1 /* 2 * ARM AMBA PrimeCell PL031 RTC 3 * 4 * Copyright (c) 2007 CodeSourcery 5 * 6 * This file is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * Contributions after 2012-01-13 are licensed under the terms of the 11 * GNU GPL, version 2 or (at your option) any later version. 12 */ 13 14 #include "qemu/osdep.h" 15 #include "qemu-common.h" 16 #include "hw/rtc/pl031.h" 17 #include "migration/vmstate.h" 18 #include "hw/irq.h" 19 #include "hw/qdev-properties.h" 20 #include "hw/sysbus.h" 21 #include "qemu/timer.h" 22 #include "sysemu/sysemu.h" 23 #include "qemu/cutils.h" 24 #include "qemu/log.h" 25 #include "qemu/module.h" 26 #include "trace.h" 27 28 #define RTC_DR 0x00 /* Data read register */ 29 #define RTC_MR 0x04 /* Match register */ 30 #define RTC_LR 0x08 /* Data load register */ 31 #define RTC_CR 0x0c /* Control register */ 32 #define RTC_IMSC 0x10 /* Interrupt mask and set register */ 33 #define RTC_RIS 0x14 /* Raw interrupt status register */ 34 #define RTC_MIS 0x18 /* Masked interrupt status register */ 35 #define RTC_ICR 0x1c /* Interrupt clear register */ 36 37 static const unsigned char pl031_id[] = { 38 0x31, 0x10, 0x14, 0x00, /* Device ID */ 39 0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */ 40 }; 41 42 static void pl031_update(PL031State *s) 43 { 44 uint32_t flags = s->is & s->im; 45 46 trace_pl031_irq_state(flags); 47 qemu_set_irq(s->irq, flags); 48 } 49 50 static void pl031_interrupt(void * opaque) 51 { 52 PL031State *s = (PL031State *)opaque; 53 54 s->is = 1; 55 trace_pl031_alarm_raised(); 56 pl031_update(s); 57 } 58 59 static uint32_t pl031_get_count(PL031State *s) 60 { 61 int64_t now = qemu_clock_get_ns(rtc_clock); 62 return s->tick_offset + now / NANOSECONDS_PER_SECOND; 63 } 64 65 static void pl031_set_alarm(PL031State *s) 66 { 67 uint32_t ticks; 68 69 /* The timer wraps around. This subtraction also wraps in the same way, 70 and gives correct results when alarm < now_ticks. */ 71 ticks = s->mr - pl031_get_count(s); 72 trace_pl031_set_alarm(ticks); 73 if (ticks == 0) { 74 timer_del(s->timer); 75 pl031_interrupt(s); 76 } else { 77 int64_t now = qemu_clock_get_ns(rtc_clock); 78 timer_mod(s->timer, now + (int64_t)ticks * NANOSECONDS_PER_SECOND); 79 } 80 } 81 82 static uint64_t pl031_read(void *opaque, hwaddr offset, 83 unsigned size) 84 { 85 PL031State *s = (PL031State *)opaque; 86 uint64_t r; 87 88 switch (offset) { 89 case RTC_DR: 90 r = pl031_get_count(s); 91 break; 92 case RTC_MR: 93 r = s->mr; 94 break; 95 case RTC_IMSC: 96 r = s->im; 97 break; 98 case RTC_RIS: 99 r = s->is; 100 break; 101 case RTC_LR: 102 r = s->lr; 103 break; 104 case RTC_CR: 105 /* RTC is permanently enabled. */ 106 r = 1; 107 break; 108 case RTC_MIS: 109 r = s->is & s->im; 110 break; 111 case 0xfe0 ... 0xfff: 112 r = pl031_id[(offset - 0xfe0) >> 2]; 113 break; 114 case RTC_ICR: 115 qemu_log_mask(LOG_GUEST_ERROR, 116 "pl031: read of write-only register at offset 0x%x\n", 117 (int)offset); 118 r = 0; 119 break; 120 default: 121 qemu_log_mask(LOG_GUEST_ERROR, 122 "pl031_read: Bad offset 0x%x\n", (int)offset); 123 r = 0; 124 break; 125 } 126 127 trace_pl031_read(offset, r); 128 return r; 129 } 130 131 static void pl031_write(void * opaque, hwaddr offset, 132 uint64_t value, unsigned size) 133 { 134 PL031State *s = (PL031State *)opaque; 135 136 trace_pl031_write(offset, value); 137 138 switch (offset) { 139 case RTC_LR: 140 s->tick_offset += value - pl031_get_count(s); 141 pl031_set_alarm(s); 142 break; 143 case RTC_MR: 144 s->mr = value; 145 pl031_set_alarm(s); 146 break; 147 case RTC_IMSC: 148 s->im = value & 1; 149 pl031_update(s); 150 break; 151 case RTC_ICR: 152 /* The PL031 documentation (DDI0224B) states that the interrupt is 153 cleared when bit 0 of the written value is set. However the 154 arm926e documentation (DDI0287B) states that the interrupt is 155 cleared when any value is written. */ 156 s->is = 0; 157 pl031_update(s); 158 break; 159 case RTC_CR: 160 /* Written value is ignored. */ 161 break; 162 163 case RTC_DR: 164 case RTC_MIS: 165 case RTC_RIS: 166 qemu_log_mask(LOG_GUEST_ERROR, 167 "pl031: write to read-only register at offset 0x%x\n", 168 (int)offset); 169 break; 170 171 default: 172 qemu_log_mask(LOG_GUEST_ERROR, 173 "pl031_write: Bad offset 0x%x\n", (int)offset); 174 break; 175 } 176 } 177 178 static const MemoryRegionOps pl031_ops = { 179 .read = pl031_read, 180 .write = pl031_write, 181 .endianness = DEVICE_NATIVE_ENDIAN, 182 }; 183 184 static void pl031_init(Object *obj) 185 { 186 PL031State *s = PL031(obj); 187 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 188 struct tm tm; 189 190 memory_region_init_io(&s->iomem, obj, &pl031_ops, s, "pl031", 0x1000); 191 sysbus_init_mmio(dev, &s->iomem); 192 193 sysbus_init_irq(dev, &s->irq); 194 qemu_get_timedate(&tm, 0); 195 s->tick_offset = mktimegm(&tm) - 196 qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND; 197 198 s->timer = timer_new_ns(rtc_clock, pl031_interrupt, s); 199 } 200 201 static int pl031_pre_save(void *opaque) 202 { 203 PL031State *s = opaque; 204 205 /* 206 * The PL031 device model code uses the tick_offset field, which is 207 * the offset between what the guest RTC should read and what the 208 * QEMU rtc_clock reads: 209 * guest_rtc = rtc_clock + tick_offset 210 * and so 211 * tick_offset = guest_rtc - rtc_clock 212 * 213 * We want to migrate this offset, which sounds straightforward. 214 * Unfortunately older versions of QEMU migrated a conversion of this 215 * offset into an offset from the vm_clock. (This was in turn an 216 * attempt to be compatible with even older QEMU versions, but it 217 * has incorrect behaviour if the rtc_clock is not the same as the 218 * vm_clock.) So we put the actual tick_offset into a migration 219 * subsection, and the backwards-compatible time-relative-to-vm_clock 220 * in the main migration state. 221 * 222 * Calculate base time relative to QEMU_CLOCK_VIRTUAL: 223 */ 224 int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 225 s->tick_offset_vmstate = s->tick_offset + delta / NANOSECONDS_PER_SECOND; 226 227 return 0; 228 } 229 230 static int pl031_pre_load(void *opaque) 231 { 232 PL031State *s = opaque; 233 234 s->tick_offset_migrated = false; 235 return 0; 236 } 237 238 static int pl031_post_load(void *opaque, int version_id) 239 { 240 PL031State *s = opaque; 241 242 /* 243 * If we got the tick_offset subsection, then we can just use 244 * the value in that. Otherwise the source is an older QEMU and 245 * has given us the offset from the vm_clock; convert it back to 246 * an offset from the rtc_clock. This will cause time to incorrectly 247 * go backwards compared to the host RTC, but this is unavoidable. 248 */ 249 250 if (!s->tick_offset_migrated) { 251 int64_t delta = qemu_clock_get_ns(rtc_clock) - 252 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 253 s->tick_offset = s->tick_offset_vmstate - 254 delta / NANOSECONDS_PER_SECOND; 255 } 256 pl031_set_alarm(s); 257 return 0; 258 } 259 260 static int pl031_tick_offset_post_load(void *opaque, int version_id) 261 { 262 PL031State *s = opaque; 263 264 s->tick_offset_migrated = true; 265 return 0; 266 } 267 268 static bool pl031_tick_offset_needed(void *opaque) 269 { 270 PL031State *s = opaque; 271 272 return s->migrate_tick_offset; 273 } 274 275 static const VMStateDescription vmstate_pl031_tick_offset = { 276 .name = "pl031/tick-offset", 277 .version_id = 1, 278 .minimum_version_id = 1, 279 .needed = pl031_tick_offset_needed, 280 .post_load = pl031_tick_offset_post_load, 281 .fields = (VMStateField[]) { 282 VMSTATE_UINT32(tick_offset, PL031State), 283 VMSTATE_END_OF_LIST() 284 } 285 }; 286 287 static const VMStateDescription vmstate_pl031 = { 288 .name = "pl031", 289 .version_id = 1, 290 .minimum_version_id = 1, 291 .pre_save = pl031_pre_save, 292 .pre_load = pl031_pre_load, 293 .post_load = pl031_post_load, 294 .fields = (VMStateField[]) { 295 VMSTATE_UINT32(tick_offset_vmstate, PL031State), 296 VMSTATE_UINT32(mr, PL031State), 297 VMSTATE_UINT32(lr, PL031State), 298 VMSTATE_UINT32(cr, PL031State), 299 VMSTATE_UINT32(im, PL031State), 300 VMSTATE_UINT32(is, PL031State), 301 VMSTATE_END_OF_LIST() 302 }, 303 .subsections = (const VMStateDescription*[]) { 304 &vmstate_pl031_tick_offset, 305 NULL 306 } 307 }; 308 309 static Property pl031_properties[] = { 310 /* 311 * True to correctly migrate the tick offset of the RTC. False to 312 * obtain backward migration compatibility with older QEMU versions, 313 * at the expense of the guest RTC going backwards compared with the 314 * host RTC when the VM is saved/restored if using -rtc host. 315 * (Even if set to 'true' older QEMU can migrate forward to newer QEMU; 316 * 'false' also permits newer QEMU to migrate to older QEMU.) 317 */ 318 DEFINE_PROP_BOOL("migrate-tick-offset", 319 PL031State, migrate_tick_offset, true), 320 DEFINE_PROP_END_OF_LIST() 321 }; 322 323 static void pl031_class_init(ObjectClass *klass, void *data) 324 { 325 DeviceClass *dc = DEVICE_CLASS(klass); 326 327 dc->vmsd = &vmstate_pl031; 328 dc->props = pl031_properties; 329 } 330 331 static const TypeInfo pl031_info = { 332 .name = TYPE_PL031, 333 .parent = TYPE_SYS_BUS_DEVICE, 334 .instance_size = sizeof(PL031State), 335 .instance_init = pl031_init, 336 .class_init = pl031_class_init, 337 }; 338 339 static void pl031_register_types(void) 340 { 341 type_register_static(&pl031_info); 342 } 343 344 type_init(pl031_register_types) 345