xref: /openbmc/qemu/hw/s390x/sclp.c (revision 2d7fedeb)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "sysemu/kvm.h"
19 #include "exec/memory.h"
20 #include "sysemu/sysemu.h"
21 #include "exec/address-spaces.h"
22 #include "hw/boards.h"
23 #include "hw/s390x/sclp.h"
24 #include "hw/s390x/event-facility.h"
25 #include "hw/s390x/s390-pci-bus.h"
26 
27 static inline SCLPDevice *get_sclp_device(void)
28 {
29     return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
30 }
31 
32 /* Provide information about the configuration, CPUs and storage */
33 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
34 {
35     ReadInfo *read_info = (ReadInfo *) sccb;
36     MachineState *machine = MACHINE(qdev_get_machine());
37     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
38     CPUState *cpu;
39     int cpu_count = 0;
40     int i = 0;
41     int rnsize, rnmax;
42     int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
43 
44     CPU_FOREACH(cpu) {
45         cpu_count++;
46     }
47 
48     /* CPU information */
49     read_info->entries_cpu = cpu_to_be16(cpu_count);
50     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
51     read_info->highest_cpu = cpu_to_be16(max_cpus);
52 
53     for (i = 0; i < cpu_count; i++) {
54         read_info->entries[i].address = i;
55         read_info->entries[i].type = 0;
56     }
57 
58     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
59                                         SCLP_HAS_PCI_RECONFIG);
60 
61     /* Memory Hotplug is only supported for the ccw machine type */
62     if (mhd) {
63         mhd->standby_subregion_size = MEM_SECTION_SIZE;
64         /* Deduct the memory slot already used for core */
65         if (slots > 0) {
66             while ((mhd->standby_subregion_size * (slots - 1)
67                     < mhd->standby_mem_size)) {
68                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
69             }
70         }
71         /*
72          * Initialize mapping of guest standby memory sections indicating which
73          * are and are not online. Assume all standby memory begins offline.
74          */
75         if (mhd->standby_state_map == 0) {
76             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
77                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
78                                              mhd->standby_subregion_size + 1) *
79                                              (mhd->standby_subregion_size /
80                                              MEM_SECTION_SIZE));
81             } else {
82                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
83                                                    MEM_SECTION_SIZE);
84             }
85         }
86         mhd->padded_ram_size = ram_size + mhd->pad_size;
87         mhd->rzm = 1 << mhd->increment_size;
88 
89         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
90     }
91 
92     rnsize = 1 << (sclp->increment_size - 20);
93     if (rnsize <= 128) {
94         read_info->rnsize = rnsize;
95     } else {
96         read_info->rnsize = 0;
97         read_info->rnsize2 = cpu_to_be32(rnsize);
98     }
99 
100     rnmax = machine->maxram_size >> sclp->increment_size;
101     if (rnmax < 0x10000) {
102         read_info->rnmax = cpu_to_be16(rnmax);
103     } else {
104         read_info->rnmax = cpu_to_be16(0);
105         read_info->rnmax2 = cpu_to_be64(rnmax);
106     }
107 
108     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
109 }
110 
111 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
112 {
113     int i, assigned;
114     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
115     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
116     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
117 
118     if (!mhd) {
119         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
120         return;
121     }
122 
123     if ((ram_size >> mhd->increment_size) >= 0x10000) {
124         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
125         return;
126     }
127 
128     /* Return information regarding core memory */
129     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
130     assigned = ram_size >> mhd->increment_size;
131     storage_info->assigned = cpu_to_be16(assigned);
132 
133     for (i = 0; i < assigned; i++) {
134         storage_info->entries[i] = cpu_to_be32(subincrement_id);
135         subincrement_id += SCLP_INCREMENT_UNIT;
136     }
137     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
138 }
139 
140 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
141 {
142     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
143     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
144 
145     if (!mhd) {
146         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
147         return;
148     }
149 
150     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
151         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
152         return;
153     }
154 
155     /* Return information regarding standby memory */
156     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
157     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
158                                          mhd->increment_size);
159     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
160                                         mhd->increment_size);
161     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
162 }
163 
164 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
165                                    uint16_t element)
166 {
167     int i, assigned, subincrement_id;
168     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
169     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
170 
171     if (!mhd) {
172         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
173         return;
174     }
175 
176     if (element != 1) {
177         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
178         return;
179     }
180 
181     assigned = mhd->standby_mem_size >> mhd->increment_size;
182     attach_info->assigned = cpu_to_be16(assigned);
183     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
184                       + SCLP_STARTING_SUBINCREMENT_ID;
185     for (i = 0; i < assigned; i++) {
186         attach_info->entries[i] = cpu_to_be32(subincrement_id);
187         subincrement_id += SCLP_INCREMENT_UNIT;
188     }
189     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
190 }
191 
192 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
193 {
194     MemoryRegion *mr = NULL;
195     uint64_t this_subregion_size;
196     AssignStorage *assign_info = (AssignStorage *) sccb;
197     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
198     ram_addr_t assign_addr;
199     MemoryRegion *sysmem = get_system_memory();
200 
201     if (!mhd) {
202         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
203         return;
204     }
205     assign_addr = (assign_info->rn - 1) * mhd->rzm;
206 
207     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
208         (assign_addr >= mhd->padded_ram_size)) {
209         /* Re-use existing memory region if found */
210         mr = memory_region_find(sysmem, assign_addr, 1).mr;
211         memory_region_unref(mr);
212         if (!mr) {
213 
214             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
215 
216             /* offset to align to standby_subregion_size for allocation */
217             ram_addr_t offset = assign_addr -
218                                 (assign_addr - mhd->padded_ram_size)
219                                 % mhd->standby_subregion_size;
220 
221             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
222             char id[16];
223             snprintf(id, 16, "standby.ram%d",
224                      (int)((offset - mhd->padded_ram_size) /
225                      mhd->standby_subregion_size) + 1);
226 
227             /* Allocate a subregion of the calculated standby_subregion_size */
228             if (offset + mhd->standby_subregion_size >
229                 mhd->padded_ram_size + mhd->standby_mem_size) {
230                 this_subregion_size = mhd->padded_ram_size +
231                   mhd->standby_mem_size - offset;
232             } else {
233                 this_subregion_size = mhd->standby_subregion_size;
234             }
235 
236             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
237                                    &error_fatal);
238             /* This is a hack to make memory hotunplug work again. Once we have
239              * subdevices, we have to unparent them when unassigning memory,
240              * instead of doing it via the ref count of the MemoryRegion. */
241             object_ref(OBJECT(standby_ram));
242             object_unparent(OBJECT(standby_ram));
243             vmstate_register_ram_global(standby_ram);
244             memory_region_add_subregion(sysmem, offset, standby_ram);
245         }
246         /* The specified subregion is no longer in standby */
247         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
248                                / MEM_SECTION_SIZE] = 1;
249     }
250     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
251 }
252 
253 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
254 {
255     MemoryRegion *mr = NULL;
256     AssignStorage *assign_info = (AssignStorage *) sccb;
257     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
258     ram_addr_t unassign_addr;
259     MemoryRegion *sysmem = get_system_memory();
260 
261     if (!mhd) {
262         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
263         return;
264     }
265     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
266 
267     /* if the addr is a multiple of 256 MB */
268     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
269         (unassign_addr >= mhd->padded_ram_size)) {
270         mhd->standby_state_map[(unassign_addr -
271                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
272 
273         /* find the specified memory region and destroy it */
274         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
275         memory_region_unref(mr);
276         if (mr) {
277             int i;
278             int is_removable = 1;
279             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
280                                      (unassign_addr - mhd->padded_ram_size)
281                                      % mhd->standby_subregion_size);
282             /* Mark all affected subregions as 'standby' once again */
283             for (i = 0;
284                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
285                  i++) {
286 
287                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
288                     is_removable = 0;
289                     break;
290                 }
291             }
292             if (is_removable) {
293                 memory_region_del_subregion(sysmem, mr);
294                 object_unref(OBJECT(mr));
295             }
296         }
297     }
298     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
299 }
300 
301 /* Provide information about the CPU */
302 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
303 {
304     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
305     CPUState *cpu;
306     int cpu_count = 0;
307     int i = 0;
308 
309     CPU_FOREACH(cpu) {
310         cpu_count++;
311     }
312 
313     cpu_info->nr_configured = cpu_to_be16(cpu_count);
314     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
315     cpu_info->nr_standby = cpu_to_be16(0);
316 
317     /* The standby offset is 16-byte for each CPU */
318     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
319         + cpu_info->nr_configured*sizeof(CPUEntry));
320 
321     for (i = 0; i < cpu_count; i++) {
322         cpu_info->entries[i].address = i;
323         cpu_info->entries[i].type = 0;
324     }
325 
326     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
327 }
328 
329 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
330 {
331     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
332     SCLPEventFacility *ef = sclp->event_facility;
333     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
334 
335     switch (code & SCLP_CMD_CODE_MASK) {
336     case SCLP_CMDW_READ_SCP_INFO:
337     case SCLP_CMDW_READ_SCP_INFO_FORCED:
338         sclp_c->read_SCP_info(sclp, sccb);
339         break;
340     case SCLP_CMDW_READ_CPU_INFO:
341         sclp_c->read_cpu_info(sclp, sccb);
342         break;
343     case SCLP_READ_STORAGE_ELEMENT_INFO:
344         if (code & 0xff00) {
345             sclp_c->read_storage_element1_info(sclp, sccb);
346         } else {
347             sclp_c->read_storage_element0_info(sclp, sccb);
348         }
349         break;
350     case SCLP_ATTACH_STORAGE_ELEMENT:
351         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
352         break;
353     case SCLP_ASSIGN_STORAGE:
354         sclp_c->assign_storage(sclp, sccb);
355         break;
356     case SCLP_UNASSIGN_STORAGE:
357         sclp_c->unassign_storage(sclp, sccb);
358         break;
359     case SCLP_CMDW_CONFIGURE_PCI:
360         s390_pci_sclp_configure(sccb);
361         break;
362     case SCLP_CMDW_DECONFIGURE_PCI:
363         s390_pci_sclp_deconfigure(sccb);
364         break;
365     default:
366         efc->command_handler(ef, sccb, code);
367         break;
368     }
369 }
370 
371 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
372 {
373     SCLPDevice *sclp = get_sclp_device();
374     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
375     int r = 0;
376     SCCB work_sccb;
377 
378     hwaddr sccb_len = sizeof(SCCB);
379 
380     /* first some basic checks on program checks */
381     if (env->psw.mask & PSW_MASK_PSTATE) {
382         r = -PGM_PRIVILEGED;
383         goto out;
384     }
385     if (cpu_physical_memory_is_io(sccb)) {
386         r = -PGM_ADDRESSING;
387         goto out;
388     }
389     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
390         || (sccb & ~0x7ffffff8UL) != 0) {
391         r = -PGM_SPECIFICATION;
392         goto out;
393     }
394 
395     /*
396      * we want to work on a private copy of the sccb, to prevent guests
397      * from playing dirty tricks by modifying the memory content after
398      * the host has checked the values
399      */
400     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
401 
402     /* Valid sccb sizes */
403     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
404         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
405         r = -PGM_SPECIFICATION;
406         goto out;
407     }
408 
409     sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
410 
411     cpu_physical_memory_write(sccb, &work_sccb,
412                               be16_to_cpu(work_sccb.h.length));
413 
414     sclp_c->service_interrupt(sclp, sccb);
415 
416 out:
417     return r;
418 }
419 
420 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
421 {
422     SCLPEventFacility *ef = sclp->event_facility;
423     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
424 
425     uint32_t param = sccb & ~3;
426 
427     /* Indicate whether an event is still pending */
428     param |= efc->event_pending(ef) ? 1 : 0;
429 
430     if (!param) {
431         /* No need to send an interrupt, there's nothing to be notified about */
432         return;
433     }
434     s390_sclp_extint(param);
435 }
436 
437 void sclp_service_interrupt(uint32_t sccb)
438 {
439     SCLPDevice *sclp = get_sclp_device();
440     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
441 
442     sclp_c->service_interrupt(sclp, sccb);
443 }
444 
445 /* qemu object creation and initialization functions */
446 
447 void s390_sclp_init(void)
448 {
449     Object *new = object_new(TYPE_SCLP);
450 
451     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
452                               NULL);
453     object_unref(OBJECT(new));
454     qdev_init_nofail(DEVICE(new));
455 }
456 
457 static void sclp_realize(DeviceState *dev, Error **errp)
458 {
459     MachineState *machine = MACHINE(qdev_get_machine());
460     SCLPDevice *sclp = SCLP(dev);
461     Error *err = NULL;
462     uint64_t hw_limit;
463     int ret;
464 
465     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
466                              &err);
467     if (err) {
468         goto out;
469     }
470     /*
471      * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
472      * as we can't find a fitting bus via the qom tree, we have to add the
473      * event facility to the sysbus, so e.g. a sclp console can be created.
474      */
475     qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
476 
477     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
478     if (ret == -E2BIG) {
479         error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
480                    hw_limit >> 30);
481     } else if (ret) {
482         error_setg(&err, "qemu: setting the guest size failed");
483     }
484 
485 out:
486     error_propagate(errp, err);
487 }
488 
489 static void sclp_memory_init(SCLPDevice *sclp)
490 {
491     MachineState *machine = MACHINE(qdev_get_machine());
492     ram_addr_t initial_mem = machine->ram_size;
493     ram_addr_t max_mem = machine->maxram_size;
494     ram_addr_t standby_mem = max_mem - initial_mem;
495     ram_addr_t pad_mem = 0;
496     int increment_size = 20;
497 
498     /* The storage increment size is a multiple of 1M and is a power of 2.
499      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
500      * The variable 'increment_size' is an exponent of 2 that can be
501      * used to calculate the size (in bytes) of an increment. */
502     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
503         increment_size++;
504     }
505     if (machine->ram_slots) {
506         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
507             increment_size++;
508         }
509     }
510     sclp->increment_size = increment_size;
511 
512     /* The core and standby memory areas need to be aligned with
513      * the increment size.  In effect, this can cause the
514      * user-specified memory size to be rounded down to align
515      * with the nearest increment boundary. */
516     initial_mem = initial_mem >> increment_size << increment_size;
517     standby_mem = standby_mem >> increment_size << increment_size;
518 
519     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
520        calculate the pad size necessary to force this boundary. */
521     if (machine->ram_slots && standby_mem) {
522         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
523 
524         if (initial_mem % MEM_SECTION_SIZE) {
525             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
526         }
527         mhd->increment_size = increment_size;
528         mhd->pad_size = pad_mem;
529         mhd->standby_mem_size = standby_mem;
530     }
531     machine->ram_size = initial_mem;
532     machine->maxram_size = initial_mem + pad_mem + standby_mem;
533     /* let's propagate the changed ram size into the global variable. */
534     ram_size = initial_mem;
535 }
536 
537 static void sclp_init(Object *obj)
538 {
539     SCLPDevice *sclp = SCLP(obj);
540     Object *new;
541 
542     new = object_new(TYPE_SCLP_EVENT_FACILITY);
543     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
544     object_unref(new);
545     sclp->event_facility = EVENT_FACILITY(new);
546 
547     sclp_memory_init(sclp);
548 }
549 
550 static void sclp_class_init(ObjectClass *oc, void *data)
551 {
552     SCLPDeviceClass *sc = SCLP_CLASS(oc);
553     DeviceClass *dc = DEVICE_CLASS(oc);
554 
555     dc->desc = "SCLP (Service-Call Logical Processor)";
556     dc->realize = sclp_realize;
557     dc->hotpluggable = false;
558     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
559 
560     sc->read_SCP_info = read_SCP_info;
561     sc->read_storage_element0_info = read_storage_element0_info;
562     sc->read_storage_element1_info = read_storage_element1_info;
563     sc->attach_storage_element = attach_storage_element;
564     sc->assign_storage = assign_storage;
565     sc->unassign_storage = unassign_storage;
566     sc->read_cpu_info = sclp_read_cpu_info;
567     sc->execute = sclp_execute;
568     sc->service_interrupt = service_interrupt;
569 }
570 
571 static TypeInfo sclp_info = {
572     .name = TYPE_SCLP,
573     .parent = TYPE_DEVICE,
574     .instance_init = sclp_init,
575     .instance_size = sizeof(SCLPDevice),
576     .class_init = sclp_class_init,
577     .class_size = sizeof(SCLPDeviceClass),
578 };
579 
580 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
581 {
582     DeviceState *dev;
583     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
584     object_property_add_child(qdev_get_machine(),
585                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
586                               OBJECT(dev), NULL);
587     qdev_init_nofail(dev);
588     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
589                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
590 }
591 
592 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
593 {
594     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
595                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
596 }
597 
598 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
599                                                void *data)
600 {
601     DeviceClass *dc = DEVICE_CLASS(klass);
602 
603     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
604 }
605 
606 static TypeInfo sclp_memory_hotplug_dev_info = {
607     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
608     .parent = TYPE_SYS_BUS_DEVICE,
609     .instance_size = sizeof(sclpMemoryHotplugDev),
610     .class_init = sclp_memory_hotplug_dev_class_init,
611 };
612 
613 static void register_types(void)
614 {
615     type_register_static(&sclp_memory_hotplug_dev_info);
616     type_register_static(&sclp_info);
617 }
618 type_init(register_types);
619