1 /* 2 * QEMU MC146818 RTC emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/cutils.h" 27 #include "qemu/module.h" 28 #include "qemu/bcd.h" 29 #include "hw/acpi/acpi_aml_interface.h" 30 #include "hw/intc/kvm_irqcount.h" 31 #include "hw/irq.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/qdev-properties-system.h" 34 #include "qemu/timer.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/replay.h" 37 #include "sysemu/reset.h" 38 #include "sysemu/runstate.h" 39 #include "sysemu/rtc.h" 40 #include "hw/rtc/mc146818rtc.h" 41 #include "hw/rtc/mc146818rtc_regs.h" 42 #include "migration/vmstate.h" 43 #include "qapi/error.h" 44 #include "qapi/qapi-events-misc.h" 45 #include "qapi/visitor.h" 46 47 //#define DEBUG_CMOS 48 //#define DEBUG_COALESCED 49 50 #ifdef DEBUG_CMOS 51 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) 52 #else 53 # define CMOS_DPRINTF(format, ...) do { } while (0) 54 #endif 55 56 #ifdef DEBUG_COALESCED 57 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) 58 #else 59 # define DPRINTF_C(format, ...) do { } while (0) 60 #endif 61 62 #define SEC_PER_MIN 60 63 #define MIN_PER_HOUR 60 64 #define SEC_PER_HOUR 3600 65 #define HOUR_PER_DAY 24 66 #define SEC_PER_DAY 86400 67 68 #define RTC_REINJECT_ON_ACK_COUNT 20 69 #define RTC_CLOCK_RATE 32768 70 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) 71 72 #define RTC_ISA_BASE 0x70 73 74 static void rtc_set_time(RTCState *s); 75 static void rtc_update_time(RTCState *s); 76 static void rtc_set_cmos(RTCState *s, const struct tm *tm); 77 static inline int rtc_from_bcd(RTCState *s, int a); 78 static uint64_t get_next_alarm(RTCState *s); 79 80 static inline bool rtc_running(RTCState *s) 81 { 82 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && 83 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); 84 } 85 86 static uint64_t get_guest_rtc_ns(RTCState *s) 87 { 88 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); 89 90 return s->base_rtc * NANOSECONDS_PER_SECOND + 91 guest_clock - s->last_update + s->offset; 92 } 93 94 static void rtc_coalesced_timer_update(RTCState *s) 95 { 96 if (s->irq_coalesced == 0) { 97 timer_del(s->coalesced_timer); 98 } else { 99 /* divide each RTC interval to 2 - 8 smaller intervals */ 100 int c = MIN(s->irq_coalesced, 7) + 1; 101 int64_t next_clock = qemu_clock_get_ns(rtc_clock) + 102 periodic_clock_to_ns(s->period / c); 103 timer_mod(s->coalesced_timer, next_clock); 104 } 105 } 106 107 static QLIST_HEAD(, RTCState) rtc_devices = 108 QLIST_HEAD_INITIALIZER(rtc_devices); 109 110 void qmp_rtc_reset_reinjection(Error **errp) 111 { 112 RTCState *s; 113 114 QLIST_FOREACH(s, &rtc_devices, link) { 115 s->irq_coalesced = 0; 116 } 117 } 118 119 static bool rtc_policy_slew_deliver_irq(RTCState *s) 120 { 121 kvm_reset_irq_delivered(); 122 qemu_irq_raise(s->irq); 123 return kvm_get_irq_delivered(); 124 } 125 126 static void rtc_coalesced_timer(void *opaque) 127 { 128 RTCState *s = opaque; 129 130 if (s->irq_coalesced != 0) { 131 s->cmos_data[RTC_REG_C] |= 0xc0; 132 DPRINTF_C("cmos: injecting from timer\n"); 133 if (rtc_policy_slew_deliver_irq(s)) { 134 s->irq_coalesced--; 135 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 136 s->irq_coalesced); 137 } 138 } 139 140 rtc_coalesced_timer_update(s); 141 } 142 143 static uint32_t rtc_periodic_clock_ticks(RTCState *s) 144 { 145 int period_code; 146 147 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { 148 return 0; 149 } 150 151 period_code = s->cmos_data[RTC_REG_A] & 0x0f; 152 153 return periodic_period_to_clock(period_code); 154 } 155 156 /* 157 * handle periodic timer. @old_period indicates the periodic timer update 158 * is just due to period adjustment. 159 */ 160 static void 161 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change) 162 { 163 uint32_t period; 164 int64_t cur_clock, next_irq_clock, lost_clock = 0; 165 166 period = rtc_periodic_clock_ticks(s); 167 s->period = period; 168 169 if (!period) { 170 s->irq_coalesced = 0; 171 timer_del(s->periodic_timer); 172 return; 173 } 174 175 /* compute 32 khz clock */ 176 cur_clock = 177 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 178 179 /* 180 * if the periodic timer's update is due to period re-configuration, 181 * we should count the clock since last interrupt. 182 */ 183 if (old_period && period_change) { 184 int64_t last_periodic_clock, next_periodic_clock; 185 186 next_periodic_clock = muldiv64(s->next_periodic_time, 187 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); 188 last_periodic_clock = next_periodic_clock - old_period; 189 lost_clock = cur_clock - last_periodic_clock; 190 assert(lost_clock >= 0); 191 } 192 193 /* 194 * s->irq_coalesced can change for two reasons: 195 * 196 * a) if one or more periodic timer interrupts have been lost, 197 * lost_clock will be more that a period. 198 * 199 * b) when the period may be reconfigured, we expect the OS to 200 * treat delayed tick as the new period. So, when switching 201 * from a shorter to a longer period, scale down the missing, 202 * because the OS will treat past delayed ticks as longer 203 * (leftovers are put back into lost_clock). When switching 204 * to a shorter period, scale up the missing ticks since the 205 * OS handler will treat past delayed ticks as shorter. 206 */ 207 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 208 uint32_t old_irq_coalesced = s->irq_coalesced; 209 210 lost_clock += old_irq_coalesced * old_period; 211 s->irq_coalesced = lost_clock / s->period; 212 lost_clock %= s->period; 213 if (old_irq_coalesced != s->irq_coalesced || 214 old_period != s->period) { 215 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " 216 "period scaled from %d to %d\n", old_irq_coalesced, 217 s->irq_coalesced, old_period, s->period); 218 rtc_coalesced_timer_update(s); 219 } 220 } else { 221 /* 222 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW 223 * is not used, we should make the time progress anyway. 224 */ 225 lost_clock = MIN(lost_clock, period); 226 } 227 228 assert(lost_clock >= 0 && lost_clock <= period); 229 230 next_irq_clock = cur_clock + period - lost_clock; 231 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; 232 timer_mod(s->periodic_timer, s->next_periodic_time); 233 } 234 235 static void rtc_periodic_timer(void *opaque) 236 { 237 RTCState *s = opaque; 238 239 periodic_timer_update(s, s->next_periodic_time, s->period, false); 240 s->cmos_data[RTC_REG_C] |= REG_C_PF; 241 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { 242 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 243 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 244 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) 245 s->irq_reinject_on_ack_count = 0; 246 if (!rtc_policy_slew_deliver_irq(s)) { 247 s->irq_coalesced++; 248 rtc_coalesced_timer_update(s); 249 DPRINTF_C("cmos: coalesced irqs increased to %d\n", 250 s->irq_coalesced); 251 } 252 } else 253 qemu_irq_raise(s->irq); 254 } 255 } 256 257 /* handle update-ended timer */ 258 static void check_update_timer(RTCState *s) 259 { 260 uint64_t next_update_time; 261 uint64_t guest_nsec; 262 int next_alarm_sec; 263 264 /* From the data sheet: "Holding the dividers in reset prevents 265 * interrupts from operating, while setting the SET bit allows" 266 * them to occur. 267 */ 268 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { 269 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); 270 timer_del(s->update_timer); 271 return; 272 } 273 274 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 275 next_update_time = qemu_clock_get_ns(rtc_clock) 276 + NANOSECONDS_PER_SECOND - guest_nsec; 277 278 /* Compute time of next alarm. One second is already accounted 279 * for in next_update_time. 280 */ 281 next_alarm_sec = get_next_alarm(s); 282 s->next_alarm_time = next_update_time + 283 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; 284 285 /* If update_in_progress latched the UIP bit, we must keep the timer 286 * programmed to the next second, so that UIP is cleared. Otherwise, 287 * if UF is already set, we might be able to optimize. 288 */ 289 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && 290 (s->cmos_data[RTC_REG_C] & REG_C_UF)) { 291 /* If AF cannot change (i.e. either it is set already, or 292 * SET=1 and then the time is not updated), nothing to do. 293 */ 294 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || 295 (s->cmos_data[RTC_REG_C] & REG_C_AF)) { 296 timer_del(s->update_timer); 297 return; 298 } 299 300 /* UF is set, but AF is clear. Program the timer to target 301 * the alarm time. */ 302 next_update_time = s->next_alarm_time; 303 } 304 if (next_update_time != timer_expire_time_ns(s->update_timer)) { 305 timer_mod(s->update_timer, next_update_time); 306 } 307 } 308 309 static inline uint8_t convert_hour(RTCState *s, uint8_t hour) 310 { 311 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 312 hour %= 12; 313 if (s->cmos_data[RTC_HOURS] & 0x80) { 314 hour += 12; 315 } 316 } 317 return hour; 318 } 319 320 static uint64_t get_next_alarm(RTCState *s) 321 { 322 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; 323 int32_t hour, min, sec; 324 325 rtc_update_time(s); 326 327 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); 328 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); 329 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); 330 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); 331 332 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 333 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 334 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); 335 cur_hour = convert_hour(s, cur_hour); 336 337 if (alarm_hour == -1) { 338 alarm_hour = cur_hour; 339 if (alarm_min == -1) { 340 alarm_min = cur_min; 341 if (alarm_sec == -1) { 342 alarm_sec = cur_sec + 1; 343 } else if (cur_sec > alarm_sec) { 344 alarm_min++; 345 } 346 } else if (cur_min == alarm_min) { 347 if (alarm_sec == -1) { 348 alarm_sec = cur_sec + 1; 349 } else { 350 if (cur_sec > alarm_sec) { 351 alarm_hour++; 352 } 353 } 354 if (alarm_sec == SEC_PER_MIN) { 355 /* wrap to next hour, minutes is not in don't care mode */ 356 alarm_sec = 0; 357 alarm_hour++; 358 } 359 } else if (cur_min > alarm_min) { 360 alarm_hour++; 361 } 362 } else if (cur_hour == alarm_hour) { 363 if (alarm_min == -1) { 364 alarm_min = cur_min; 365 if (alarm_sec == -1) { 366 alarm_sec = cur_sec + 1; 367 } else if (cur_sec > alarm_sec) { 368 alarm_min++; 369 } 370 371 if (alarm_sec == SEC_PER_MIN) { 372 alarm_sec = 0; 373 alarm_min++; 374 } 375 /* wrap to next day, hour is not in don't care mode */ 376 alarm_min %= MIN_PER_HOUR; 377 } else if (cur_min == alarm_min) { 378 if (alarm_sec == -1) { 379 alarm_sec = cur_sec + 1; 380 } 381 /* wrap to next day, hours+minutes not in don't care mode */ 382 alarm_sec %= SEC_PER_MIN; 383 } 384 } 385 386 /* values that are still don't care fire at the next min/sec */ 387 if (alarm_min == -1) { 388 alarm_min = 0; 389 } 390 if (alarm_sec == -1) { 391 alarm_sec = 0; 392 } 393 394 /* keep values in range */ 395 if (alarm_sec == SEC_PER_MIN) { 396 alarm_sec = 0; 397 alarm_min++; 398 } 399 if (alarm_min == MIN_PER_HOUR) { 400 alarm_min = 0; 401 alarm_hour++; 402 } 403 alarm_hour %= HOUR_PER_DAY; 404 405 hour = alarm_hour - cur_hour; 406 min = hour * MIN_PER_HOUR + alarm_min - cur_min; 407 sec = min * SEC_PER_MIN + alarm_sec - cur_sec; 408 return sec <= 0 ? sec + SEC_PER_DAY : sec; 409 } 410 411 static void rtc_update_timer(void *opaque) 412 { 413 RTCState *s = opaque; 414 int32_t irqs = REG_C_UF; 415 int32_t new_irqs; 416 417 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); 418 419 /* UIP might have been latched, update time and clear it. */ 420 rtc_update_time(s); 421 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 422 423 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { 424 irqs |= REG_C_AF; 425 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { 426 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); 427 } 428 } 429 430 new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; 431 s->cmos_data[RTC_REG_C] |= irqs; 432 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { 433 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 434 qemu_irq_raise(s->irq); 435 } 436 check_update_timer(s); 437 } 438 439 static void cmos_ioport_write(void *opaque, hwaddr addr, 440 uint64_t data, unsigned size) 441 { 442 RTCState *s = opaque; 443 uint32_t old_period; 444 bool update_periodic_timer; 445 446 if ((addr & 1) == 0) { 447 s->cmos_index = data & 0x7f; 448 } else { 449 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", 450 s->cmos_index, data); 451 switch(s->cmos_index) { 452 case RTC_SECONDS_ALARM: 453 case RTC_MINUTES_ALARM: 454 case RTC_HOURS_ALARM: 455 s->cmos_data[s->cmos_index] = data; 456 check_update_timer(s); 457 break; 458 case RTC_IBM_PS2_CENTURY_BYTE: 459 s->cmos_index = RTC_CENTURY; 460 /* fall through */ 461 case RTC_CENTURY: 462 case RTC_SECONDS: 463 case RTC_MINUTES: 464 case RTC_HOURS: 465 case RTC_DAY_OF_WEEK: 466 case RTC_DAY_OF_MONTH: 467 case RTC_MONTH: 468 case RTC_YEAR: 469 s->cmos_data[s->cmos_index] = data; 470 /* if in set mode, do not update the time */ 471 if (rtc_running(s)) { 472 rtc_set_time(s); 473 check_update_timer(s); 474 } 475 break; 476 case RTC_REG_A: 477 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; 478 old_period = rtc_periodic_clock_ticks(s); 479 480 if ((data & 0x60) == 0x60) { 481 if (rtc_running(s)) { 482 rtc_update_time(s); 483 } 484 /* What happens to UIP when divider reset is enabled is 485 * unclear from the datasheet. Shouldn't matter much 486 * though. 487 */ 488 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 489 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && 490 (data & 0x70) <= 0x20) { 491 /* when the divider reset is removed, the first update cycle 492 * begins one-half second later*/ 493 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { 494 s->offset = 500000000; 495 rtc_set_time(s); 496 } 497 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 498 } 499 /* UIP bit is read only */ 500 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | 501 (s->cmos_data[RTC_REG_A] & REG_A_UIP); 502 503 if (update_periodic_timer) { 504 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 505 old_period, true); 506 } 507 508 check_update_timer(s); 509 break; 510 case RTC_REG_B: 511 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) 512 & REG_B_PIE; 513 old_period = rtc_periodic_clock_ticks(s); 514 515 if (data & REG_B_SET) { 516 /* update cmos to when the rtc was stopping */ 517 if (rtc_running(s)) { 518 rtc_update_time(s); 519 } 520 /* set mode: reset UIP mode */ 521 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; 522 data &= ~REG_B_UIE; 523 } else { 524 /* if disabling set mode, update the time */ 525 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && 526 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { 527 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; 528 rtc_set_time(s); 529 } 530 } 531 /* if an interrupt flag is already set when the interrupt 532 * becomes enabled, raise an interrupt immediately. */ 533 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { 534 s->cmos_data[RTC_REG_C] |= REG_C_IRQF; 535 qemu_irq_raise(s->irq); 536 } else { 537 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; 538 qemu_irq_lower(s->irq); 539 } 540 s->cmos_data[RTC_REG_B] = data; 541 542 if (update_periodic_timer) { 543 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 544 old_period, true); 545 } 546 547 check_update_timer(s); 548 break; 549 case RTC_REG_C: 550 case RTC_REG_D: 551 /* cannot write to them */ 552 break; 553 default: 554 s->cmos_data[s->cmos_index] = data; 555 break; 556 } 557 } 558 } 559 560 static inline int rtc_to_bcd(RTCState *s, int a) 561 { 562 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 563 return a; 564 } else { 565 return ((a / 10) << 4) | (a % 10); 566 } 567 } 568 569 static inline int rtc_from_bcd(RTCState *s, int a) 570 { 571 if ((a & 0xc0) == 0xc0) { 572 return -1; 573 } 574 if (s->cmos_data[RTC_REG_B] & REG_B_DM) { 575 return a; 576 } else { 577 return ((a >> 4) * 10) + (a & 0x0f); 578 } 579 } 580 581 static void rtc_get_time(RTCState *s, struct tm *tm) 582 { 583 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); 584 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); 585 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); 586 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { 587 tm->tm_hour %= 12; 588 if (s->cmos_data[RTC_HOURS] & 0x80) { 589 tm->tm_hour += 12; 590 } 591 } 592 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; 593 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); 594 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; 595 tm->tm_year = 596 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + 597 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; 598 } 599 600 static void rtc_set_time(RTCState *s) 601 { 602 struct tm tm; 603 g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s)); 604 605 rtc_get_time(s, &tm); 606 s->base_rtc = mktimegm(&tm); 607 s->last_update = qemu_clock_get_ns(rtc_clock); 608 609 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path); 610 } 611 612 static void rtc_set_cmos(RTCState *s, const struct tm *tm) 613 { 614 int year; 615 616 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); 617 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); 618 if (s->cmos_data[RTC_REG_B] & REG_B_24H) { 619 /* 24 hour format */ 620 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); 621 } else { 622 /* 12 hour format */ 623 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; 624 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); 625 if (tm->tm_hour >= 12) 626 s->cmos_data[RTC_HOURS] |= 0x80; 627 } 628 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); 629 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); 630 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); 631 year = tm->tm_year + 1900 - s->base_year; 632 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); 633 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); 634 } 635 636 static void rtc_update_time(RTCState *s) 637 { 638 struct tm ret; 639 time_t guest_sec; 640 int64_t guest_nsec; 641 642 guest_nsec = get_guest_rtc_ns(s); 643 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; 644 gmtime_r(&guest_sec, &ret); 645 646 /* Is SET flag of Register B disabled? */ 647 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { 648 rtc_set_cmos(s, &ret); 649 } 650 } 651 652 static int update_in_progress(RTCState *s) 653 { 654 int64_t guest_nsec; 655 656 if (!rtc_running(s)) { 657 return 0; 658 } 659 if (timer_pending(s->update_timer)) { 660 int64_t next_update_time = timer_expire_time_ns(s->update_timer); 661 /* Latch UIP until the timer expires. */ 662 if (qemu_clock_get_ns(rtc_clock) >= 663 (next_update_time - UIP_HOLD_LENGTH)) { 664 s->cmos_data[RTC_REG_A] |= REG_A_UIP; 665 return 1; 666 } 667 } 668 669 guest_nsec = get_guest_rtc_ns(s); 670 /* UIP bit will be set at last 244us of every second. */ 671 if ((guest_nsec % NANOSECONDS_PER_SECOND) >= 672 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { 673 return 1; 674 } 675 return 0; 676 } 677 678 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, 679 unsigned size) 680 { 681 RTCState *s = opaque; 682 int ret; 683 if ((addr & 1) == 0) { 684 return 0xff; 685 } else { 686 switch(s->cmos_index) { 687 case RTC_IBM_PS2_CENTURY_BYTE: 688 s->cmos_index = RTC_CENTURY; 689 /* fall through */ 690 case RTC_CENTURY: 691 case RTC_SECONDS: 692 case RTC_MINUTES: 693 case RTC_HOURS: 694 case RTC_DAY_OF_WEEK: 695 case RTC_DAY_OF_MONTH: 696 case RTC_MONTH: 697 case RTC_YEAR: 698 /* if not in set mode, calibrate cmos before 699 * reading*/ 700 if (rtc_running(s)) { 701 rtc_update_time(s); 702 } 703 ret = s->cmos_data[s->cmos_index]; 704 break; 705 case RTC_REG_A: 706 ret = s->cmos_data[s->cmos_index]; 707 if (update_in_progress(s)) { 708 ret |= REG_A_UIP; 709 } 710 break; 711 case RTC_REG_C: 712 ret = s->cmos_data[s->cmos_index]; 713 qemu_irq_lower(s->irq); 714 s->cmos_data[RTC_REG_C] = 0x00; 715 if (ret & (REG_C_UF | REG_C_AF)) { 716 check_update_timer(s); 717 } 718 719 if(s->irq_coalesced && 720 (s->cmos_data[RTC_REG_B] & REG_B_PIE) && 721 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { 722 s->irq_reinject_on_ack_count++; 723 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; 724 DPRINTF_C("cmos: injecting on ack\n"); 725 if (rtc_policy_slew_deliver_irq(s)) { 726 s->irq_coalesced--; 727 DPRINTF_C("cmos: coalesced irqs decreased to %d\n", 728 s->irq_coalesced); 729 } 730 } 731 break; 732 default: 733 ret = s->cmos_data[s->cmos_index]; 734 break; 735 } 736 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", 737 s->cmos_index, ret); 738 return ret; 739 } 740 } 741 742 void rtc_set_memory(ISADevice *dev, int addr, int val) 743 { 744 RTCState *s = MC146818_RTC(dev); 745 if (addr >= 0 && addr <= 127) 746 s->cmos_data[addr] = val; 747 } 748 749 int rtc_get_memory(ISADevice *dev, int addr) 750 { 751 RTCState *s = MC146818_RTC(dev); 752 assert(addr >= 0 && addr <= 127); 753 return s->cmos_data[addr]; 754 } 755 756 static void rtc_set_date_from_host(ISADevice *dev) 757 { 758 RTCState *s = MC146818_RTC(dev); 759 struct tm tm; 760 761 qemu_get_timedate(&tm, 0); 762 763 s->base_rtc = mktimegm(&tm); 764 s->last_update = qemu_clock_get_ns(rtc_clock); 765 s->offset = 0; 766 767 /* set the CMOS date */ 768 rtc_set_cmos(s, &tm); 769 } 770 771 static int rtc_pre_save(void *opaque) 772 { 773 RTCState *s = opaque; 774 775 rtc_update_time(s); 776 777 return 0; 778 } 779 780 static int rtc_post_load(void *opaque, int version_id) 781 { 782 RTCState *s = opaque; 783 784 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { 785 rtc_set_time(s); 786 s->offset = 0; 787 check_update_timer(s); 788 } 789 s->period = rtc_periodic_clock_ticks(s); 790 791 /* The periodic timer is deterministic in record/replay mode, 792 * so there is no need to update it after loading the vmstate. 793 * Reading RTC here would misalign record and replay. 794 */ 795 if (replay_mode == REPLAY_MODE_NONE) { 796 uint64_t now = qemu_clock_get_ns(rtc_clock); 797 if (now < s->next_periodic_time || 798 now > (s->next_periodic_time + get_max_clock_jump())) { 799 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); 800 } 801 } 802 803 if (version_id >= 2) { 804 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 805 rtc_coalesced_timer_update(s); 806 } 807 } 808 return 0; 809 } 810 811 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) 812 { 813 RTCState *s = (RTCState *)opaque; 814 return s->irq_reinject_on_ack_count != 0; 815 } 816 817 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { 818 .name = "mc146818rtc/irq_reinject_on_ack_count", 819 .version_id = 1, 820 .minimum_version_id = 1, 821 .needed = rtc_irq_reinject_on_ack_count_needed, 822 .fields = (VMStateField[]) { 823 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), 824 VMSTATE_END_OF_LIST() 825 } 826 }; 827 828 static const VMStateDescription vmstate_rtc = { 829 .name = "mc146818rtc", 830 .version_id = 3, 831 .minimum_version_id = 1, 832 .pre_save = rtc_pre_save, 833 .post_load = rtc_post_load, 834 .fields = (VMStateField[]) { 835 VMSTATE_BUFFER(cmos_data, RTCState), 836 VMSTATE_UINT8(cmos_index, RTCState), 837 VMSTATE_UNUSED(7*4), 838 VMSTATE_TIMER_PTR(periodic_timer, RTCState), 839 VMSTATE_INT64(next_periodic_time, RTCState), 840 VMSTATE_UNUSED(3*8), 841 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), 842 VMSTATE_UINT32_V(period, RTCState, 2), 843 VMSTATE_UINT64_V(base_rtc, RTCState, 3), 844 VMSTATE_UINT64_V(last_update, RTCState, 3), 845 VMSTATE_INT64_V(offset, RTCState, 3), 846 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), 847 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), 848 VMSTATE_END_OF_LIST() 849 }, 850 .subsections = (const VMStateDescription*[]) { 851 &vmstate_rtc_irq_reinject_on_ack_count, 852 NULL 853 } 854 }; 855 856 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) 857 BIOS will read it and start S3 resume at POST Entry */ 858 static void rtc_notify_suspend(Notifier *notifier, void *data) 859 { 860 RTCState *s = container_of(notifier, RTCState, suspend_notifier); 861 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); 862 } 863 864 static const MemoryRegionOps cmos_ops = { 865 .read = cmos_ioport_read, 866 .write = cmos_ioport_write, 867 .impl = { 868 .min_access_size = 1, 869 .max_access_size = 1, 870 }, 871 .endianness = DEVICE_LITTLE_ENDIAN, 872 }; 873 874 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) 875 { 876 RTCState *s = MC146818_RTC(obj); 877 878 rtc_update_time(s); 879 rtc_get_time(s, current_tm); 880 } 881 882 static void rtc_realizefn(DeviceState *dev, Error **errp) 883 { 884 ISADevice *isadev = ISA_DEVICE(dev); 885 RTCState *s = MC146818_RTC(dev); 886 887 s->cmos_data[RTC_REG_A] = 0x26; 888 s->cmos_data[RTC_REG_B] = 0x02; 889 s->cmos_data[RTC_REG_C] = 0x00; 890 s->cmos_data[RTC_REG_D] = 0x80; 891 892 /* This is for historical reasons. The default base year qdev property 893 * was set to 2000 for most machine types before the century byte was 894 * implemented. 895 * 896 * This if statement means that the century byte will be always 0 897 * (at least until 2079...) for base_year = 1980, but will be set 898 * correctly for base_year = 2000. 899 */ 900 if (s->base_year == 2000) { 901 s->base_year = 0; 902 } 903 904 if (s->isairq >= ISA_NUM_IRQS) { 905 error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1); 906 return; 907 } 908 909 rtc_set_date_from_host(isadev); 910 911 switch (s->lost_tick_policy) { 912 case LOST_TICK_POLICY_SLEW: 913 s->coalesced_timer = 914 timer_new_ns(rtc_clock, rtc_coalesced_timer, s); 915 break; 916 case LOST_TICK_POLICY_DISCARD: 917 break; 918 default: 919 error_setg(errp, "Invalid lost tick policy."); 920 return; 921 } 922 923 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); 924 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); 925 check_update_timer(s); 926 927 s->suspend_notifier.notify = rtc_notify_suspend; 928 qemu_register_suspend_notifier(&s->suspend_notifier); 929 930 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); 931 isa_register_ioport(isadev, &s->io, s->io_base); 932 933 /* register rtc 0x70 port for coalesced_pio */ 934 memory_region_set_flush_coalesced(&s->io); 935 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, 936 s, "rtc-index", 1); 937 memory_region_add_subregion(&s->io, 0, &s->coalesced_io); 938 memory_region_add_coalescing(&s->coalesced_io, 0, 1); 939 940 qdev_set_legacy_instance_id(dev, s->io_base, 3); 941 942 object_property_add_tm(OBJECT(s), "date", rtc_get_date); 943 944 qdev_init_gpio_out(dev, &s->irq, 1); 945 QLIST_INSERT_HEAD(&rtc_devices, s, link); 946 } 947 948 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) 949 { 950 DeviceState *dev; 951 ISADevice *isadev; 952 RTCState *s; 953 954 isadev = isa_new(TYPE_MC146818_RTC); 955 dev = DEVICE(isadev); 956 s = MC146818_RTC(isadev); 957 qdev_prop_set_int32(dev, "base_year", base_year); 958 isa_realize_and_unref(isadev, bus, &error_fatal); 959 if (intercept_irq) { 960 qdev_connect_gpio_out(dev, 0, intercept_irq); 961 } else { 962 isa_connect_gpio_out(isadev, 0, s->isairq); 963 } 964 965 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), 966 "date"); 967 968 return isadev; 969 } 970 971 static Property mc146818rtc_properties[] = { 972 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), 973 DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE), 974 DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ), 975 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, 976 lost_tick_policy, LOST_TICK_POLICY_DISCARD), 977 DEFINE_PROP_END_OF_LIST(), 978 }; 979 980 static void rtc_reset_enter(Object *obj, ResetType type) 981 { 982 RTCState *s = MC146818_RTC(obj); 983 984 /* Reason: VM do suspend self will set 0xfe 985 * Reset any values other than 0xfe(Guest suspend case) */ 986 if (s->cmos_data[0x0f] != 0xfe) { 987 s->cmos_data[0x0f] = 0x00; 988 } 989 990 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); 991 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); 992 check_update_timer(s); 993 994 995 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { 996 s->irq_coalesced = 0; 997 s->irq_reinject_on_ack_count = 0; 998 } 999 } 1000 1001 static void rtc_reset_hold(Object *obj) 1002 { 1003 RTCState *s = MC146818_RTC(obj); 1004 1005 qemu_irq_lower(s->irq); 1006 } 1007 1008 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope) 1009 { 1010 RTCState *s = MC146818_RTC(adev); 1011 Aml *dev; 1012 Aml *crs; 1013 1014 /* 1015 * Reserving 8 io ports here, following what physical hardware 1016 * does, even though qemu only responds to the first two ports. 1017 */ 1018 crs = aml_resource_template(); 1019 aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base, 1020 0x01, 0x08)); 1021 aml_append(crs, aml_irq_no_flags(s->isairq)); 1022 1023 dev = aml_device("RTC"); 1024 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); 1025 aml_append(dev, aml_name_decl("_CRS", crs)); 1026 1027 aml_append(scope, dev); 1028 } 1029 1030 static void rtc_class_initfn(ObjectClass *klass, void *data) 1031 { 1032 DeviceClass *dc = DEVICE_CLASS(klass); 1033 ResettableClass *rc = RESETTABLE_CLASS(klass); 1034 AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass); 1035 1036 dc->realize = rtc_realizefn; 1037 dc->vmsd = &vmstate_rtc; 1038 rc->phases.enter = rtc_reset_enter; 1039 rc->phases.hold = rtc_reset_hold; 1040 adevc->build_dev_aml = rtc_build_aml; 1041 device_class_set_props(dc, mc146818rtc_properties); 1042 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 1043 } 1044 1045 static const TypeInfo mc146818rtc_info = { 1046 .name = TYPE_MC146818_RTC, 1047 .parent = TYPE_ISA_DEVICE, 1048 .instance_size = sizeof(RTCState), 1049 .class_init = rtc_class_initfn, 1050 .interfaces = (InterfaceInfo[]) { 1051 { TYPE_ACPI_DEV_AML_IF }, 1052 { }, 1053 }, 1054 }; 1055 1056 static void mc146818rtc_register_types(void) 1057 { 1058 type_register_static(&mc146818rtc_info); 1059 } 1060 1061 type_init(mc146818rtc_register_types) 1062