xref: /openbmc/qemu/hw/s390x/sclp.c (revision 04e3aabd)
1 /*
2  * SCLP Support
3  *
4  * Copyright IBM, Corp. 2012
5  *
6  * Authors:
7  *  Christian Borntraeger <borntraeger@de.ibm.com>
8  *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11  * option) any later version.  See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "exec/memory.h"
19 #include "sysemu/sysemu.h"
20 #include "exec/address-spaces.h"
21 #include "hw/boards.h"
22 #include "hw/s390x/sclp.h"
23 #include "hw/s390x/event-facility.h"
24 #include "hw/s390x/s390-pci-bus.h"
25 #include "hw/s390x/ipl.h"
26 
27 static inline SCLPDevice *get_sclp_device(void)
28 {
29     static SCLPDevice *sclp;
30 
31     if (!sclp) {
32         sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
33     }
34     return sclp;
35 }
36 
37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
38 {
39     uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
40     int i;
41 
42     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
43     for (i = 0; i < count; i++) {
44         entry[i].address = i;
45         entry[i].type = 0;
46         memcpy(entry[i].features, features, sizeof(entry[i].features));
47     }
48 }
49 
50 /* Provide information about the configuration, CPUs and storage */
51 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
52 {
53     ReadInfo *read_info = (ReadInfo *) sccb;
54     MachineState *machine = MACHINE(qdev_get_machine());
55     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
56     CPUState *cpu;
57     int cpu_count = 0;
58     int rnsize, rnmax;
59     int slots = MIN(machine->ram_slots, s390_get_memslot_count());
60     IplParameterBlock *ipib = s390_ipl_get_iplb();
61 
62     CPU_FOREACH(cpu) {
63         cpu_count++;
64     }
65 
66     /* CPU information */
67     read_info->entries_cpu = cpu_to_be16(cpu_count);
68     read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
69     read_info->highest_cpu = cpu_to_be16(max_cpus);
70 
71     read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
72 
73     /* Configuration Characteristic (Extension) */
74     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
75                          read_info->conf_char);
76     s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
77                          read_info->conf_char_ext);
78 
79     prepare_cpu_entries(sclp, read_info->entries, cpu_count);
80 
81     read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
82                                         SCLP_HAS_IOA_RECONFIG);
83 
84     /* Memory Hotplug is only supported for the ccw machine type */
85     if (mhd) {
86         mhd->standby_subregion_size = MEM_SECTION_SIZE;
87         /* Deduct the memory slot already used for core */
88         if (slots > 0) {
89             while ((mhd->standby_subregion_size * (slots - 1)
90                     < mhd->standby_mem_size)) {
91                 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
92             }
93         }
94         /*
95          * Initialize mapping of guest standby memory sections indicating which
96          * are and are not online. Assume all standby memory begins offline.
97          */
98         if (mhd->standby_state_map == 0) {
99             if (mhd->standby_mem_size % mhd->standby_subregion_size) {
100                 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
101                                              mhd->standby_subregion_size + 1) *
102                                              (mhd->standby_subregion_size /
103                                              MEM_SECTION_SIZE));
104             } else {
105                 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
106                                                    MEM_SECTION_SIZE);
107             }
108         }
109         mhd->padded_ram_size = ram_size + mhd->pad_size;
110         mhd->rzm = 1 << mhd->increment_size;
111 
112         read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
113     }
114     read_info->mha_pow = s390_get_mha_pow();
115     read_info->hmfai = cpu_to_be32(s390_get_hmfai());
116 
117     rnsize = 1 << (sclp->increment_size - 20);
118     if (rnsize <= 128) {
119         read_info->rnsize = rnsize;
120     } else {
121         read_info->rnsize = 0;
122         read_info->rnsize2 = cpu_to_be32(rnsize);
123     }
124 
125     rnmax = machine->maxram_size >> sclp->increment_size;
126     if (rnmax < 0x10000) {
127         read_info->rnmax = cpu_to_be16(rnmax);
128     } else {
129         read_info->rnmax = cpu_to_be16(0);
130         read_info->rnmax2 = cpu_to_be64(rnmax);
131     }
132 
133     if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
134         memcpy(&read_info->loadparm, &ipib->loadparm,
135                sizeof(read_info->loadparm));
136     } else {
137         s390_ipl_set_loadparm(read_info->loadparm);
138     }
139 
140     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
141 }
142 
143 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
144 {
145     int i, assigned;
146     int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
147     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
148     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
149 
150     if (!mhd) {
151         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
152         return;
153     }
154 
155     if ((ram_size >> mhd->increment_size) >= 0x10000) {
156         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
157         return;
158     }
159 
160     /* Return information regarding core memory */
161     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
162     assigned = ram_size >> mhd->increment_size;
163     storage_info->assigned = cpu_to_be16(assigned);
164 
165     for (i = 0; i < assigned; i++) {
166         storage_info->entries[i] = cpu_to_be32(subincrement_id);
167         subincrement_id += SCLP_INCREMENT_UNIT;
168     }
169     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
170 }
171 
172 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
173 {
174     ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
175     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
176 
177     if (!mhd) {
178         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
179         return;
180     }
181 
182     if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
183         sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
184         return;
185     }
186 
187     /* Return information regarding standby memory */
188     storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
189     storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
190                                          mhd->increment_size);
191     storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
192                                         mhd->increment_size);
193     sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
194 }
195 
196 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
197                                    uint16_t element)
198 {
199     int i, assigned, subincrement_id;
200     AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
201     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
202 
203     if (!mhd) {
204         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
205         return;
206     }
207 
208     if (element != 1) {
209         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
210         return;
211     }
212 
213     assigned = mhd->standby_mem_size >> mhd->increment_size;
214     attach_info->assigned = cpu_to_be16(assigned);
215     subincrement_id = ((ram_size >> mhd->increment_size) << 16)
216                       + SCLP_STARTING_SUBINCREMENT_ID;
217     for (i = 0; i < assigned; i++) {
218         attach_info->entries[i] = cpu_to_be32(subincrement_id);
219         subincrement_id += SCLP_INCREMENT_UNIT;
220     }
221     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
222 }
223 
224 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
225 {
226     MemoryRegion *mr = NULL;
227     uint64_t this_subregion_size;
228     AssignStorage *assign_info = (AssignStorage *) sccb;
229     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
230     ram_addr_t assign_addr;
231     MemoryRegion *sysmem = get_system_memory();
232 
233     if (!mhd) {
234         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
235         return;
236     }
237     assign_addr = (assign_info->rn - 1) * mhd->rzm;
238 
239     if ((assign_addr % MEM_SECTION_SIZE == 0) &&
240         (assign_addr >= mhd->padded_ram_size)) {
241         /* Re-use existing memory region if found */
242         mr = memory_region_find(sysmem, assign_addr, 1).mr;
243         memory_region_unref(mr);
244         if (!mr) {
245 
246             MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
247 
248             /* offset to align to standby_subregion_size for allocation */
249             ram_addr_t offset = assign_addr -
250                                 (assign_addr - mhd->padded_ram_size)
251                                 % mhd->standby_subregion_size;
252 
253             /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
254             char id[16];
255             snprintf(id, 16, "standby.ram%d",
256                      (int)((offset - mhd->padded_ram_size) /
257                      mhd->standby_subregion_size) + 1);
258 
259             /* Allocate a subregion of the calculated standby_subregion_size */
260             if (offset + mhd->standby_subregion_size >
261                 mhd->padded_ram_size + mhd->standby_mem_size) {
262                 this_subregion_size = mhd->padded_ram_size +
263                   mhd->standby_mem_size - offset;
264             } else {
265                 this_subregion_size = mhd->standby_subregion_size;
266             }
267 
268             memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
269                                    &error_fatal);
270             /* This is a hack to make memory hotunplug work again. Once we have
271              * subdevices, we have to unparent them when unassigning memory,
272              * instead of doing it via the ref count of the MemoryRegion. */
273             object_ref(OBJECT(standby_ram));
274             object_unparent(OBJECT(standby_ram));
275             memory_region_add_subregion(sysmem, offset, standby_ram);
276         }
277         /* The specified subregion is no longer in standby */
278         mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
279                                / MEM_SECTION_SIZE] = 1;
280     }
281     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
282 }
283 
284 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
285 {
286     MemoryRegion *mr = NULL;
287     AssignStorage *assign_info = (AssignStorage *) sccb;
288     sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
289     ram_addr_t unassign_addr;
290     MemoryRegion *sysmem = get_system_memory();
291 
292     if (!mhd) {
293         sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
294         return;
295     }
296     unassign_addr = (assign_info->rn - 1) * mhd->rzm;
297 
298     /* if the addr is a multiple of 256 MB */
299     if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
300         (unassign_addr >= mhd->padded_ram_size)) {
301         mhd->standby_state_map[(unassign_addr -
302                            mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
303 
304         /* find the specified memory region and destroy it */
305         mr = memory_region_find(sysmem, unassign_addr, 1).mr;
306         memory_region_unref(mr);
307         if (mr) {
308             int i;
309             int is_removable = 1;
310             ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
311                                      (unassign_addr - mhd->padded_ram_size)
312                                      % mhd->standby_subregion_size);
313             /* Mark all affected subregions as 'standby' once again */
314             for (i = 0;
315                  i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
316                  i++) {
317 
318                 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
319                     is_removable = 0;
320                     break;
321                 }
322             }
323             if (is_removable) {
324                 memory_region_del_subregion(sysmem, mr);
325                 object_unref(OBJECT(mr));
326             }
327         }
328     }
329     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
330 }
331 
332 /* Provide information about the CPU */
333 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
334 {
335     ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
336     CPUState *cpu;
337     int cpu_count = 0;
338 
339     CPU_FOREACH(cpu) {
340         cpu_count++;
341     }
342 
343     cpu_info->nr_configured = cpu_to_be16(cpu_count);
344     cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
345     cpu_info->nr_standby = cpu_to_be16(0);
346 
347     /* The standby offset is 16-byte for each CPU */
348     cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
349         + cpu_info->nr_configured*sizeof(CPUEntry));
350 
351     prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
352 
353     sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
354 }
355 
356 static void sclp_configure_io_adapter(SCLPDevice *sclp, SCCB *sccb,
357                                       bool configure)
358 {
359     int rc;
360 
361     if (be16_to_cpu(sccb->h.length) < 16) {
362         rc = SCLP_RC_INSUFFICIENT_SCCB_LENGTH;
363         goto out_err;
364     }
365 
366     switch (((IoaCfgSccb *)sccb)->atype) {
367     case SCLP_RECONFIG_PCI_ATYPE:
368         if (s390_has_feat(S390_FEAT_ZPCI)) {
369             if (configure) {
370                 s390_pci_sclp_configure(sccb);
371             } else {
372                 s390_pci_sclp_deconfigure(sccb);
373             }
374             return;
375         }
376         /* fallthrough */
377     default:
378         rc = SCLP_RC_ADAPTER_TYPE_NOT_RECOGNIZED;
379     }
380 
381  out_err:
382     sccb->h.response_code = cpu_to_be16(rc);
383 }
384 
385 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
386 {
387     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
388     SCLPEventFacility *ef = sclp->event_facility;
389     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
390 
391     switch (code & SCLP_CMD_CODE_MASK) {
392     case SCLP_CMDW_READ_SCP_INFO:
393     case SCLP_CMDW_READ_SCP_INFO_FORCED:
394         sclp_c->read_SCP_info(sclp, sccb);
395         break;
396     case SCLP_CMDW_READ_CPU_INFO:
397         sclp_c->read_cpu_info(sclp, sccb);
398         break;
399     case SCLP_READ_STORAGE_ELEMENT_INFO:
400         if (code & 0xff00) {
401             sclp_c->read_storage_element1_info(sclp, sccb);
402         } else {
403             sclp_c->read_storage_element0_info(sclp, sccb);
404         }
405         break;
406     case SCLP_ATTACH_STORAGE_ELEMENT:
407         sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
408         break;
409     case SCLP_ASSIGN_STORAGE:
410         sclp_c->assign_storage(sclp, sccb);
411         break;
412     case SCLP_UNASSIGN_STORAGE:
413         sclp_c->unassign_storage(sclp, sccb);
414         break;
415     case SCLP_CMDW_CONFIGURE_IOA:
416         sclp_configure_io_adapter(sclp, sccb, true);
417         break;
418     case SCLP_CMDW_DECONFIGURE_IOA:
419         sclp_configure_io_adapter(sclp, sccb, false);
420         break;
421     default:
422         efc->command_handler(ef, sccb, code);
423         break;
424     }
425 }
426 
427 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
428 {
429     SCLPDevice *sclp = get_sclp_device();
430     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
431     int r = 0;
432     SCCB work_sccb;
433 
434     hwaddr sccb_len = sizeof(SCCB);
435 
436     /* first some basic checks on program checks */
437     if (env->psw.mask & PSW_MASK_PSTATE) {
438         r = -PGM_PRIVILEGED;
439         goto out;
440     }
441     if (cpu_physical_memory_is_io(sccb)) {
442         r = -PGM_ADDRESSING;
443         goto out;
444     }
445     if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
446         || (sccb & ~0x7ffffff8UL) != 0) {
447         r = -PGM_SPECIFICATION;
448         goto out;
449     }
450 
451     /*
452      * we want to work on a private copy of the sccb, to prevent guests
453      * from playing dirty tricks by modifying the memory content after
454      * the host has checked the values
455      */
456     cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
457 
458     /* Valid sccb sizes */
459     if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
460         be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
461         r = -PGM_SPECIFICATION;
462         goto out;
463     }
464 
465     sclp_c->execute(sclp, &work_sccb, code);
466 
467     cpu_physical_memory_write(sccb, &work_sccb,
468                               be16_to_cpu(work_sccb.h.length));
469 
470     sclp_c->service_interrupt(sclp, sccb);
471 
472 out:
473     return r;
474 }
475 
476 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
477 {
478     SCLPEventFacility *ef = sclp->event_facility;
479     SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
480 
481     uint32_t param = sccb & ~3;
482 
483     /* Indicate whether an event is still pending */
484     param |= efc->event_pending(ef) ? 1 : 0;
485 
486     if (!param) {
487         /* No need to send an interrupt, there's nothing to be notified about */
488         return;
489     }
490     s390_sclp_extint(param);
491 }
492 
493 void sclp_service_interrupt(uint32_t sccb)
494 {
495     SCLPDevice *sclp = get_sclp_device();
496     SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
497 
498     sclp_c->service_interrupt(sclp, sccb);
499 }
500 
501 /* qemu object creation and initialization functions */
502 
503 void s390_sclp_init(void)
504 {
505     Object *new = object_new(TYPE_SCLP);
506 
507     object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
508                               NULL);
509     object_unref(OBJECT(new));
510     qdev_init_nofail(DEVICE(new));
511 }
512 
513 static void sclp_realize(DeviceState *dev, Error **errp)
514 {
515     MachineState *machine = MACHINE(qdev_get_machine());
516     SCLPDevice *sclp = SCLP(dev);
517     Error *err = NULL;
518     uint64_t hw_limit;
519     int ret;
520 
521     object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
522                              &err);
523     if (err) {
524         goto out;
525     }
526     /*
527      * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
528      * as we can't find a fitting bus via the qom tree, we have to add the
529      * event facility to the sysbus, so e.g. a sclp console can be created.
530      */
531     qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
532 
533     ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
534     if (ret == -E2BIG) {
535         error_setg(&err, "host supports a maximum of %" PRIu64 " GB",
536                    hw_limit >> 30);
537     } else if (ret) {
538         error_setg(&err, "setting the guest size failed");
539     }
540 
541 out:
542     error_propagate(errp, err);
543 }
544 
545 static void sclp_memory_init(SCLPDevice *sclp)
546 {
547     MachineState *machine = MACHINE(qdev_get_machine());
548     ram_addr_t initial_mem = machine->ram_size;
549     ram_addr_t max_mem = machine->maxram_size;
550     ram_addr_t standby_mem = max_mem - initial_mem;
551     ram_addr_t pad_mem = 0;
552     int increment_size = 20;
553 
554     /* The storage increment size is a multiple of 1M and is a power of 2.
555      * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
556      * The variable 'increment_size' is an exponent of 2 that can be
557      * used to calculate the size (in bytes) of an increment. */
558     while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
559         increment_size++;
560     }
561     if (machine->ram_slots) {
562         while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
563             increment_size++;
564         }
565     }
566     sclp->increment_size = increment_size;
567 
568     /* The core and standby memory areas need to be aligned with
569      * the increment size.  In effect, this can cause the
570      * user-specified memory size to be rounded down to align
571      * with the nearest increment boundary. */
572     initial_mem = initial_mem >> increment_size << increment_size;
573     standby_mem = standby_mem >> increment_size << increment_size;
574 
575     /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
576        calculate the pad size necessary to force this boundary. */
577     if (machine->ram_slots && standby_mem) {
578         sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
579 
580         if (initial_mem % MEM_SECTION_SIZE) {
581             pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
582         }
583         mhd->increment_size = increment_size;
584         mhd->pad_size = pad_mem;
585         mhd->standby_mem_size = standby_mem;
586     }
587     machine->ram_size = initial_mem;
588     machine->maxram_size = initial_mem + pad_mem + standby_mem;
589     /* let's propagate the changed ram size into the global variable. */
590     ram_size = initial_mem;
591 }
592 
593 static void sclp_init(Object *obj)
594 {
595     SCLPDevice *sclp = SCLP(obj);
596     Object *new;
597 
598     new = object_new(TYPE_SCLP_EVENT_FACILITY);
599     object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
600     object_unref(new);
601     sclp->event_facility = EVENT_FACILITY(new);
602 
603     sclp_memory_init(sclp);
604 }
605 
606 static void sclp_class_init(ObjectClass *oc, void *data)
607 {
608     SCLPDeviceClass *sc = SCLP_CLASS(oc);
609     DeviceClass *dc = DEVICE_CLASS(oc);
610 
611     dc->desc = "SCLP (Service-Call Logical Processor)";
612     dc->realize = sclp_realize;
613     dc->hotpluggable = false;
614     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
615 
616     sc->read_SCP_info = read_SCP_info;
617     sc->read_storage_element0_info = read_storage_element0_info;
618     sc->read_storage_element1_info = read_storage_element1_info;
619     sc->attach_storage_element = attach_storage_element;
620     sc->assign_storage = assign_storage;
621     sc->unassign_storage = unassign_storage;
622     sc->read_cpu_info = sclp_read_cpu_info;
623     sc->execute = sclp_execute;
624     sc->service_interrupt = service_interrupt;
625 }
626 
627 static TypeInfo sclp_info = {
628     .name = TYPE_SCLP,
629     .parent = TYPE_DEVICE,
630     .instance_init = sclp_init,
631     .instance_size = sizeof(SCLPDevice),
632     .class_init = sclp_class_init,
633     .class_size = sizeof(SCLPDeviceClass),
634 };
635 
636 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
637 {
638     DeviceState *dev;
639     dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
640     object_property_add_child(qdev_get_machine(),
641                               TYPE_SCLP_MEMORY_HOTPLUG_DEV,
642                               OBJECT(dev), NULL);
643     qdev_init_nofail(dev);
644     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
645                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
646 }
647 
648 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
649 {
650     return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
651                                    TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
652 }
653 
654 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
655                                                void *data)
656 {
657     DeviceClass *dc = DEVICE_CLASS(klass);
658 
659     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
660 }
661 
662 static TypeInfo sclp_memory_hotplug_dev_info = {
663     .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
664     .parent = TYPE_SYS_BUS_DEVICE,
665     .instance_size = sizeof(sclpMemoryHotplugDev),
666     .class_init = sclp_memory_hotplug_dev_class_init,
667 };
668 
669 static void register_types(void)
670 {
671     type_register_static(&sclp_memory_hotplug_dev_info);
672     type_register_static(&sclp_info);
673 }
674 type_init(register_types);
675