1 /* 2 * QEMU MC146818 RTC emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "qemu/cutils.h" 28 #include "qemu/module.h" 29 #include "qemu/bcd.h" 30 #include "hw/acpi/aml-build.h" 31 #include "hw/irq.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/qdev-properties-system.h" 34 #include "qemu/timer.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/replay.h" 37 #include "sysemu/reset.h" 38 #include "sysemu/runstate.h" 39 #include "hw/rtc/mc146818rtc.h" 40 #include "hw/rtc/mc146818rtc_regs.h" 41 #include "migration/vmstate.h" 42 #include "qapi/error.h" 43 #include "qapi/qapi-events-misc-target.h" 44 #include "qapi/visitor.h" 45 #include "exec/address-spaces.h" 46 #include "hw/rtc/mc146818rtc_regs.h" 47 48 #ifdef TARGET_I386 49 #include "qapi/qapi-commands-misc-target.h" 50 #include "hw/i386/apic.h" 51 #endif 52 53 //#define DEBUG_CMOS 54 //#define DEBUG_COALESCED 55 56 #ifdef DEBUG_CMOS 57 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) 58 #else 59 # define CMOS_DPRINTF(format, ...) do { } while (0) 60 #endif 61 62 #ifdef DEBUG_COALESCED 63 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) 64 #else 65 # define DPRINTF_C(format, ...) do { } while (0) 66 #endif 67 68 #define SEC_PER_MIN 60 69 #define MIN_PER_HOUR 60 70 #define SEC_PER_HOUR 3600 71 #define HOUR_PER_DAY 24 72 #define SEC_PER_DAY 86400 73 74 #define RTC_REINJECT_ON_ACK_COUNT 20 75 #define RTC_CLOCK_RATE 32768 76 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) 77 78 static void rtc_set_time(RTCState *s); 79 static void rtc_update_time(RTCState *s); 80 static void rtc_set_cmos(RTCState *s, const struct tm *tm); 81 static inline int rtc_from_bcd(RTCState *s, int a); 82 static uint64_t get_next_alarm(RTCState *s); 83 84 static inline bool rtc_running(RTCState *s) 85 { 86 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && 87 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); 88 } 89 90 static uint64_t get_guest_rtc_ns(RTCState *s) 91 { 92 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); 93 94 return s->base_rtc * NANOSECONDS_PER_SECOND + 95 guest_clock - s->last_update + s->offset; 96 } 97 98 static void rtc_coalesced_timer_update(RTCState *s) 99 { 100 if (s->irq_coalesced == 0) { 101 timer_del(s->coalesced_timer); 102 } else { 103 /* divide each RTC interval to 2 - 8 smaller intervals */ 104 int c = MIN(s->irq_coalesced, 7) + 1; 105 int64_t next_clock = qemu_clock_get_ns(rtc_clock) + 106 periodic_clock_to_ns(s->period / c); 107 timer_mod(s->coalesced_timer, next_clock); 108 } 109 } 110 111 static QLIST_HEAD(, RTCState) rtc_devices = 112 QLIST_HEAD_INITIALIZER(rtc_devices); 113 114 #ifdef TARGET_I386 115 void qmp_rtc_reset_reinjection(Error **errp) 116 { 117 RTCState *s; 118 119 QLIST_FOREACH(s, &rtc_devices, link) { 120 s->irq_coalesced = 0; 121 } 122 } 123 124 static bool rtc_policy_slew_deliver_irq(RTCState *s) 125 { 126 apic_reset_irq_delivered(); 127 qemu_irq_raise(s->irq); 128 return apic_get_irq_delivered(); 129 } 130 131 static void rtc_coalesced_timer(void *opaque) 132 { 133 RTCState *s = opaque; 134 135 if (s->irq_coalesced != 0) { 136 s->cmos_data[RTC_REG_C] |= 0xc0; 137 DPRINTF_C("cmos: injecting from timer\n"); 138 if (rtc_policy_slew_deliver_irq(s)) { 139 s->irq_coalesced--; 140 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 141 s->irq_coalesced); 142 } 143 } 144 145 rtc_coalesced_timer_update(s); 146 } 147 #else 148 static bool rtc_policy_slew_deliver_irq(RTCState *s) 149 { 150 assert(0); 151 return false; 152 } 153 #endif 154 155 static uint32_t rtc_periodic_clock_ticks(RTCState *s) 156 { 157 int period_code; 158 159 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { 160 return 0; 161 } 162 163 period_code = s->cmos_data[RTC_REG_A] & 0x0f; 164 165 return periodic_period_to_clock(period_code); 166 } 167 168 /* 169 * handle periodic timer. @old_period indicates the periodic timer update 170 * is just due to period adjustment. 171 */ 172 static void 173 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change) 174 { 175 uint32_t period; 176 int64_t cur_clock, next_irq_clock, lost_clock = 0; 177 178 period = rtc_periodic_clock_ticks(s); 179 s->period = period; 180 181 if (!period) { 182 s->irq_coalesced = 0; 183 timer_del(s->periodic_timer); 184 return; 185 } 186 187 /* compute 32 khz clock */ 188 cur_clock = 189 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 190 191 /* 192 * if the periodic timer's update is due to period re-configuration, 193 * we should count the clock since last interrupt. 194 */ 195 if (old_period && period_change) { 196 int64_t last_periodic_clock, next_periodic_clock; 197 198 next_periodic_clock = muldiv64(s->next_periodic_time, 199 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 200 last_periodic_clock = next_periodic_clock - old_period; 201 lost_clock = cur_clock - last_periodic_clock; 202 assert(lost_clock >= 0); 203 } 204 205 /* 206 * s->irq_coalesced can change for two reasons: 207 * 208 * a) if one or more periodic timer interrupts have been lost, 209 * lost_clock will be more that a period. 210 * 211 * b) when the period may be reconfigured, we expect the OS to 212 * treat delayed tick as the new period. So, when switching 213 * from a shorter to a longer period, scale down the missing, 214 * because the OS will treat past delayed ticks as longer 215 * (leftovers are put back into lost_clock). When switching 216 * to a shorter period, scale up the missing ticks since the 217 * OS handler will treat past delayed ticks as shorter. 218 */ 219 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 220 uint32_t old_irq_coalesced = s->irq_coalesced; 221 222 lost_clock += old_irq_coalesced * old_period; 223 s->irq_coalesced = lost_clock / s->period; 224 lost_clock %= s->period; 225 if (old_irq_coalesced != s->irq_coalesced || 226 old_period != s->period) { 227 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " 228 "period scaled from %d to %d\n", old_irq_coalesced, 229 s->irq_coalesced, old_period, s->period); 230 rtc_coalesced_timer_update(s); 231 } 232 } else { 233 /* 234 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW 235 * is not used, we should make the time progress anyway. 236 */ 237 lost_clock = MIN(lost_clock, period); 238 } 239 240 assert(lost_clock >= 0 && lost_clock <= period); 241 242 next_irq_clock = cur_clock + period - lost_clock; 243 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; 244 timer_mod(s->periodic_timer, s->next_periodic_time); 245 } 246 247 static void rtc_periodic_timer(void *opaque) 248 { 249 RTCState *s = opaque; 250 251 periodic_timer_update(s, s->next_periodic_time, s->period, false); 252 s->cmos_data[RTC_REG_C] |= REG_C_PF; 253 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { 254 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 255 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 256 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) 257 s->irq_reinject_on_ack_count = 0; 258 if (!rtc_policy_slew_deliver_irq(s)) { 259 s->irq_coalesced++; 260 rtc_coalesced_timer_update(s); 261 DPRINTF_C("cmos: coalesced irqs increased to %d\n", 262 s->irq_coalesced); 263 } 264 } else 265 qemu_irq_raise(s->irq); 266 } 267 } 268 269 /* handle update-ended timer */ 270 static void check_update_timer(RTCState *s) 271 { 272 uint64_t next_update_time; 273 uint64_t guest_nsec; 274 int next_alarm_sec; 275 276 /* From the data sheet: "Holding the dividers in reset prevents 277 * interrupts from operating, while setting the SET bit allows" 278 * them to occur. 279 */ 280 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { 281 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); 282 timer_del(s->update_timer); 283 return; 284 } 285 286 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 287 next_update_time = qemu_clock_get_ns(rtc_clock) 288 + NANOSECONDS_PER_SECOND - guest_nsec; 289 290 /* Compute time of next alarm. One second is already accounted 291 * for in next_update_time. 292 */ 293 next_alarm_sec = get_next_alarm(s); 294 s->next_alarm_time = next_update_time + 295 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; 296 297 /* If update_in_progress latched the UIP bit, we must keep the timer 298 * programmed to the next second, so that UIP is cleared. Otherwise, 299 * if UF is already set, we might be able to optimize. 300 */ 301 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && 302 (s->cmos_data[RTC_REG_C] & REG_C_UF)) { 303 /* If AF cannot change (i.e. either it is set already, or 304 * SET=1 and then the time is not updated), nothing to do. 305 */ 306 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || 307 (s->cmos_data[RTC_REG_C] & REG_C_AF)) { 308 timer_del(s->update_timer); 309 return; 310 } 311 312 /* UF is set, but AF is clear. Program the timer to target 313 * the alarm time. */ 314 next_update_time = s->next_alarm_time; 315 } 316 if (next_update_time != timer_expire_time_ns(s->update_timer)) { 317 timer_mod(s->update_timer, next_update_time); 318 } 319 } 320 321 static inline uint8_t convert_hour(RTCState *s, uint8_t hour) 322 { 323 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 324 hour %= 12; 325 if (s->cmos_data[RTC_HOURS] & 0x80) { 326 hour += 12; 327 } 328 } 329 return hour; 330 } 331 332 static uint64_t get_next_alarm(RTCState *s) 333 { 334 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; 335 int32_t hour, min, sec; 336 337 rtc_update_time(s); 338 339 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); 340 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); 341 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); 342 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); 343 344 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 345 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 346 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); 347 cur_hour = convert_hour(s, cur_hour); 348 349 if (alarm_hour == -1) { 350 alarm_hour = cur_hour; 351 if (alarm_min == -1) { 352 alarm_min = cur_min; 353 if (alarm_sec == -1) { 354 alarm_sec = cur_sec + 1; 355 } else if (cur_sec > alarm_sec) { 356 alarm_min++; 357 } 358 } else if (cur_min == alarm_min) { 359 if (alarm_sec == -1) { 360 alarm_sec = cur_sec + 1; 361 } else { 362 if (cur_sec > alarm_sec) { 363 alarm_hour++; 364 } 365 } 366 if (alarm_sec == SEC_PER_MIN) { 367 /* wrap to next hour, minutes is not in don't care mode */ 368 alarm_sec = 0; 369 alarm_hour++; 370 } 371 } else if (cur_min > alarm_min) { 372 alarm_hour++; 373 } 374 } else if (cur_hour == alarm_hour) { 375 if (alarm_min == -1) { 376 alarm_min = cur_min; 377 if (alarm_sec == -1) { 378 alarm_sec = cur_sec + 1; 379 } else if (cur_sec > alarm_sec) { 380 alarm_min++; 381 } 382 383 if (alarm_sec == SEC_PER_MIN) { 384 alarm_sec = 0; 385 alarm_min++; 386 } 387 /* wrap to next day, hour is not in don't care mode */ 388 alarm_min %= MIN_PER_HOUR; 389 } else if (cur_min == alarm_min) { 390 if (alarm_sec == -1) { 391 alarm_sec = cur_sec + 1; 392 } 393 /* wrap to next day, hours+minutes not in don't care mode */ 394 alarm_sec %= SEC_PER_MIN; 395 } 396 } 397 398 /* values that are still don't care fire at the next min/sec */ 399 if (alarm_min == -1) { 400 alarm_min = 0; 401 } 402 if (alarm_sec == -1) { 403 alarm_sec = 0; 404 } 405 406 /* keep values in range */ 407 if (alarm_sec == SEC_PER_MIN) { 408 alarm_sec = 0; 409 alarm_min++; 410 } 411 if (alarm_min == MIN_PER_HOUR) { 412 alarm_min = 0; 413 alarm_hour++; 414 } 415 alarm_hour %= HOUR_PER_DAY; 416 417 hour = alarm_hour - cur_hour; 418 min = hour * MIN_PER_HOUR + alarm_min - cur_min; 419 sec = min * SEC_PER_MIN + alarm_sec - cur_sec; 420 return sec <= 0 ? sec + SEC_PER_DAY : sec; 421 } 422 423 static void rtc_update_timer(void *opaque) 424 { 425 RTCState *s = opaque; 426 int32_t irqs = REG_C_UF; 427 int32_t new_irqs; 428 429 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); 430 431 /* UIP might have been latched, update time and clear it. */ 432 rtc_update_time(s); 433 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 434 435 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { 436 irqs |= REG_C_AF; 437 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { 438 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); 439 } 440 } 441 442 new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; 443 s->cmos_data[RTC_REG_C] |= irqs; 444 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { 445 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 446 qemu_irq_raise(s->irq); 447 } 448 check_update_timer(s); 449 } 450 451 static void cmos_ioport_write(void *opaque, hwaddr addr, 452 uint64_t data, unsigned size) 453 { 454 RTCState *s = opaque; 455 uint32_t old_period; 456 bool update_periodic_timer; 457 458 if ((addr & 1) == 0) { 459 s->cmos_index = data & 0x7f; 460 } else { 461 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", 462 s->cmos_index, data); 463 switch(s->cmos_index) { 464 case RTC_SECONDS_ALARM: 465 case RTC_MINUTES_ALARM: 466 case RTC_HOURS_ALARM: 467 s->cmos_data[s->cmos_index] = data; 468 check_update_timer(s); 469 break; 470 case RTC_IBM_PS2_CENTURY_BYTE: 471 s->cmos_index = RTC_CENTURY; 472 /* fall through */ 473 case RTC_CENTURY: 474 case RTC_SECONDS: 475 case RTC_MINUTES: 476 case RTC_HOURS: 477 case RTC_DAY_OF_WEEK: 478 case RTC_DAY_OF_MONTH: 479 case RTC_MONTH: 480 case RTC_YEAR: 481 s->cmos_data[s->cmos_index] = data; 482 /* if in set mode, do not update the time */ 483 if (rtc_running(s)) { 484 rtc_set_time(s); 485 check_update_timer(s); 486 } 487 break; 488 case RTC_REG_A: 489 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; 490 old_period = rtc_periodic_clock_ticks(s); 491 492 if ((data & 0x60) == 0x60) { 493 if (rtc_running(s)) { 494 rtc_update_time(s); 495 } 496 /* What happens to UIP when divider reset is enabled is 497 * unclear from the datasheet. Shouldn't matter much 498 * though. 499 */ 500 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 501 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && 502 (data & 0x70) <= 0x20) { 503 /* when the divider reset is removed, the first update cycle 504 * begins one-half second later*/ 505 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { 506 s->offset = 500000000; 507 rtc_set_time(s); 508 } 509 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 510 } 511 /* UIP bit is read only */ 512 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | 513 (s->cmos_data[RTC_REG_A] & REG_A_UIP); 514 515 if (update_periodic_timer) { 516 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 517 old_period, true); 518 } 519 520 check_update_timer(s); 521 break; 522 case RTC_REG_B: 523 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) 524 & REG_B_PIE; 525 old_period = rtc_periodic_clock_ticks(s); 526 527 if (data & REG_B_SET) { 528 /* update cmos to when the rtc was stopping */ 529 if (rtc_running(s)) { 530 rtc_update_time(s); 531 } 532 /* set mode: reset UIP mode */ 533 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 534 data &= ~REG_B_UIE; 535 } else { 536 /* if disabling set mode, update the time */ 537 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && 538 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { 539 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 540 rtc_set_time(s); 541 } 542 } 543 /* if an interrupt flag is already set when the interrupt 544 * becomes enabled, raise an interrupt immediately. */ 545 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { 546 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 547 qemu_irq_raise(s->irq); 548 } else { 549 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; 550 qemu_irq_lower(s->irq); 551 } 552 s->cmos_data[RTC_REG_B] = data; 553 554 if (update_periodic_timer) { 555 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 556 old_period, true); 557 } 558 559 check_update_timer(s); 560 break; 561 case RTC_REG_C: 562 case RTC_REG_D: 563 /* cannot write to them */ 564 break; 565 default: 566 s->cmos_data[s->cmos_index] = data; 567 break; 568 } 569 } 570 } 571 572 static inline int rtc_to_bcd(RTCState *s, int a) 573 { 574 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 575 return a; 576 } else { 577 return ((a / 10) << 4) | (a % 10); 578 } 579 } 580 581 static inline int rtc_from_bcd(RTCState *s, int a) 582 { 583 if ((a & 0xc0) == 0xc0) { 584 return -1; 585 } 586 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 587 return a; 588 } else { 589 return ((a >> 4) * 10) + (a & 0x0f); 590 } 591 } 592 593 static void rtc_get_time(RTCState *s, struct tm *tm) 594 { 595 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 596 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 597 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); 598 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 599 tm->tm_hour %= 12; 600 if (s->cmos_data[RTC_HOURS] & 0x80) { 601 tm->tm_hour += 12; 602 } 603 } 604 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; 605 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); 606 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; 607 tm->tm_year = 608 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + 609 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; 610 } 611 612 static void rtc_set_time(RTCState *s) 613 { 614 struct tm tm; 615 616 rtc_get_time(s, &tm); 617 s->base_rtc = mktimegm(&tm); 618 s->last_update = qemu_clock_get_ns(rtc_clock); 619 620 qapi_event_send_rtc_change(qemu_timedate_diff(&tm)); 621 } 622 623 static void rtc_set_cmos(RTCState *s, const struct tm *tm) 624 { 625 int year; 626 627 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); 628 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); 629 if (s->cmos_data[RTC_REG_B] & REG_B_24H) { 630 /* 24 hour format */ 631 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); 632 } else { 633 /* 12 hour format */ 634 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; 635 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); 636 if (tm->tm_hour >= 12) 637 s->cmos_data[RTC_HOURS] |= 0x80; 638 } 639 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); 640 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); 641 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); 642 year = tm->tm_year + 1900 - s->base_year; 643 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); 644 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); 645 } 646 647 static void rtc_update_time(RTCState *s) 648 { 649 struct tm ret; 650 time_t guest_sec; 651 int64_t guest_nsec; 652 653 guest_nsec = get_guest_rtc_ns(s); 654 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; 655 gmtime_r(&guest_sec, &ret); 656 657 /* Is SET flag of Register B disabled? */ 658 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { 659 rtc_set_cmos(s, &ret); 660 } 661 } 662 663 static int update_in_progress(RTCState *s) 664 { 665 int64_t guest_nsec; 666 667 if (!rtc_running(s)) { 668 return 0; 669 } 670 if (timer_pending(s->update_timer)) { 671 int64_t next_update_time = timer_expire_time_ns(s->update_timer); 672 /* Latch UIP until the timer expires. */ 673 if (qemu_clock_get_ns(rtc_clock) >= 674 (next_update_time - UIP_HOLD_LENGTH)) { 675 s->cmos_data[RTC_REG_A] |= REG_A_UIP; 676 return 1; 677 } 678 } 679 680 guest_nsec = get_guest_rtc_ns(s); 681 /* UIP bit will be set at last 244us of every second. */ 682 if ((guest_nsec % NANOSECONDS_PER_SECOND) >= 683 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { 684 return 1; 685 } 686 return 0; 687 } 688 689 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, 690 unsigned size) 691 { 692 RTCState *s = opaque; 693 int ret; 694 if ((addr & 1) == 0) { 695 return 0xff; 696 } else { 697 switch(s->cmos_index) { 698 case RTC_IBM_PS2_CENTURY_BYTE: 699 s->cmos_index = RTC_CENTURY; 700 /* fall through */ 701 case RTC_CENTURY: 702 case RTC_SECONDS: 703 case RTC_MINUTES: 704 case RTC_HOURS: 705 case RTC_DAY_OF_WEEK: 706 case RTC_DAY_OF_MONTH: 707 case RTC_MONTH: 708 case RTC_YEAR: 709 /* if not in set mode, calibrate cmos before 710 * reading*/ 711 if (rtc_running(s)) { 712 rtc_update_time(s); 713 } 714 ret = s->cmos_data[s->cmos_index]; 715 break; 716 case RTC_REG_A: 717 ret = s->cmos_data[s->cmos_index]; 718 if (update_in_progress(s)) { 719 ret |= REG_A_UIP; 720 } 721 break; 722 case RTC_REG_C: 723 ret = s->cmos_data[s->cmos_index]; 724 qemu_irq_lower(s->irq); 725 s->cmos_data[RTC_REG_C] = 0x00; 726 if (ret & (REG_C_UF | REG_C_AF)) { 727 check_update_timer(s); 728 } 729 730 if(s->irq_coalesced && 731 (s->cmos_data[RTC_REG_B] & REG_B_PIE) && 732 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { 733 s->irq_reinject_on_ack_count++; 734 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; 735 DPRINTF_C("cmos: injecting on ack\n"); 736 if (rtc_policy_slew_deliver_irq(s)) { 737 s->irq_coalesced--; 738 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 739 s->irq_coalesced); 740 } 741 } 742 break; 743 default: 744 ret = s->cmos_data[s->cmos_index]; 745 break; 746 } 747 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", 748 s->cmos_index, ret); 749 return ret; 750 } 751 } 752 753 void rtc_set_memory(ISADevice *dev, int addr, int val) 754 { 755 RTCState *s = MC146818_RTC(dev); 756 if (addr >= 0 && addr <= 127) 757 s->cmos_data[addr] = val; 758 } 759 760 int rtc_get_memory(ISADevice *dev, int addr) 761 { 762 RTCState *s = MC146818_RTC(dev); 763 assert(addr >= 0 && addr <= 127); 764 return s->cmos_data[addr]; 765 } 766 767 static void rtc_set_date_from_host(ISADevice *dev) 768 { 769 RTCState *s = MC146818_RTC(dev); 770 struct tm tm; 771 772 qemu_get_timedate(&tm, 0); 773 774 s->base_rtc = mktimegm(&tm); 775 s->last_update = qemu_clock_get_ns(rtc_clock); 776 s->offset = 0; 777 778 /* set the CMOS date */ 779 rtc_set_cmos(s, &tm); 780 } 781 782 static int rtc_pre_save(void *opaque) 783 { 784 RTCState *s = opaque; 785 786 rtc_update_time(s); 787 788 return 0; 789 } 790 791 static int rtc_post_load(void *opaque, int version_id) 792 { 793 RTCState *s = opaque; 794 795 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { 796 rtc_set_time(s); 797 s->offset = 0; 798 check_update_timer(s); 799 } 800 s->period = rtc_periodic_clock_ticks(s); 801 802 /* The periodic timer is deterministic in record/replay mode, 803 * so there is no need to update it after loading the vmstate. 804 * Reading RTC here would misalign record and replay. 805 */ 806 if (replay_mode == REPLAY_MODE_NONE) { 807 uint64_t now = qemu_clock_get_ns(rtc_clock); 808 if (now < s->next_periodic_time || 809 now > (s->next_periodic_time + get_max_clock_jump())) { 810 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); 811 } 812 } 813 814 if (version_id >= 2) { 815 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 816 rtc_coalesced_timer_update(s); 817 } 818 } 819 return 0; 820 } 821 822 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) 823 { 824 RTCState *s = (RTCState *)opaque; 825 return s->irq_reinject_on_ack_count != 0; 826 } 827 828 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { 829 .name = "mc146818rtc/irq_reinject_on_ack_count", 830 .version_id = 1, 831 .minimum_version_id = 1, 832 .needed = rtc_irq_reinject_on_ack_count_needed, 833 .fields = (VMStateField[]) { 834 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), 835 VMSTATE_END_OF_LIST() 836 } 837 }; 838 839 static const VMStateDescription vmstate_rtc = { 840 .name = "mc146818rtc", 841 .version_id = 3, 842 .minimum_version_id = 1, 843 .pre_save = rtc_pre_save, 844 .post_load = rtc_post_load, 845 .fields = (VMStateField[]) { 846 VMSTATE_BUFFER(cmos_data, RTCState), 847 VMSTATE_UINT8(cmos_index, RTCState), 848 VMSTATE_UNUSED(7*4), 849 VMSTATE_TIMER_PTR(periodic_timer, RTCState), 850 VMSTATE_INT64(next_periodic_time, RTCState), 851 VMSTATE_UNUSED(3*8), 852 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), 853 VMSTATE_UINT32_V(period, RTCState, 2), 854 VMSTATE_UINT64_V(base_rtc, RTCState, 3), 855 VMSTATE_UINT64_V(last_update, RTCState, 3), 856 VMSTATE_INT64_V(offset, RTCState, 3), 857 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), 858 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), 859 VMSTATE_END_OF_LIST() 860 }, 861 .subsections = (const VMStateDescription*[]) { 862 &vmstate_rtc_irq_reinject_on_ack_count, 863 NULL 864 } 865 }; 866 867 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) 868 BIOS will read it and start S3 resume at POST Entry */ 869 static void rtc_notify_suspend(Notifier *notifier, void *data) 870 { 871 RTCState *s = container_of(notifier, RTCState, suspend_notifier); 872 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); 873 } 874 875 static void rtc_reset(void *opaque) 876 { 877 RTCState *s = opaque; 878 879 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); 880 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); 881 check_update_timer(s); 882 883 qemu_irq_lower(s->irq); 884 885 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 886 s->irq_coalesced = 0; 887 s->irq_reinject_on_ack_count = 0; 888 } 889 } 890 891 static const MemoryRegionOps cmos_ops = { 892 .read = cmos_ioport_read, 893 .write = cmos_ioport_write, 894 .impl = { 895 .min_access_size = 1, 896 .max_access_size = 1, 897 }, 898 .endianness = DEVICE_LITTLE_ENDIAN, 899 }; 900 901 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) 902 { 903 RTCState *s = MC146818_RTC(obj); 904 905 rtc_update_time(s); 906 rtc_get_time(s, current_tm); 907 } 908 909 static void rtc_realizefn(DeviceState *dev, Error **errp) 910 { 911 ISADevice *isadev = ISA_DEVICE(dev); 912 RTCState *s = MC146818_RTC(dev); 913 914 s->cmos_data[RTC_REG_A] = 0x26; 915 s->cmos_data[RTC_REG_B] = 0x02; 916 s->cmos_data[RTC_REG_C] = 0x00; 917 s->cmos_data[RTC_REG_D] = 0x80; 918 919 /* This is for historical reasons. The default base year qdev property 920 * was set to 2000 for most machine types before the century byte was 921 * implemented. 922 * 923 * This if statement means that the century byte will be always 0 924 * (at least until 2079...) for base_year = 1980, but will be set 925 * correctly for base_year = 2000. 926 */ 927 if (s->base_year == 2000) { 928 s->base_year = 0; 929 } 930 931 rtc_set_date_from_host(isadev); 932 933 switch (s->lost_tick_policy) { 934 #ifdef TARGET_I386 935 case LOST_TICK_POLICY_SLEW: 936 s->coalesced_timer = 937 timer_new_ns(rtc_clock, rtc_coalesced_timer, s); 938 break; 939 #endif 940 case LOST_TICK_POLICY_DISCARD: 941 break; 942 default: 943 error_setg(errp, "Invalid lost tick policy."); 944 return; 945 } 946 947 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); 948 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); 949 check_update_timer(s); 950 951 s->suspend_notifier.notify = rtc_notify_suspend; 952 qemu_register_suspend_notifier(&s->suspend_notifier); 953 954 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); 955 isa_register_ioport(isadev, &s->io, RTC_ISA_BASE); 956 957 /* register rtc 0x70 port for coalesced_pio */ 958 memory_region_set_flush_coalesced(&s->io); 959 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, 960 s, "rtc-index", 1); 961 memory_region_add_subregion(&s->io, 0, &s->coalesced_io); 962 memory_region_add_coalescing(&s->coalesced_io, 0, 1); 963 964 qdev_set_legacy_instance_id(dev, RTC_ISA_BASE, 3); 965 qemu_register_reset(rtc_reset, s); 966 967 object_property_add_tm(OBJECT(s), "date", rtc_get_date); 968 969 qdev_init_gpio_out(dev, &s->irq, 1); 970 QLIST_INSERT_HEAD(&rtc_devices, s, link); 971 } 972 973 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) 974 { 975 DeviceState *dev; 976 ISADevice *isadev; 977 978 isadev = isa_new(TYPE_MC146818_RTC); 979 dev = DEVICE(isadev); 980 qdev_prop_set_int32(dev, "base_year", base_year); 981 isa_realize_and_unref(isadev, bus, &error_fatal); 982 if (intercept_irq) { 983 qdev_connect_gpio_out(dev, 0, intercept_irq); 984 } else { 985 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ); 986 } 987 988 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), 989 "date"); 990 991 return isadev; 992 } 993 994 static Property mc146818rtc_properties[] = { 995 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), 996 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, 997 lost_tick_policy, LOST_TICK_POLICY_DISCARD), 998 DEFINE_PROP_END_OF_LIST(), 999 }; 1000 1001 static void rtc_resetdev(DeviceState *d) 1002 { 1003 RTCState *s = MC146818_RTC(d); 1004 1005 /* Reason: VM do suspend self will set 0xfe 1006 * Reset any values other than 0xfe(Guest suspend case) */ 1007 if (s->cmos_data[0x0f] != 0xfe) { 1008 s->cmos_data[0x0f] = 0x00; 1009 } 1010 } 1011 1012 static void rtc_build_aml(ISADevice *isadev, Aml *scope) 1013 { 1014 Aml *dev; 1015 Aml *crs; 1016 1017 /* 1018 * Reserving 8 io ports here, following what physical hardware 1019 * does, even though qemu only responds to the first two ports. 1020 */ 1021 crs = aml_resource_template(); 1022 aml_append(crs, aml_io(AML_DECODE16, RTC_ISA_BASE, RTC_ISA_BASE, 1023 0x01, 0x08)); 1024 aml_append(crs, aml_irq_no_flags(RTC_ISA_IRQ)); 1025 1026 dev = aml_device("RTC"); 1027 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); 1028 aml_append(dev, aml_name_decl("_CRS", crs)); 1029 1030 aml_append(scope, dev); 1031 } 1032 1033 static void rtc_class_initfn(ObjectClass *klass, void *data) 1034 { 1035 DeviceClass *dc = DEVICE_CLASS(klass); 1036 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass); 1037 1038 dc->realize = rtc_realizefn; 1039 dc->reset = rtc_resetdev; 1040 dc->vmsd = &vmstate_rtc; 1041 isa->build_aml = rtc_build_aml; 1042 device_class_set_props(dc, mc146818rtc_properties); 1043 } 1044 1045 static const TypeInfo mc146818rtc_info = { 1046 .name = TYPE_MC146818_RTC, 1047 .parent = TYPE_ISA_DEVICE, 1048 .instance_size = sizeof(RTCState), 1049 .class_init = rtc_class_initfn, 1050 }; 1051 1052 static void mc146818rtc_register_types(void) 1053 { 1054 type_register_static(&mc146818rtc_info); 1055 } 1056 1057 type_init(mc146818rtc_register_types) 1058