1 /* 2 * QEMU MC146818 RTC emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/cutils.h" 27 #include "qemu/module.h" 28 #include "qemu/bcd.h" 29 #include "hw/acpi/aml-build.h" 30 #include "hw/irq.h" 31 #include "hw/qdev-properties.h" 32 #include "hw/qdev-properties-system.h" 33 #include "qemu/timer.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/replay.h" 36 #include "sysemu/reset.h" 37 #include "sysemu/runstate.h" 38 #include "sysemu/rtc.h" 39 #include "hw/rtc/mc146818rtc.h" 40 #include "hw/rtc/mc146818rtc_regs.h" 41 #include "migration/vmstate.h" 42 #include "qapi/error.h" 43 #include "qapi/qapi-events-misc-target.h" 44 #include "qapi/visitor.h" 45 #include "hw/rtc/mc146818rtc_regs.h" 46 47 #ifdef TARGET_I386 48 #include "qapi/qapi-commands-misc-target.h" 49 #include "hw/i386/apic.h" 50 #endif 51 52 //#define DEBUG_CMOS 53 //#define DEBUG_COALESCED 54 55 #ifdef DEBUG_CMOS 56 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) 57 #else 58 # define CMOS_DPRINTF(format, ...) do { } while (0) 59 #endif 60 61 #ifdef DEBUG_COALESCED 62 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) 63 #else 64 # define DPRINTF_C(format, ...) do { } while (0) 65 #endif 66 67 #define SEC_PER_MIN 60 68 #define MIN_PER_HOUR 60 69 #define SEC_PER_HOUR 3600 70 #define HOUR_PER_DAY 24 71 #define SEC_PER_DAY 86400 72 73 #define RTC_REINJECT_ON_ACK_COUNT 20 74 #define RTC_CLOCK_RATE 32768 75 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) 76 77 static void rtc_set_time(RTCState *s); 78 static void rtc_update_time(RTCState *s); 79 static void rtc_set_cmos(RTCState *s, const struct tm *tm); 80 static inline int rtc_from_bcd(RTCState *s, int a); 81 static uint64_t get_next_alarm(RTCState *s); 82 83 static inline bool rtc_running(RTCState *s) 84 { 85 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && 86 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); 87 } 88 89 static uint64_t get_guest_rtc_ns(RTCState *s) 90 { 91 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); 92 93 return s->base_rtc * NANOSECONDS_PER_SECOND + 94 guest_clock - s->last_update + s->offset; 95 } 96 97 static void rtc_coalesced_timer_update(RTCState *s) 98 { 99 if (s->irq_coalesced == 0) { 100 timer_del(s->coalesced_timer); 101 } else { 102 /* divide each RTC interval to 2 - 8 smaller intervals */ 103 int c = MIN(s->irq_coalesced, 7) + 1; 104 int64_t next_clock = qemu_clock_get_ns(rtc_clock) + 105 periodic_clock_to_ns(s->period / c); 106 timer_mod(s->coalesced_timer, next_clock); 107 } 108 } 109 110 static QLIST_HEAD(, RTCState) rtc_devices = 111 QLIST_HEAD_INITIALIZER(rtc_devices); 112 113 #ifdef TARGET_I386 114 void qmp_rtc_reset_reinjection(Error **errp) 115 { 116 RTCState *s; 117 118 QLIST_FOREACH(s, &rtc_devices, link) { 119 s->irq_coalesced = 0; 120 } 121 } 122 123 static bool rtc_policy_slew_deliver_irq(RTCState *s) 124 { 125 apic_reset_irq_delivered(); 126 qemu_irq_raise(s->irq); 127 return apic_get_irq_delivered(); 128 } 129 130 static void rtc_coalesced_timer(void *opaque) 131 { 132 RTCState *s = opaque; 133 134 if (s->irq_coalesced != 0) { 135 s->cmos_data[RTC_REG_C] |= 0xc0; 136 DPRINTF_C("cmos: injecting from timer\n"); 137 if (rtc_policy_slew_deliver_irq(s)) { 138 s->irq_coalesced--; 139 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 140 s->irq_coalesced); 141 } 142 } 143 144 rtc_coalesced_timer_update(s); 145 } 146 #else 147 static bool rtc_policy_slew_deliver_irq(RTCState *s) 148 { 149 assert(0); 150 return false; 151 } 152 #endif 153 154 static uint32_t rtc_periodic_clock_ticks(RTCState *s) 155 { 156 int period_code; 157 158 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { 159 return 0; 160 } 161 162 period_code = s->cmos_data[RTC_REG_A] & 0x0f; 163 164 return periodic_period_to_clock(period_code); 165 } 166 167 /* 168 * handle periodic timer. @old_period indicates the periodic timer update 169 * is just due to period adjustment. 170 */ 171 static void 172 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change) 173 { 174 uint32_t period; 175 int64_t cur_clock, next_irq_clock, lost_clock = 0; 176 177 period = rtc_periodic_clock_ticks(s); 178 s->period = period; 179 180 if (!period) { 181 s->irq_coalesced = 0; 182 timer_del(s->periodic_timer); 183 return; 184 } 185 186 /* compute 32 khz clock */ 187 cur_clock = 188 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 189 190 /* 191 * if the periodic timer's update is due to period re-configuration, 192 * we should count the clock since last interrupt. 193 */ 194 if (old_period && period_change) { 195 int64_t last_periodic_clock, next_periodic_clock; 196 197 next_periodic_clock = muldiv64(s->next_periodic_time, 198 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 199 last_periodic_clock = next_periodic_clock - old_period; 200 lost_clock = cur_clock - last_periodic_clock; 201 assert(lost_clock >= 0); 202 } 203 204 /* 205 * s->irq_coalesced can change for two reasons: 206 * 207 * a) if one or more periodic timer interrupts have been lost, 208 * lost_clock will be more that a period. 209 * 210 * b) when the period may be reconfigured, we expect the OS to 211 * treat delayed tick as the new period. So, when switching 212 * from a shorter to a longer period, scale down the missing, 213 * because the OS will treat past delayed ticks as longer 214 * (leftovers are put back into lost_clock). When switching 215 * to a shorter period, scale up the missing ticks since the 216 * OS handler will treat past delayed ticks as shorter. 217 */ 218 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 219 uint32_t old_irq_coalesced = s->irq_coalesced; 220 221 lost_clock += old_irq_coalesced * old_period; 222 s->irq_coalesced = lost_clock / s->period; 223 lost_clock %= s->period; 224 if (old_irq_coalesced != s->irq_coalesced || 225 old_period != s->period) { 226 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " 227 "period scaled from %d to %d\n", old_irq_coalesced, 228 s->irq_coalesced, old_period, s->period); 229 rtc_coalesced_timer_update(s); 230 } 231 } else { 232 /* 233 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW 234 * is not used, we should make the time progress anyway. 235 */ 236 lost_clock = MIN(lost_clock, period); 237 } 238 239 assert(lost_clock >= 0 && lost_clock <= period); 240 241 next_irq_clock = cur_clock + period - lost_clock; 242 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; 243 timer_mod(s->periodic_timer, s->next_periodic_time); 244 } 245 246 static void rtc_periodic_timer(void *opaque) 247 { 248 RTCState *s = opaque; 249 250 periodic_timer_update(s, s->next_periodic_time, s->period, false); 251 s->cmos_data[RTC_REG_C] |= REG_C_PF; 252 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { 253 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 254 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 255 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) 256 s->irq_reinject_on_ack_count = 0; 257 if (!rtc_policy_slew_deliver_irq(s)) { 258 s->irq_coalesced++; 259 rtc_coalesced_timer_update(s); 260 DPRINTF_C("cmos: coalesced irqs increased to %d\n", 261 s->irq_coalesced); 262 } 263 } else 264 qemu_irq_raise(s->irq); 265 } 266 } 267 268 /* handle update-ended timer */ 269 static void check_update_timer(RTCState *s) 270 { 271 uint64_t next_update_time; 272 uint64_t guest_nsec; 273 int next_alarm_sec; 274 275 /* From the data sheet: "Holding the dividers in reset prevents 276 * interrupts from operating, while setting the SET bit allows" 277 * them to occur. 278 */ 279 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { 280 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); 281 timer_del(s->update_timer); 282 return; 283 } 284 285 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 286 next_update_time = qemu_clock_get_ns(rtc_clock) 287 + NANOSECONDS_PER_SECOND - guest_nsec; 288 289 /* Compute time of next alarm. One second is already accounted 290 * for in next_update_time. 291 */ 292 next_alarm_sec = get_next_alarm(s); 293 s->next_alarm_time = next_update_time + 294 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; 295 296 /* If update_in_progress latched the UIP bit, we must keep the timer 297 * programmed to the next second, so that UIP is cleared. Otherwise, 298 * if UF is already set, we might be able to optimize. 299 */ 300 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && 301 (s->cmos_data[RTC_REG_C] & REG_C_UF)) { 302 /* If AF cannot change (i.e. either it is set already, or 303 * SET=1 and then the time is not updated), nothing to do. 304 */ 305 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || 306 (s->cmos_data[RTC_REG_C] & REG_C_AF)) { 307 timer_del(s->update_timer); 308 return; 309 } 310 311 /* UF is set, but AF is clear. Program the timer to target 312 * the alarm time. */ 313 next_update_time = s->next_alarm_time; 314 } 315 if (next_update_time != timer_expire_time_ns(s->update_timer)) { 316 timer_mod(s->update_timer, next_update_time); 317 } 318 } 319 320 static inline uint8_t convert_hour(RTCState *s, uint8_t hour) 321 { 322 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 323 hour %= 12; 324 if (s->cmos_data[RTC_HOURS] & 0x80) { 325 hour += 12; 326 } 327 } 328 return hour; 329 } 330 331 static uint64_t get_next_alarm(RTCState *s) 332 { 333 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; 334 int32_t hour, min, sec; 335 336 rtc_update_time(s); 337 338 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); 339 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); 340 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); 341 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); 342 343 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 344 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 345 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); 346 cur_hour = convert_hour(s, cur_hour); 347 348 if (alarm_hour == -1) { 349 alarm_hour = cur_hour; 350 if (alarm_min == -1) { 351 alarm_min = cur_min; 352 if (alarm_sec == -1) { 353 alarm_sec = cur_sec + 1; 354 } else if (cur_sec > alarm_sec) { 355 alarm_min++; 356 } 357 } else if (cur_min == alarm_min) { 358 if (alarm_sec == -1) { 359 alarm_sec = cur_sec + 1; 360 } else { 361 if (cur_sec > alarm_sec) { 362 alarm_hour++; 363 } 364 } 365 if (alarm_sec == SEC_PER_MIN) { 366 /* wrap to next hour, minutes is not in don't care mode */ 367 alarm_sec = 0; 368 alarm_hour++; 369 } 370 } else if (cur_min > alarm_min) { 371 alarm_hour++; 372 } 373 } else if (cur_hour == alarm_hour) { 374 if (alarm_min == -1) { 375 alarm_min = cur_min; 376 if (alarm_sec == -1) { 377 alarm_sec = cur_sec + 1; 378 } else if (cur_sec > alarm_sec) { 379 alarm_min++; 380 } 381 382 if (alarm_sec == SEC_PER_MIN) { 383 alarm_sec = 0; 384 alarm_min++; 385 } 386 /* wrap to next day, hour is not in don't care mode */ 387 alarm_min %= MIN_PER_HOUR; 388 } else if (cur_min == alarm_min) { 389 if (alarm_sec == -1) { 390 alarm_sec = cur_sec + 1; 391 } 392 /* wrap to next day, hours+minutes not in don't care mode */ 393 alarm_sec %= SEC_PER_MIN; 394 } 395 } 396 397 /* values that are still don't care fire at the next min/sec */ 398 if (alarm_min == -1) { 399 alarm_min = 0; 400 } 401 if (alarm_sec == -1) { 402 alarm_sec = 0; 403 } 404 405 /* keep values in range */ 406 if (alarm_sec == SEC_PER_MIN) { 407 alarm_sec = 0; 408 alarm_min++; 409 } 410 if (alarm_min == MIN_PER_HOUR) { 411 alarm_min = 0; 412 alarm_hour++; 413 } 414 alarm_hour %= HOUR_PER_DAY; 415 416 hour = alarm_hour - cur_hour; 417 min = hour * MIN_PER_HOUR + alarm_min - cur_min; 418 sec = min * SEC_PER_MIN + alarm_sec - cur_sec; 419 return sec <= 0 ? sec + SEC_PER_DAY : sec; 420 } 421 422 static void rtc_update_timer(void *opaque) 423 { 424 RTCState *s = opaque; 425 int32_t irqs = REG_C_UF; 426 int32_t new_irqs; 427 428 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); 429 430 /* UIP might have been latched, update time and clear it. */ 431 rtc_update_time(s); 432 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 433 434 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { 435 irqs |= REG_C_AF; 436 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { 437 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); 438 } 439 } 440 441 new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; 442 s->cmos_data[RTC_REG_C] |= irqs; 443 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { 444 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 445 qemu_irq_raise(s->irq); 446 } 447 check_update_timer(s); 448 } 449 450 static void cmos_ioport_write(void *opaque, hwaddr addr, 451 uint64_t data, unsigned size) 452 { 453 RTCState *s = opaque; 454 uint32_t old_period; 455 bool update_periodic_timer; 456 457 if ((addr & 1) == 0) { 458 s->cmos_index = data & 0x7f; 459 } else { 460 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", 461 s->cmos_index, data); 462 switch(s->cmos_index) { 463 case RTC_SECONDS_ALARM: 464 case RTC_MINUTES_ALARM: 465 case RTC_HOURS_ALARM: 466 s->cmos_data[s->cmos_index] = data; 467 check_update_timer(s); 468 break; 469 case RTC_IBM_PS2_CENTURY_BYTE: 470 s->cmos_index = RTC_CENTURY; 471 /* fall through */ 472 case RTC_CENTURY: 473 case RTC_SECONDS: 474 case RTC_MINUTES: 475 case RTC_HOURS: 476 case RTC_DAY_OF_WEEK: 477 case RTC_DAY_OF_MONTH: 478 case RTC_MONTH: 479 case RTC_YEAR: 480 s->cmos_data[s->cmos_index] = data; 481 /* if in set mode, do not update the time */ 482 if (rtc_running(s)) { 483 rtc_set_time(s); 484 check_update_timer(s); 485 } 486 break; 487 case RTC_REG_A: 488 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; 489 old_period = rtc_periodic_clock_ticks(s); 490 491 if ((data & 0x60) == 0x60) { 492 if (rtc_running(s)) { 493 rtc_update_time(s); 494 } 495 /* What happens to UIP when divider reset is enabled is 496 * unclear from the datasheet. Shouldn't matter much 497 * though. 498 */ 499 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 500 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && 501 (data & 0x70) <= 0x20) { 502 /* when the divider reset is removed, the first update cycle 503 * begins one-half second later*/ 504 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { 505 s->offset = 500000000; 506 rtc_set_time(s); 507 } 508 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 509 } 510 /* UIP bit is read only */ 511 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | 512 (s->cmos_data[RTC_REG_A] & REG_A_UIP); 513 514 if (update_periodic_timer) { 515 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 516 old_period, true); 517 } 518 519 check_update_timer(s); 520 break; 521 case RTC_REG_B: 522 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) 523 & REG_B_PIE; 524 old_period = rtc_periodic_clock_ticks(s); 525 526 if (data & REG_B_SET) { 527 /* update cmos to when the rtc was stopping */ 528 if (rtc_running(s)) { 529 rtc_update_time(s); 530 } 531 /* set mode: reset UIP mode */ 532 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 533 data &= ~REG_B_UIE; 534 } else { 535 /* if disabling set mode, update the time */ 536 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && 537 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { 538 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 539 rtc_set_time(s); 540 } 541 } 542 /* if an interrupt flag is already set when the interrupt 543 * becomes enabled, raise an interrupt immediately. */ 544 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { 545 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 546 qemu_irq_raise(s->irq); 547 } else { 548 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; 549 qemu_irq_lower(s->irq); 550 } 551 s->cmos_data[RTC_REG_B] = data; 552 553 if (update_periodic_timer) { 554 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 555 old_period, true); 556 } 557 558 check_update_timer(s); 559 break; 560 case RTC_REG_C: 561 case RTC_REG_D: 562 /* cannot write to them */ 563 break; 564 default: 565 s->cmos_data[s->cmos_index] = data; 566 break; 567 } 568 } 569 } 570 571 static inline int rtc_to_bcd(RTCState *s, int a) 572 { 573 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 574 return a; 575 } else { 576 return ((a / 10) << 4) | (a % 10); 577 } 578 } 579 580 static inline int rtc_from_bcd(RTCState *s, int a) 581 { 582 if ((a & 0xc0) == 0xc0) { 583 return -1; 584 } 585 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 586 return a; 587 } else { 588 return ((a >> 4) * 10) + (a & 0x0f); 589 } 590 } 591 592 static void rtc_get_time(RTCState *s, struct tm *tm) 593 { 594 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 595 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 596 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); 597 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 598 tm->tm_hour %= 12; 599 if (s->cmos_data[RTC_HOURS] & 0x80) { 600 tm->tm_hour += 12; 601 } 602 } 603 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; 604 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); 605 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; 606 tm->tm_year = 607 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + 608 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; 609 } 610 611 static void rtc_set_time(RTCState *s) 612 { 613 struct tm tm; 614 615 rtc_get_time(s, &tm); 616 s->base_rtc = mktimegm(&tm); 617 s->last_update = qemu_clock_get_ns(rtc_clock); 618 619 qapi_event_send_rtc_change(qemu_timedate_diff(&tm)); 620 } 621 622 static void rtc_set_cmos(RTCState *s, const struct tm *tm) 623 { 624 int year; 625 626 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); 627 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); 628 if (s->cmos_data[RTC_REG_B] & REG_B_24H) { 629 /* 24 hour format */ 630 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); 631 } else { 632 /* 12 hour format */ 633 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; 634 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); 635 if (tm->tm_hour >= 12) 636 s->cmos_data[RTC_HOURS] |= 0x80; 637 } 638 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); 639 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); 640 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); 641 year = tm->tm_year + 1900 - s->base_year; 642 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); 643 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); 644 } 645 646 static void rtc_update_time(RTCState *s) 647 { 648 struct tm ret; 649 time_t guest_sec; 650 int64_t guest_nsec; 651 652 guest_nsec = get_guest_rtc_ns(s); 653 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; 654 gmtime_r(&guest_sec, &ret); 655 656 /* Is SET flag of Register B disabled? */ 657 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { 658 rtc_set_cmos(s, &ret); 659 } 660 } 661 662 static int update_in_progress(RTCState *s) 663 { 664 int64_t guest_nsec; 665 666 if (!rtc_running(s)) { 667 return 0; 668 } 669 if (timer_pending(s->update_timer)) { 670 int64_t next_update_time = timer_expire_time_ns(s->update_timer); 671 /* Latch UIP until the timer expires. */ 672 if (qemu_clock_get_ns(rtc_clock) >= 673 (next_update_time - UIP_HOLD_LENGTH)) { 674 s->cmos_data[RTC_REG_A] |= REG_A_UIP; 675 return 1; 676 } 677 } 678 679 guest_nsec = get_guest_rtc_ns(s); 680 /* UIP bit will be set at last 244us of every second. */ 681 if ((guest_nsec % NANOSECONDS_PER_SECOND) >= 682 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { 683 return 1; 684 } 685 return 0; 686 } 687 688 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, 689 unsigned size) 690 { 691 RTCState *s = opaque; 692 int ret; 693 if ((addr & 1) == 0) { 694 return 0xff; 695 } else { 696 switch(s->cmos_index) { 697 case RTC_IBM_PS2_CENTURY_BYTE: 698 s->cmos_index = RTC_CENTURY; 699 /* fall through */ 700 case RTC_CENTURY: 701 case RTC_SECONDS: 702 case RTC_MINUTES: 703 case RTC_HOURS: 704 case RTC_DAY_OF_WEEK: 705 case RTC_DAY_OF_MONTH: 706 case RTC_MONTH: 707 case RTC_YEAR: 708 /* if not in set mode, calibrate cmos before 709 * reading*/ 710 if (rtc_running(s)) { 711 rtc_update_time(s); 712 } 713 ret = s->cmos_data[s->cmos_index]; 714 break; 715 case RTC_REG_A: 716 ret = s->cmos_data[s->cmos_index]; 717 if (update_in_progress(s)) { 718 ret |= REG_A_UIP; 719 } 720 break; 721 case RTC_REG_C: 722 ret = s->cmos_data[s->cmos_index]; 723 qemu_irq_lower(s->irq); 724 s->cmos_data[RTC_REG_C] = 0x00; 725 if (ret & (REG_C_UF | REG_C_AF)) { 726 check_update_timer(s); 727 } 728 729 if(s->irq_coalesced && 730 (s->cmos_data[RTC_REG_B] & REG_B_PIE) && 731 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { 732 s->irq_reinject_on_ack_count++; 733 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; 734 DPRINTF_C("cmos: injecting on ack\n"); 735 if (rtc_policy_slew_deliver_irq(s)) { 736 s->irq_coalesced--; 737 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 738 s->irq_coalesced); 739 } 740 } 741 break; 742 default: 743 ret = s->cmos_data[s->cmos_index]; 744 break; 745 } 746 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", 747 s->cmos_index, ret); 748 return ret; 749 } 750 } 751 752 void rtc_set_memory(ISADevice *dev, int addr, int val) 753 { 754 RTCState *s = MC146818_RTC(dev); 755 if (addr >= 0 && addr <= 127) 756 s->cmos_data[addr] = val; 757 } 758 759 int rtc_get_memory(ISADevice *dev, int addr) 760 { 761 RTCState *s = MC146818_RTC(dev); 762 assert(addr >= 0 && addr <= 127); 763 return s->cmos_data[addr]; 764 } 765 766 static void rtc_set_date_from_host(ISADevice *dev) 767 { 768 RTCState *s = MC146818_RTC(dev); 769 struct tm tm; 770 771 qemu_get_timedate(&tm, 0); 772 773 s->base_rtc = mktimegm(&tm); 774 s->last_update = qemu_clock_get_ns(rtc_clock); 775 s->offset = 0; 776 777 /* set the CMOS date */ 778 rtc_set_cmos(s, &tm); 779 } 780 781 static int rtc_pre_save(void *opaque) 782 { 783 RTCState *s = opaque; 784 785 rtc_update_time(s); 786 787 return 0; 788 } 789 790 static int rtc_post_load(void *opaque, int version_id) 791 { 792 RTCState *s = opaque; 793 794 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { 795 rtc_set_time(s); 796 s->offset = 0; 797 check_update_timer(s); 798 } 799 s->period = rtc_periodic_clock_ticks(s); 800 801 /* The periodic timer is deterministic in record/replay mode, 802 * so there is no need to update it after loading the vmstate. 803 * Reading RTC here would misalign record and replay. 804 */ 805 if (replay_mode == REPLAY_MODE_NONE) { 806 uint64_t now = qemu_clock_get_ns(rtc_clock); 807 if (now < s->next_periodic_time || 808 now > (s->next_periodic_time + get_max_clock_jump())) { 809 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); 810 } 811 } 812 813 if (version_id >= 2) { 814 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 815 rtc_coalesced_timer_update(s); 816 } 817 } 818 return 0; 819 } 820 821 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) 822 { 823 RTCState *s = (RTCState *)opaque; 824 return s->irq_reinject_on_ack_count != 0; 825 } 826 827 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { 828 .name = "mc146818rtc/irq_reinject_on_ack_count", 829 .version_id = 1, 830 .minimum_version_id = 1, 831 .needed = rtc_irq_reinject_on_ack_count_needed, 832 .fields = (VMStateField[]) { 833 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), 834 VMSTATE_END_OF_LIST() 835 } 836 }; 837 838 static const VMStateDescription vmstate_rtc = { 839 .name = "mc146818rtc", 840 .version_id = 3, 841 .minimum_version_id = 1, 842 .pre_save = rtc_pre_save, 843 .post_load = rtc_post_load, 844 .fields = (VMStateField[]) { 845 VMSTATE_BUFFER(cmos_data, RTCState), 846 VMSTATE_UINT8(cmos_index, RTCState), 847 VMSTATE_UNUSED(7*4), 848 VMSTATE_TIMER_PTR(periodic_timer, RTCState), 849 VMSTATE_INT64(next_periodic_time, RTCState), 850 VMSTATE_UNUSED(3*8), 851 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), 852 VMSTATE_UINT32_V(period, RTCState, 2), 853 VMSTATE_UINT64_V(base_rtc, RTCState, 3), 854 VMSTATE_UINT64_V(last_update, RTCState, 3), 855 VMSTATE_INT64_V(offset, RTCState, 3), 856 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), 857 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), 858 VMSTATE_END_OF_LIST() 859 }, 860 .subsections = (const VMStateDescription*[]) { 861 &vmstate_rtc_irq_reinject_on_ack_count, 862 NULL 863 } 864 }; 865 866 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) 867 BIOS will read it and start S3 resume at POST Entry */ 868 static void rtc_notify_suspend(Notifier *notifier, void *data) 869 { 870 RTCState *s = container_of(notifier, RTCState, suspend_notifier); 871 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); 872 } 873 874 static const MemoryRegionOps cmos_ops = { 875 .read = cmos_ioport_read, 876 .write = cmos_ioport_write, 877 .impl = { 878 .min_access_size = 1, 879 .max_access_size = 1, 880 }, 881 .endianness = DEVICE_LITTLE_ENDIAN, 882 }; 883 884 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) 885 { 886 RTCState *s = MC146818_RTC(obj); 887 888 rtc_update_time(s); 889 rtc_get_time(s, current_tm); 890 } 891 892 static void rtc_realizefn(DeviceState *dev, Error **errp) 893 { 894 ISADevice *isadev = ISA_DEVICE(dev); 895 RTCState *s = MC146818_RTC(dev); 896 897 s->cmos_data[RTC_REG_A] = 0x26; 898 s->cmos_data[RTC_REG_B] = 0x02; 899 s->cmos_data[RTC_REG_C] = 0x00; 900 s->cmos_data[RTC_REG_D] = 0x80; 901 902 /* This is for historical reasons. The default base year qdev property 903 * was set to 2000 for most machine types before the century byte was 904 * implemented. 905 * 906 * This if statement means that the century byte will be always 0 907 * (at least until 2079...) for base_year = 1980, but will be set 908 * correctly for base_year = 2000. 909 */ 910 if (s->base_year == 2000) { 911 s->base_year = 0; 912 } 913 914 rtc_set_date_from_host(isadev); 915 916 switch (s->lost_tick_policy) { 917 #ifdef TARGET_I386 918 case LOST_TICK_POLICY_SLEW: 919 s->coalesced_timer = 920 timer_new_ns(rtc_clock, rtc_coalesced_timer, s); 921 break; 922 #endif 923 case LOST_TICK_POLICY_DISCARD: 924 break; 925 default: 926 error_setg(errp, "Invalid lost tick policy."); 927 return; 928 } 929 930 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); 931 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); 932 check_update_timer(s); 933 934 s->suspend_notifier.notify = rtc_notify_suspend; 935 qemu_register_suspend_notifier(&s->suspend_notifier); 936 937 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); 938 isa_register_ioport(isadev, &s->io, RTC_ISA_BASE); 939 940 /* register rtc 0x70 port for coalesced_pio */ 941 memory_region_set_flush_coalesced(&s->io); 942 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, 943 s, "rtc-index", 1); 944 memory_region_add_subregion(&s->io, 0, &s->coalesced_io); 945 memory_region_add_coalescing(&s->coalesced_io, 0, 1); 946 947 qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3); 948 949 object_property_add_tm(OBJECT(s), "date", rtc_get_date); 950 951 qdev_init_gpio_out(dev, &s->irq, 1); 952 QLIST_INSERT_HEAD(&rtc_devices, s, link); 953 } 954 955 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) 956 { 957 DeviceState *dev; 958 ISADevice *isadev; 959 960 isadev = isa_new(TYPE_MC146818_RTC); 961 dev = DEVICE(isadev); 962 qdev_prop_set_int32(dev, "base_year", base_year); 963 isa_realize_and_unref(isadev, bus, &error_fatal); 964 if (intercept_irq) { 965 qdev_connect_gpio_out(dev, 0, intercept_irq); 966 } else { 967 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ); 968 } 969 970 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), 971 "date"); 972 973 return isadev; 974 } 975 976 static Property mc146818rtc_properties[] = { 977 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), 978 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, 979 lost_tick_policy, LOST_TICK_POLICY_DISCARD), 980 DEFINE_PROP_END_OF_LIST(), 981 }; 982 983 static void rtc_reset_enter(Object *obj, ResetType type) 984 { 985 RTCState *s = MC146818_RTC(obj); 986 987 /* Reason: VM do suspend self will set 0xfe 988 * Reset any values other than 0xfe(Guest suspend case) */ 989 if (s->cmos_data[0x0f] != 0xfe) { 990 s->cmos_data[0x0f] = 0x00; 991 } 992 993 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); 994 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); 995 check_update_timer(s); 996 997 998 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 999 s->irq_coalesced = 0; 1000 s->irq_reinject_on_ack_count = 0; 1001 } 1002 } 1003 1004 static void rtc_reset_hold(Object *obj) 1005 { 1006 RTCState *s = MC146818_RTC(obj); 1007 1008 qemu_irq_lower(s->irq); 1009 } 1010 1011 static void rtc_build_aml(ISADevice *isadev, Aml *scope) 1012 { 1013 Aml *dev; 1014 Aml *crs; 1015 1016 /* 1017 * Reserving 8 io ports here, following what physical hardware 1018 * does, even though qemu only responds to the first two ports. 1019 */ 1020 crs = aml_resource_template(); 1021 aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE, 1022 0x01, 0x08)); 1023 aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ)); 1024 1025 dev = aml_device("RTC"); 1026 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); 1027 aml_append(dev, aml_name_decl("_CRS", crs)); 1028 1029 aml_append(scope, dev); 1030 } 1031 1032 static void rtc_class_initfn(ObjectClass *klass, void *data) 1033 { 1034 DeviceClass *dc = DEVICE_CLASS(klass); 1035 ResettableClass *rc = RESETTABLE_CLASS(klass); 1036 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass); 1037 1038 dc->realize = rtc_realizefn; 1039 dc->vmsd = &vmstate_rtc; 1040 rc->phases.enter = rtc_reset_enter; 1041 rc->phases.hold = rtc_reset_hold; 1042 isa->build_aml = rtc_build_aml; 1043 device_class_set_props(dc, mc146818rtc_properties); 1044 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1045 } 1046 1047 static const TypeInfo mc146818rtc_info = { 1048 .name = TYPE_MC146818_RTC, 1049 .parent = TYPE_ISA_DEVICE, 1050 .instance_size = sizeof(RTCState), 1051 .class_init = rtc_class_initfn, 1052 }; 1053 1054 static void mc146818rtc_register_types(void) 1055 { 1056 type_register_static(&mc146818rtc_info); 1057 } 1058 1059 type_init(mc146818rtc_register_types) 1060