1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "cpu.h" 16 #include "sysemu/kvm.h" 17 #include "exec/memory.h" 18 #include "sysemu/sysemu.h" 19 #include "exec/address-spaces.h" 20 #include "hw/boards.h" 21 #include "hw/s390x/sclp.h" 22 #include "hw/s390x/event-facility.h" 23 #include "hw/s390x/s390-pci-bus.h" 24 25 static inline SCLPDevice *get_sclp_device(void) 26 { 27 return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 28 } 29 30 /* Provide information about the configuration, CPUs and storage */ 31 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 32 { 33 ReadInfo *read_info = (ReadInfo *) sccb; 34 MachineState *machine = MACHINE(qdev_get_machine()); 35 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 36 CPUState *cpu; 37 int cpu_count = 0; 38 int i = 0; 39 int rnsize, rnmax; 40 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 41 42 CPU_FOREACH(cpu) { 43 cpu_count++; 44 } 45 46 /* CPU information */ 47 read_info->entries_cpu = cpu_to_be16(cpu_count); 48 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 49 read_info->highest_cpu = cpu_to_be16(max_cpus); 50 51 for (i = 0; i < cpu_count; i++) { 52 read_info->entries[i].address = i; 53 read_info->entries[i].type = 0; 54 } 55 56 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 57 SCLP_HAS_PCI_RECONFIG); 58 59 /* Memory Hotplug is only supported for the ccw machine type */ 60 if (mhd) { 61 mhd->standby_subregion_size = MEM_SECTION_SIZE; 62 /* Deduct the memory slot already used for core */ 63 if (slots > 0) { 64 while ((mhd->standby_subregion_size * (slots - 1) 65 < mhd->standby_mem_size)) { 66 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 67 } 68 } 69 /* 70 * Initialize mapping of guest standby memory sections indicating which 71 * are and are not online. Assume all standby memory begins offline. 72 */ 73 if (mhd->standby_state_map == 0) { 74 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 75 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 76 mhd->standby_subregion_size + 1) * 77 (mhd->standby_subregion_size / 78 MEM_SECTION_SIZE)); 79 } else { 80 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 81 MEM_SECTION_SIZE); 82 } 83 } 84 mhd->padded_ram_size = ram_size + mhd->pad_size; 85 mhd->rzm = 1 << mhd->increment_size; 86 87 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 88 } 89 90 rnsize = 1 << (sclp->increment_size - 20); 91 if (rnsize <= 128) { 92 read_info->rnsize = rnsize; 93 } else { 94 read_info->rnsize = 0; 95 read_info->rnsize2 = cpu_to_be32(rnsize); 96 } 97 98 rnmax = machine->maxram_size >> sclp->increment_size; 99 if (rnmax < 0x10000) { 100 read_info->rnmax = cpu_to_be16(rnmax); 101 } else { 102 read_info->rnmax = cpu_to_be16(0); 103 read_info->rnmax2 = cpu_to_be64(rnmax); 104 } 105 106 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 107 } 108 109 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 110 { 111 int i, assigned; 112 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 113 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 114 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 115 116 if (!mhd) { 117 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 118 return; 119 } 120 121 if ((ram_size >> mhd->increment_size) >= 0x10000) { 122 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 123 return; 124 } 125 126 /* Return information regarding core memory */ 127 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 128 assigned = ram_size >> mhd->increment_size; 129 storage_info->assigned = cpu_to_be16(assigned); 130 131 for (i = 0; i < assigned; i++) { 132 storage_info->entries[i] = cpu_to_be32(subincrement_id); 133 subincrement_id += SCLP_INCREMENT_UNIT; 134 } 135 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 136 } 137 138 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 139 { 140 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 141 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 142 143 if (!mhd) { 144 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 145 return; 146 } 147 148 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 149 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 150 return; 151 } 152 153 /* Return information regarding standby memory */ 154 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 155 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 156 mhd->increment_size); 157 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 158 mhd->increment_size); 159 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 160 } 161 162 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 163 uint16_t element) 164 { 165 int i, assigned, subincrement_id; 166 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 167 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 168 169 if (!mhd) { 170 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 171 return; 172 } 173 174 if (element != 1) { 175 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 176 return; 177 } 178 179 assigned = mhd->standby_mem_size >> mhd->increment_size; 180 attach_info->assigned = cpu_to_be16(assigned); 181 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 182 + SCLP_STARTING_SUBINCREMENT_ID; 183 for (i = 0; i < assigned; i++) { 184 attach_info->entries[i] = cpu_to_be32(subincrement_id); 185 subincrement_id += SCLP_INCREMENT_UNIT; 186 } 187 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 188 } 189 190 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 191 { 192 MemoryRegion *mr = NULL; 193 uint64_t this_subregion_size; 194 AssignStorage *assign_info = (AssignStorage *) sccb; 195 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 196 ram_addr_t assign_addr; 197 MemoryRegion *sysmem = get_system_memory(); 198 199 if (!mhd) { 200 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 201 return; 202 } 203 assign_addr = (assign_info->rn - 1) * mhd->rzm; 204 205 if ((assign_addr % MEM_SECTION_SIZE == 0) && 206 (assign_addr >= mhd->padded_ram_size)) { 207 /* Re-use existing memory region if found */ 208 mr = memory_region_find(sysmem, assign_addr, 1).mr; 209 memory_region_unref(mr); 210 if (!mr) { 211 212 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 213 214 /* offset to align to standby_subregion_size for allocation */ 215 ram_addr_t offset = assign_addr - 216 (assign_addr - mhd->padded_ram_size) 217 % mhd->standby_subregion_size; 218 219 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 220 char id[16]; 221 snprintf(id, 16, "standby.ram%d", 222 (int)((offset - mhd->padded_ram_size) / 223 mhd->standby_subregion_size) + 1); 224 225 /* Allocate a subregion of the calculated standby_subregion_size */ 226 if (offset + mhd->standby_subregion_size > 227 mhd->padded_ram_size + mhd->standby_mem_size) { 228 this_subregion_size = mhd->padded_ram_size + 229 mhd->standby_mem_size - offset; 230 } else { 231 this_subregion_size = mhd->standby_subregion_size; 232 } 233 234 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 235 &error_fatal); 236 /* This is a hack to make memory hotunplug work again. Once we have 237 * subdevices, we have to unparent them when unassigning memory, 238 * instead of doing it via the ref count of the MemoryRegion. */ 239 object_ref(OBJECT(standby_ram)); 240 object_unparent(OBJECT(standby_ram)); 241 vmstate_register_ram_global(standby_ram); 242 memory_region_add_subregion(sysmem, offset, standby_ram); 243 } 244 /* The specified subregion is no longer in standby */ 245 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 246 / MEM_SECTION_SIZE] = 1; 247 } 248 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 249 } 250 251 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 252 { 253 MemoryRegion *mr = NULL; 254 AssignStorage *assign_info = (AssignStorage *) sccb; 255 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 256 ram_addr_t unassign_addr; 257 MemoryRegion *sysmem = get_system_memory(); 258 259 if (!mhd) { 260 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 261 return; 262 } 263 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 264 265 /* if the addr is a multiple of 256 MB */ 266 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 267 (unassign_addr >= mhd->padded_ram_size)) { 268 mhd->standby_state_map[(unassign_addr - 269 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 270 271 /* find the specified memory region and destroy it */ 272 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 273 memory_region_unref(mr); 274 if (mr) { 275 int i; 276 int is_removable = 1; 277 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 278 (unassign_addr - mhd->padded_ram_size) 279 % mhd->standby_subregion_size); 280 /* Mark all affected subregions as 'standby' once again */ 281 for (i = 0; 282 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 283 i++) { 284 285 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 286 is_removable = 0; 287 break; 288 } 289 } 290 if (is_removable) { 291 memory_region_del_subregion(sysmem, mr); 292 object_unref(OBJECT(mr)); 293 } 294 } 295 } 296 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 297 } 298 299 /* Provide information about the CPU */ 300 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 301 { 302 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 303 CPUState *cpu; 304 int cpu_count = 0; 305 int i = 0; 306 307 CPU_FOREACH(cpu) { 308 cpu_count++; 309 } 310 311 cpu_info->nr_configured = cpu_to_be16(cpu_count); 312 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 313 cpu_info->nr_standby = cpu_to_be16(0); 314 315 /* The standby offset is 16-byte for each CPU */ 316 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 317 + cpu_info->nr_configured*sizeof(CPUEntry)); 318 319 for (i = 0; i < cpu_count; i++) { 320 cpu_info->entries[i].address = i; 321 cpu_info->entries[i].type = 0; 322 } 323 324 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 325 } 326 327 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 328 { 329 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 330 SCLPEventFacility *ef = sclp->event_facility; 331 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 332 333 switch (code & SCLP_CMD_CODE_MASK) { 334 case SCLP_CMDW_READ_SCP_INFO: 335 case SCLP_CMDW_READ_SCP_INFO_FORCED: 336 sclp_c->read_SCP_info(sclp, sccb); 337 break; 338 case SCLP_CMDW_READ_CPU_INFO: 339 sclp_c->read_cpu_info(sclp, sccb); 340 break; 341 case SCLP_READ_STORAGE_ELEMENT_INFO: 342 if (code & 0xff00) { 343 sclp_c->read_storage_element1_info(sclp, sccb); 344 } else { 345 sclp_c->read_storage_element0_info(sclp, sccb); 346 } 347 break; 348 case SCLP_ATTACH_STORAGE_ELEMENT: 349 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 350 break; 351 case SCLP_ASSIGN_STORAGE: 352 sclp_c->assign_storage(sclp, sccb); 353 break; 354 case SCLP_UNASSIGN_STORAGE: 355 sclp_c->unassign_storage(sclp, sccb); 356 break; 357 case SCLP_CMDW_CONFIGURE_PCI: 358 s390_pci_sclp_configure(1, sccb); 359 break; 360 case SCLP_CMDW_DECONFIGURE_PCI: 361 s390_pci_sclp_configure(0, sccb); 362 break; 363 default: 364 efc->command_handler(ef, sccb, code); 365 break; 366 } 367 } 368 369 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 370 { 371 SCLPDevice *sclp = get_sclp_device(); 372 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 373 int r = 0; 374 SCCB work_sccb; 375 376 hwaddr sccb_len = sizeof(SCCB); 377 378 /* first some basic checks on program checks */ 379 if (env->psw.mask & PSW_MASK_PSTATE) { 380 r = -PGM_PRIVILEGED; 381 goto out; 382 } 383 if (cpu_physical_memory_is_io(sccb)) { 384 r = -PGM_ADDRESSING; 385 goto out; 386 } 387 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 388 || (sccb & ~0x7ffffff8UL) != 0) { 389 r = -PGM_SPECIFICATION; 390 goto out; 391 } 392 393 /* 394 * we want to work on a private copy of the sccb, to prevent guests 395 * from playing dirty tricks by modifying the memory content after 396 * the host has checked the values 397 */ 398 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 399 400 /* Valid sccb sizes */ 401 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 402 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 403 r = -PGM_SPECIFICATION; 404 goto out; 405 } 406 407 sclp_c->execute(sclp, (SCCB *)&work_sccb, code); 408 409 cpu_physical_memory_write(sccb, &work_sccb, 410 be16_to_cpu(work_sccb.h.length)); 411 412 sclp_c->service_interrupt(sclp, sccb); 413 414 out: 415 return r; 416 } 417 418 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 419 { 420 SCLPEventFacility *ef = sclp->event_facility; 421 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 422 423 uint32_t param = sccb & ~3; 424 425 /* Indicate whether an event is still pending */ 426 param |= efc->event_pending(ef) ? 1 : 0; 427 428 if (!param) { 429 /* No need to send an interrupt, there's nothing to be notified about */ 430 return; 431 } 432 s390_sclp_extint(param); 433 } 434 435 void sclp_service_interrupt(uint32_t sccb) 436 { 437 SCLPDevice *sclp = get_sclp_device(); 438 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 439 440 sclp_c->service_interrupt(sclp, sccb); 441 } 442 443 /* qemu object creation and initialization functions */ 444 445 void s390_sclp_init(void) 446 { 447 Object *new = object_new(TYPE_SCLP); 448 449 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 450 NULL); 451 object_unref(OBJECT(new)); 452 qdev_init_nofail(DEVICE(new)); 453 } 454 455 static void sclp_realize(DeviceState *dev, Error **errp) 456 { 457 MachineState *machine = MACHINE(qdev_get_machine()); 458 SCLPDevice *sclp = SCLP(dev); 459 Error *err = NULL; 460 uint64_t hw_limit; 461 int ret; 462 463 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 464 &err); 465 if (err) { 466 goto out; 467 } 468 469 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 470 if (ret == -E2BIG) { 471 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 472 hw_limit >> 30); 473 } else if (ret) { 474 error_setg(&err, "qemu: setting the guest size failed"); 475 } 476 477 out: 478 error_propagate(errp, err); 479 } 480 481 static void sclp_memory_init(SCLPDevice *sclp) 482 { 483 MachineState *machine = MACHINE(qdev_get_machine()); 484 ram_addr_t initial_mem = machine->ram_size; 485 ram_addr_t max_mem = machine->maxram_size; 486 ram_addr_t standby_mem = max_mem - initial_mem; 487 ram_addr_t pad_mem = 0; 488 int increment_size = 20; 489 490 /* The storage increment size is a multiple of 1M and is a power of 2. 491 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 492 * The variable 'increment_size' is an exponent of 2 that can be 493 * used to calculate the size (in bytes) of an increment. */ 494 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 495 increment_size++; 496 } 497 if (machine->ram_slots) { 498 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 499 increment_size++; 500 } 501 } 502 sclp->increment_size = increment_size; 503 504 /* The core and standby memory areas need to be aligned with 505 * the increment size. In effect, this can cause the 506 * user-specified memory size to be rounded down to align 507 * with the nearest increment boundary. */ 508 initial_mem = initial_mem >> increment_size << increment_size; 509 standby_mem = standby_mem >> increment_size << increment_size; 510 511 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 512 calculate the pad size necessary to force this boundary. */ 513 if (machine->ram_slots && standby_mem) { 514 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 515 516 if (initial_mem % MEM_SECTION_SIZE) { 517 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 518 } 519 mhd->increment_size = increment_size; 520 mhd->pad_size = pad_mem; 521 mhd->standby_mem_size = standby_mem; 522 } 523 machine->ram_size = initial_mem; 524 machine->maxram_size = initial_mem + pad_mem + standby_mem; 525 /* let's propagate the changed ram size into the global variable. */ 526 ram_size = initial_mem; 527 } 528 529 static void sclp_init(Object *obj) 530 { 531 SCLPDevice *sclp = SCLP(obj); 532 Object *new; 533 534 new = object_new(TYPE_SCLP_EVENT_FACILITY); 535 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 536 /* qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS */ 537 qdev_set_parent_bus(DEVICE(new), sysbus_get_default()); 538 object_unref(new); 539 sclp->event_facility = EVENT_FACILITY(new); 540 541 sclp_memory_init(sclp); 542 } 543 544 static void sclp_class_init(ObjectClass *oc, void *data) 545 { 546 SCLPDeviceClass *sc = SCLP_CLASS(oc); 547 DeviceClass *dc = DEVICE_CLASS(oc); 548 549 dc->desc = "SCLP (Service-Call Logical Processor)"; 550 dc->realize = sclp_realize; 551 dc->hotpluggable = false; 552 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 553 554 sc->read_SCP_info = read_SCP_info; 555 sc->read_storage_element0_info = read_storage_element0_info; 556 sc->read_storage_element1_info = read_storage_element1_info; 557 sc->attach_storage_element = attach_storage_element; 558 sc->assign_storage = assign_storage; 559 sc->unassign_storage = unassign_storage; 560 sc->read_cpu_info = sclp_read_cpu_info; 561 sc->execute = sclp_execute; 562 sc->service_interrupt = service_interrupt; 563 } 564 565 static TypeInfo sclp_info = { 566 .name = TYPE_SCLP, 567 .parent = TYPE_DEVICE, 568 .instance_init = sclp_init, 569 .instance_size = sizeof(SCLPDevice), 570 .class_init = sclp_class_init, 571 .class_size = sizeof(SCLPDeviceClass), 572 }; 573 574 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 575 { 576 DeviceState *dev; 577 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 578 object_property_add_child(qdev_get_machine(), 579 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 580 OBJECT(dev), NULL); 581 qdev_init_nofail(dev); 582 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 583 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 584 } 585 586 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 587 { 588 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 589 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 590 } 591 592 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 593 void *data) 594 { 595 DeviceClass *dc = DEVICE_CLASS(klass); 596 597 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 598 } 599 600 static TypeInfo sclp_memory_hotplug_dev_info = { 601 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 602 .parent = TYPE_SYS_BUS_DEVICE, 603 .instance_size = sizeof(sclpMemoryHotplugDev), 604 .class_init = sclp_memory_hotplug_dev_class_init, 605 }; 606 607 static void register_types(void) 608 { 609 type_register_static(&sclp_memory_hotplug_dev_info); 610 type_register_static(&sclp_info); 611 } 612 type_init(register_types); 613