1 /* 2 * SCLP Support 3 * 4 * Copyright IBM, Corp. 2012 5 * 6 * Authors: 7 * Christian Borntraeger <borntraeger@de.ibm.com> 8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your 11 * option) any later version. See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/error.h" 17 #include "cpu.h" 18 #include "sysemu/kvm.h" 19 #include "exec/memory.h" 20 #include "sysemu/sysemu.h" 21 #include "exec/address-spaces.h" 22 #include "hw/boards.h" 23 #include "hw/s390x/sclp.h" 24 #include "hw/s390x/event-facility.h" 25 #include "hw/s390x/s390-pci-bus.h" 26 27 static inline SCLPDevice *get_sclp_device(void) 28 { 29 return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); 30 } 31 32 /* Provide information about the configuration, CPUs and storage */ 33 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) 34 { 35 ReadInfo *read_info = (ReadInfo *) sccb; 36 MachineState *machine = MACHINE(qdev_get_machine()); 37 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 38 CPUState *cpu; 39 int cpu_count = 0; 40 int i = 0; 41 int rnsize, rnmax; 42 int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state)); 43 44 CPU_FOREACH(cpu) { 45 cpu_count++; 46 } 47 48 /* CPU information */ 49 read_info->entries_cpu = cpu_to_be16(cpu_count); 50 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); 51 read_info->highest_cpu = cpu_to_be16(max_cpus); 52 53 for (i = 0; i < cpu_count; i++) { 54 read_info->entries[i].address = i; 55 read_info->entries[i].type = 0; 56 } 57 58 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | 59 SCLP_HAS_PCI_RECONFIG); 60 61 /* Memory Hotplug is only supported for the ccw machine type */ 62 if (mhd) { 63 mhd->standby_subregion_size = MEM_SECTION_SIZE; 64 /* Deduct the memory slot already used for core */ 65 if (slots > 0) { 66 while ((mhd->standby_subregion_size * (slots - 1) 67 < mhd->standby_mem_size)) { 68 mhd->standby_subregion_size = mhd->standby_subregion_size << 1; 69 } 70 } 71 /* 72 * Initialize mapping of guest standby memory sections indicating which 73 * are and are not online. Assume all standby memory begins offline. 74 */ 75 if (mhd->standby_state_map == 0) { 76 if (mhd->standby_mem_size % mhd->standby_subregion_size) { 77 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / 78 mhd->standby_subregion_size + 1) * 79 (mhd->standby_subregion_size / 80 MEM_SECTION_SIZE)); 81 } else { 82 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / 83 MEM_SECTION_SIZE); 84 } 85 } 86 mhd->padded_ram_size = ram_size + mhd->pad_size; 87 mhd->rzm = 1 << mhd->increment_size; 88 89 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); 90 } 91 92 rnsize = 1 << (sclp->increment_size - 20); 93 if (rnsize <= 128) { 94 read_info->rnsize = rnsize; 95 } else { 96 read_info->rnsize = 0; 97 read_info->rnsize2 = cpu_to_be32(rnsize); 98 } 99 100 rnmax = machine->maxram_size >> sclp->increment_size; 101 if (rnmax < 0x10000) { 102 read_info->rnmax = cpu_to_be16(rnmax); 103 } else { 104 read_info->rnmax = cpu_to_be16(0); 105 read_info->rnmax2 = cpu_to_be64(rnmax); 106 } 107 108 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 109 } 110 111 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) 112 { 113 int i, assigned; 114 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; 115 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 116 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 117 118 if (!mhd) { 119 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 120 return; 121 } 122 123 if ((ram_size >> mhd->increment_size) >= 0x10000) { 124 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 125 return; 126 } 127 128 /* Return information regarding core memory */ 129 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 130 assigned = ram_size >> mhd->increment_size; 131 storage_info->assigned = cpu_to_be16(assigned); 132 133 for (i = 0; i < assigned; i++) { 134 storage_info->entries[i] = cpu_to_be32(subincrement_id); 135 subincrement_id += SCLP_INCREMENT_UNIT; 136 } 137 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 138 } 139 140 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) 141 { 142 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; 143 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 144 145 if (!mhd) { 146 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 147 return; 148 } 149 150 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { 151 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); 152 return; 153 } 154 155 /* Return information regarding standby memory */ 156 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); 157 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> 158 mhd->increment_size); 159 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> 160 mhd->increment_size); 161 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); 162 } 163 164 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, 165 uint16_t element) 166 { 167 int i, assigned, subincrement_id; 168 AttachStorageElement *attach_info = (AttachStorageElement *) sccb; 169 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 170 171 if (!mhd) { 172 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 173 return; 174 } 175 176 if (element != 1) { 177 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 178 return; 179 } 180 181 assigned = mhd->standby_mem_size >> mhd->increment_size; 182 attach_info->assigned = cpu_to_be16(assigned); 183 subincrement_id = ((ram_size >> mhd->increment_size) << 16) 184 + SCLP_STARTING_SUBINCREMENT_ID; 185 for (i = 0; i < assigned; i++) { 186 attach_info->entries[i] = cpu_to_be32(subincrement_id); 187 subincrement_id += SCLP_INCREMENT_UNIT; 188 } 189 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 190 } 191 192 static void assign_storage(SCLPDevice *sclp, SCCB *sccb) 193 { 194 MemoryRegion *mr = NULL; 195 uint64_t this_subregion_size; 196 AssignStorage *assign_info = (AssignStorage *) sccb; 197 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 198 ram_addr_t assign_addr; 199 MemoryRegion *sysmem = get_system_memory(); 200 201 if (!mhd) { 202 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 203 return; 204 } 205 assign_addr = (assign_info->rn - 1) * mhd->rzm; 206 207 if ((assign_addr % MEM_SECTION_SIZE == 0) && 208 (assign_addr >= mhd->padded_ram_size)) { 209 /* Re-use existing memory region if found */ 210 mr = memory_region_find(sysmem, assign_addr, 1).mr; 211 memory_region_unref(mr); 212 if (!mr) { 213 214 MemoryRegion *standby_ram = g_new(MemoryRegion, 1); 215 216 /* offset to align to standby_subregion_size for allocation */ 217 ram_addr_t offset = assign_addr - 218 (assign_addr - mhd->padded_ram_size) 219 % mhd->standby_subregion_size; 220 221 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ 222 char id[16]; 223 snprintf(id, 16, "standby.ram%d", 224 (int)((offset - mhd->padded_ram_size) / 225 mhd->standby_subregion_size) + 1); 226 227 /* Allocate a subregion of the calculated standby_subregion_size */ 228 if (offset + mhd->standby_subregion_size > 229 mhd->padded_ram_size + mhd->standby_mem_size) { 230 this_subregion_size = mhd->padded_ram_size + 231 mhd->standby_mem_size - offset; 232 } else { 233 this_subregion_size = mhd->standby_subregion_size; 234 } 235 236 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, 237 &error_fatal); 238 /* This is a hack to make memory hotunplug work again. Once we have 239 * subdevices, we have to unparent them when unassigning memory, 240 * instead of doing it via the ref count of the MemoryRegion. */ 241 object_ref(OBJECT(standby_ram)); 242 object_unparent(OBJECT(standby_ram)); 243 vmstate_register_ram_global(standby_ram); 244 memory_region_add_subregion(sysmem, offset, standby_ram); 245 } 246 /* The specified subregion is no longer in standby */ 247 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) 248 / MEM_SECTION_SIZE] = 1; 249 } 250 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 251 } 252 253 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) 254 { 255 MemoryRegion *mr = NULL; 256 AssignStorage *assign_info = (AssignStorage *) sccb; 257 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); 258 ram_addr_t unassign_addr; 259 MemoryRegion *sysmem = get_system_memory(); 260 261 if (!mhd) { 262 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); 263 return; 264 } 265 unassign_addr = (assign_info->rn - 1) * mhd->rzm; 266 267 /* if the addr is a multiple of 256 MB */ 268 if ((unassign_addr % MEM_SECTION_SIZE == 0) && 269 (unassign_addr >= mhd->padded_ram_size)) { 270 mhd->standby_state_map[(unassign_addr - 271 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; 272 273 /* find the specified memory region and destroy it */ 274 mr = memory_region_find(sysmem, unassign_addr, 1).mr; 275 memory_region_unref(mr); 276 if (mr) { 277 int i; 278 int is_removable = 1; 279 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - 280 (unassign_addr - mhd->padded_ram_size) 281 % mhd->standby_subregion_size); 282 /* Mark all affected subregions as 'standby' once again */ 283 for (i = 0; 284 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); 285 i++) { 286 287 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { 288 is_removable = 0; 289 break; 290 } 291 } 292 if (is_removable) { 293 memory_region_del_subregion(sysmem, mr); 294 object_unref(OBJECT(mr)); 295 } 296 } 297 } 298 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); 299 } 300 301 /* Provide information about the CPU */ 302 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) 303 { 304 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; 305 CPUState *cpu; 306 int cpu_count = 0; 307 int i = 0; 308 309 CPU_FOREACH(cpu) { 310 cpu_count++; 311 } 312 313 cpu_info->nr_configured = cpu_to_be16(cpu_count); 314 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); 315 cpu_info->nr_standby = cpu_to_be16(0); 316 317 /* The standby offset is 16-byte for each CPU */ 318 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured 319 + cpu_info->nr_configured*sizeof(CPUEntry)); 320 321 for (i = 0; i < cpu_count; i++) { 322 cpu_info->entries[i].address = i; 323 cpu_info->entries[i].type = 0; 324 } 325 326 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); 327 } 328 329 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) 330 { 331 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 332 SCLPEventFacility *ef = sclp->event_facility; 333 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 334 335 switch (code & SCLP_CMD_CODE_MASK) { 336 case SCLP_CMDW_READ_SCP_INFO: 337 case SCLP_CMDW_READ_SCP_INFO_FORCED: 338 sclp_c->read_SCP_info(sclp, sccb); 339 break; 340 case SCLP_CMDW_READ_CPU_INFO: 341 sclp_c->read_cpu_info(sclp, sccb); 342 break; 343 case SCLP_READ_STORAGE_ELEMENT_INFO: 344 if (code & 0xff00) { 345 sclp_c->read_storage_element1_info(sclp, sccb); 346 } else { 347 sclp_c->read_storage_element0_info(sclp, sccb); 348 } 349 break; 350 case SCLP_ATTACH_STORAGE_ELEMENT: 351 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); 352 break; 353 case SCLP_ASSIGN_STORAGE: 354 sclp_c->assign_storage(sclp, sccb); 355 break; 356 case SCLP_UNASSIGN_STORAGE: 357 sclp_c->unassign_storage(sclp, sccb); 358 break; 359 case SCLP_CMDW_CONFIGURE_PCI: 360 s390_pci_sclp_configure(sccb); 361 break; 362 case SCLP_CMDW_DECONFIGURE_PCI: 363 s390_pci_sclp_deconfigure(sccb); 364 break; 365 default: 366 efc->command_handler(ef, sccb, code); 367 break; 368 } 369 } 370 371 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) 372 { 373 SCLPDevice *sclp = get_sclp_device(); 374 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 375 int r = 0; 376 SCCB work_sccb; 377 378 hwaddr sccb_len = sizeof(SCCB); 379 380 /* first some basic checks on program checks */ 381 if (env->psw.mask & PSW_MASK_PSTATE) { 382 r = -PGM_PRIVILEGED; 383 goto out; 384 } 385 if (cpu_physical_memory_is_io(sccb)) { 386 r = -PGM_ADDRESSING; 387 goto out; 388 } 389 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa 390 || (sccb & ~0x7ffffff8UL) != 0) { 391 r = -PGM_SPECIFICATION; 392 goto out; 393 } 394 395 /* 396 * we want to work on a private copy of the sccb, to prevent guests 397 * from playing dirty tricks by modifying the memory content after 398 * the host has checked the values 399 */ 400 cpu_physical_memory_read(sccb, &work_sccb, sccb_len); 401 402 /* Valid sccb sizes */ 403 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || 404 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { 405 r = -PGM_SPECIFICATION; 406 goto out; 407 } 408 409 sclp_c->execute(sclp, (SCCB *)&work_sccb, code); 410 411 cpu_physical_memory_write(sccb, &work_sccb, 412 be16_to_cpu(work_sccb.h.length)); 413 414 sclp_c->service_interrupt(sclp, sccb); 415 416 out: 417 return r; 418 } 419 420 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) 421 { 422 SCLPEventFacility *ef = sclp->event_facility; 423 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); 424 425 uint32_t param = sccb & ~3; 426 427 /* Indicate whether an event is still pending */ 428 param |= efc->event_pending(ef) ? 1 : 0; 429 430 if (!param) { 431 /* No need to send an interrupt, there's nothing to be notified about */ 432 return; 433 } 434 s390_sclp_extint(param); 435 } 436 437 void sclp_service_interrupt(uint32_t sccb) 438 { 439 SCLPDevice *sclp = get_sclp_device(); 440 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); 441 442 sclp_c->service_interrupt(sclp, sccb); 443 } 444 445 /* qemu object creation and initialization functions */ 446 447 void s390_sclp_init(void) 448 { 449 Object *new = object_new(TYPE_SCLP); 450 451 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, 452 NULL); 453 object_unref(OBJECT(new)); 454 qdev_init_nofail(DEVICE(new)); 455 } 456 457 static void sclp_realize(DeviceState *dev, Error **errp) 458 { 459 MachineState *machine = MACHINE(qdev_get_machine()); 460 SCLPDevice *sclp = SCLP(dev); 461 Error *err = NULL; 462 uint64_t hw_limit; 463 int ret; 464 465 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", 466 &err); 467 if (err) { 468 goto out; 469 } 470 /* 471 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long 472 * as we can't find a fitting bus via the qom tree, we have to add the 473 * event facility to the sysbus, so e.g. a sclp console can be created. 474 */ 475 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default()); 476 477 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit); 478 if (ret == -E2BIG) { 479 error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB", 480 hw_limit >> 30); 481 } else if (ret) { 482 error_setg(&err, "qemu: setting the guest size failed"); 483 } 484 485 out: 486 error_propagate(errp, err); 487 } 488 489 static void sclp_memory_init(SCLPDevice *sclp) 490 { 491 MachineState *machine = MACHINE(qdev_get_machine()); 492 ram_addr_t initial_mem = machine->ram_size; 493 ram_addr_t max_mem = machine->maxram_size; 494 ram_addr_t standby_mem = max_mem - initial_mem; 495 ram_addr_t pad_mem = 0; 496 int increment_size = 20; 497 498 /* The storage increment size is a multiple of 1M and is a power of 2. 499 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. 500 * The variable 'increment_size' is an exponent of 2 that can be 501 * used to calculate the size (in bytes) of an increment. */ 502 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 503 increment_size++; 504 } 505 if (machine->ram_slots) { 506 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) { 507 increment_size++; 508 } 509 } 510 sclp->increment_size = increment_size; 511 512 /* The core and standby memory areas need to be aligned with 513 * the increment size. In effect, this can cause the 514 * user-specified memory size to be rounded down to align 515 * with the nearest increment boundary. */ 516 initial_mem = initial_mem >> increment_size << increment_size; 517 standby_mem = standby_mem >> increment_size << increment_size; 518 519 /* If the size of ram is not on a MEM_SECTION_SIZE boundary, 520 calculate the pad size necessary to force this boundary. */ 521 if (machine->ram_slots && standby_mem) { 522 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev(); 523 524 if (initial_mem % MEM_SECTION_SIZE) { 525 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE; 526 } 527 mhd->increment_size = increment_size; 528 mhd->pad_size = pad_mem; 529 mhd->standby_mem_size = standby_mem; 530 } 531 machine->ram_size = initial_mem; 532 machine->maxram_size = initial_mem + pad_mem + standby_mem; 533 /* let's propagate the changed ram size into the global variable. */ 534 ram_size = initial_mem; 535 } 536 537 static void sclp_init(Object *obj) 538 { 539 SCLPDevice *sclp = SCLP(obj); 540 Object *new; 541 542 new = object_new(TYPE_SCLP_EVENT_FACILITY); 543 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); 544 object_unref(new); 545 sclp->event_facility = EVENT_FACILITY(new); 546 547 sclp_memory_init(sclp); 548 } 549 550 static void sclp_class_init(ObjectClass *oc, void *data) 551 { 552 SCLPDeviceClass *sc = SCLP_CLASS(oc); 553 DeviceClass *dc = DEVICE_CLASS(oc); 554 555 dc->desc = "SCLP (Service-Call Logical Processor)"; 556 dc->realize = sclp_realize; 557 dc->hotpluggable = false; 558 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 559 560 sc->read_SCP_info = read_SCP_info; 561 sc->read_storage_element0_info = read_storage_element0_info; 562 sc->read_storage_element1_info = read_storage_element1_info; 563 sc->attach_storage_element = attach_storage_element; 564 sc->assign_storage = assign_storage; 565 sc->unassign_storage = unassign_storage; 566 sc->read_cpu_info = sclp_read_cpu_info; 567 sc->execute = sclp_execute; 568 sc->service_interrupt = service_interrupt; 569 } 570 571 static TypeInfo sclp_info = { 572 .name = TYPE_SCLP, 573 .parent = TYPE_DEVICE, 574 .instance_init = sclp_init, 575 .instance_size = sizeof(SCLPDevice), 576 .class_init = sclp_class_init, 577 .class_size = sizeof(SCLPDeviceClass), 578 }; 579 580 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) 581 { 582 DeviceState *dev; 583 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); 584 object_property_add_child(qdev_get_machine(), 585 TYPE_SCLP_MEMORY_HOTPLUG_DEV, 586 OBJECT(dev), NULL); 587 qdev_init_nofail(dev); 588 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 589 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 590 } 591 592 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) 593 { 594 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( 595 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); 596 } 597 598 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, 599 void *data) 600 { 601 DeviceClass *dc = DEVICE_CLASS(klass); 602 603 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 604 } 605 606 static TypeInfo sclp_memory_hotplug_dev_info = { 607 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, 608 .parent = TYPE_SYS_BUS_DEVICE, 609 .instance_size = sizeof(sclpMemoryHotplugDev), 610 .class_init = sclp_memory_hotplug_dev_class_init, 611 }; 612 613 static void register_types(void) 614 { 615 type_register_static(&sclp_memory_hotplug_dev_info); 616 type_register_static(&sclp_info); 617 } 618 type_init(register_types); 619