 {
614     type_register_static(&sclp_memory_hotplug_dev_info);
615     type_register_static(&sclp_info);
616 }
617 type_init(register_types);
618