xref: /openbmc/qemu/hw/riscv/virt.c (revision d6bafaf4)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/log.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/sysbus.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/char/serial.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/virt.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/intc/sifive_clint.h"
37 #include "hw/intc/sifive_plic.h"
38 #include "hw/misc/sifive_test.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/sysemu.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci-host/gpex.h"
45 
46 static const MemMapEntry virt_memmap[] = {
47     [VIRT_DEBUG] =       {        0x0,         0x100 },
48     [VIRT_MROM] =        {     0x1000,        0xf000 },
49     [VIRT_TEST] =        {   0x100000,        0x1000 },
50     [VIRT_RTC] =         {   0x101000,        0x1000 },
51     [VIRT_CLINT] =       {  0x2000000,       0x10000 },
52     [VIRT_PCIE_PIO] =    {  0x3000000,       0x10000 },
53     [VIRT_PLIC] =        {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
54     [VIRT_UART0] =       { 0x10000000,         0x100 },
55     [VIRT_VIRTIO] =      { 0x10001000,        0x1000 },
56     [VIRT_FLASH] =       { 0x20000000,     0x4000000 },
57     [VIRT_PCIE_ECAM] =   { 0x30000000,    0x10000000 },
58     [VIRT_PCIE_MMIO] =   { 0x40000000,    0x40000000 },
59     [VIRT_DRAM] =        { 0x80000000,           0x0 },
60 };
61 
62 /* PCIe high mmio is fixed for RV32 */
63 #define VIRT32_HIGH_PCIE_MMIO_BASE  0x300000000ULL
64 #define VIRT32_HIGH_PCIE_MMIO_SIZE  (4 * GiB)
65 
66 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
67 #define VIRT64_HIGH_PCIE_MMIO_SIZE  (16 * GiB)
68 
69 static MemMapEntry virt_high_pcie_memmap;
70 
71 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
72 
73 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
74                                        const char *name,
75                                        const char *alias_prop_name)
76 {
77     /*
78      * Create a single flash device.  We use the same parameters as
79      * the flash devices on the ARM virt board.
80      */
81     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
82 
83     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
84     qdev_prop_set_uint8(dev, "width", 4);
85     qdev_prop_set_uint8(dev, "device-width", 2);
86     qdev_prop_set_bit(dev, "big-endian", false);
87     qdev_prop_set_uint16(dev, "id0", 0x89);
88     qdev_prop_set_uint16(dev, "id1", 0x18);
89     qdev_prop_set_uint16(dev, "id2", 0x00);
90     qdev_prop_set_uint16(dev, "id3", 0x00);
91     qdev_prop_set_string(dev, "name", name);
92 
93     object_property_add_child(OBJECT(s), name, OBJECT(dev));
94     object_property_add_alias(OBJECT(s), alias_prop_name,
95                               OBJECT(dev), "drive");
96 
97     return PFLASH_CFI01(dev);
98 }
99 
100 static void virt_flash_create(RISCVVirtState *s)
101 {
102     s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
103     s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
104 }
105 
106 static void virt_flash_map1(PFlashCFI01 *flash,
107                             hwaddr base, hwaddr size,
108                             MemoryRegion *sysmem)
109 {
110     DeviceState *dev = DEVICE(flash);
111 
112     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
113     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
114     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
115     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
116 
117     memory_region_add_subregion(sysmem, base,
118                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
119                                                        0));
120 }
121 
122 static void virt_flash_map(RISCVVirtState *s,
123                            MemoryRegion *sysmem)
124 {
125     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
126     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
127 
128     virt_flash_map1(s->flash[0], flashbase, flashsize,
129                     sysmem);
130     virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
131                     sysmem);
132 }
133 
134 static void create_pcie_irq_map(void *fdt, char *nodename,
135                                 uint32_t plic_phandle)
136 {
137     int pin, dev;
138     uint32_t
139         full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
140     uint32_t *irq_map = full_irq_map;
141 
142     /* This code creates a standard swizzle of interrupts such that
143      * each device's first interrupt is based on it's PCI_SLOT number.
144      * (See pci_swizzle_map_irq_fn())
145      *
146      * We only need one entry per interrupt in the table (not one per
147      * possible slot) seeing the interrupt-map-mask will allow the table
148      * to wrap to any number of devices.
149      */
150     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
151         int devfn = dev * 0x8;
152 
153         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
154             int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
155             int i = 0;
156 
157             irq_map[i] = cpu_to_be32(devfn << 8);
158 
159             i += FDT_PCI_ADDR_CELLS;
160             irq_map[i] = cpu_to_be32(pin + 1);
161 
162             i += FDT_PCI_INT_CELLS;
163             irq_map[i++] = cpu_to_be32(plic_phandle);
164 
165             i += FDT_PLIC_ADDR_CELLS;
166             irq_map[i] = cpu_to_be32(irq_nr);
167 
168             irq_map += FDT_INT_MAP_WIDTH;
169         }
170     }
171 
172     qemu_fdt_setprop(fdt, nodename, "interrupt-map",
173                      full_irq_map, sizeof(full_irq_map));
174 
175     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
176                            0x1800, 0, 0, 0x7);
177 }
178 
179 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
180                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
181 {
182     void *fdt;
183     int i, cpu, socket;
184     MachineState *mc = MACHINE(s);
185     uint64_t addr, size;
186     uint32_t *clint_cells, *plic_cells;
187     unsigned long clint_addr, plic_addr;
188     uint32_t plic_phandle[MAX_NODES];
189     uint32_t cpu_phandle, intc_phandle, test_phandle;
190     uint32_t phandle = 1, plic_mmio_phandle = 1;
191     uint32_t plic_pcie_phandle = 1, plic_virtio_phandle = 1;
192     char *mem_name, *cpu_name, *core_name, *intc_name;
193     char *name, *clint_name, *plic_name, *clust_name;
194     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
195     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
196 
197     if (mc->dtb) {
198         fdt = s->fdt = load_device_tree(mc->dtb, &s->fdt_size);
199         if (!fdt) {
200             error_report("load_device_tree() failed");
201             exit(1);
202         }
203         goto update_bootargs;
204     } else {
205         fdt = s->fdt = create_device_tree(&s->fdt_size);
206         if (!fdt) {
207             error_report("create_device_tree() failed");
208             exit(1);
209         }
210     }
211 
212     qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
213     qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
214     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
215     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
216 
217     qemu_fdt_add_subnode(fdt, "/soc");
218     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
219     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
220     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
221     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
222 
223     qemu_fdt_add_subnode(fdt, "/cpus");
224     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
225                           SIFIVE_CLINT_TIMEBASE_FREQ);
226     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
227     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
228     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
229 
230     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
231         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
232         qemu_fdt_add_subnode(fdt, clust_name);
233 
234         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
235         clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
236 
237         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
238             cpu_phandle = phandle++;
239 
240             cpu_name = g_strdup_printf("/cpus/cpu@%d",
241                 s->soc[socket].hartid_base + cpu);
242             qemu_fdt_add_subnode(fdt, cpu_name);
243             if (is_32_bit) {
244                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
245             } else {
246                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
247             }
248             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
249             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
250             g_free(name);
251             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
252             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
253             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
254                 s->soc[socket].hartid_base + cpu);
255             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
256             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
257             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
258 
259             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
260             qemu_fdt_add_subnode(fdt, intc_name);
261             intc_phandle = phandle++;
262             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
263             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
264                 "riscv,cpu-intc");
265             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
266             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
267 
268             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
269             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
270             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
271             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
272 
273             plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
274             plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
275             plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
276             plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
277 
278             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
279             qemu_fdt_add_subnode(fdt, core_name);
280             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
281 
282             g_free(core_name);
283             g_free(intc_name);
284             g_free(cpu_name);
285         }
286 
287         addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
288         size = riscv_socket_mem_size(mc, socket);
289         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
290         qemu_fdt_add_subnode(fdt, mem_name);
291         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
292             addr >> 32, addr, size >> 32, size);
293         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
294         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
295         g_free(mem_name);
296 
297         clint_addr = memmap[VIRT_CLINT].base +
298             (memmap[VIRT_CLINT].size * socket);
299         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
300         qemu_fdt_add_subnode(fdt, clint_name);
301         qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
302         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
303             0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
304         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
305             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
306         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
307         g_free(clint_name);
308 
309         plic_phandle[socket] = phandle++;
310         plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
311         plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
312         qemu_fdt_add_subnode(fdt, plic_name);
313         qemu_fdt_setprop_cell(fdt, plic_name,
314             "#address-cells", FDT_PLIC_ADDR_CELLS);
315         qemu_fdt_setprop_cell(fdt, plic_name,
316             "#interrupt-cells", FDT_PLIC_INT_CELLS);
317         qemu_fdt_setprop_string(fdt, plic_name, "compatible", "riscv,plic0");
318         qemu_fdt_setprop(fdt, plic_name, "interrupt-controller", NULL, 0);
319         qemu_fdt_setprop(fdt, plic_name, "interrupts-extended",
320             plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
321         qemu_fdt_setprop_cells(fdt, plic_name, "reg",
322             0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
323         qemu_fdt_setprop_cell(fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
324         riscv_socket_fdt_write_id(mc, fdt, plic_name, socket);
325         qemu_fdt_setprop_cell(fdt, plic_name, "phandle", plic_phandle[socket]);
326         g_free(plic_name);
327 
328         g_free(clint_cells);
329         g_free(plic_cells);
330         g_free(clust_name);
331     }
332 
333     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
334         if (socket == 0) {
335             plic_mmio_phandle = plic_phandle[socket];
336             plic_virtio_phandle = plic_phandle[socket];
337             plic_pcie_phandle = plic_phandle[socket];
338         }
339         if (socket == 1) {
340             plic_virtio_phandle = plic_phandle[socket];
341             plic_pcie_phandle = plic_phandle[socket];
342         }
343         if (socket == 2) {
344             plic_pcie_phandle = plic_phandle[socket];
345         }
346     }
347 
348     riscv_socket_fdt_write_distance_matrix(mc, fdt);
349 
350     for (i = 0; i < VIRTIO_COUNT; i++) {
351         name = g_strdup_printf("/soc/virtio_mmio@%lx",
352             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
353         qemu_fdt_add_subnode(fdt, name);
354         qemu_fdt_setprop_string(fdt, name, "compatible", "virtio,mmio");
355         qemu_fdt_setprop_cells(fdt, name, "reg",
356             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
357             0x0, memmap[VIRT_VIRTIO].size);
358         qemu_fdt_setprop_cell(fdt, name, "interrupt-parent",
359             plic_virtio_phandle);
360         qemu_fdt_setprop_cell(fdt, name, "interrupts", VIRTIO_IRQ + i);
361         g_free(name);
362     }
363 
364     name = g_strdup_printf("/soc/pci@%lx",
365         (long) memmap[VIRT_PCIE_ECAM].base);
366     qemu_fdt_add_subnode(fdt, name);
367     qemu_fdt_setprop_cell(fdt, name, "#address-cells", FDT_PCI_ADDR_CELLS);
368     qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", FDT_PCI_INT_CELLS);
369     qemu_fdt_setprop_cell(fdt, name, "#size-cells", 0x2);
370     qemu_fdt_setprop_string(fdt, name, "compatible", "pci-host-ecam-generic");
371     qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
372     qemu_fdt_setprop_cell(fdt, name, "linux,pci-domain", 0);
373     qemu_fdt_setprop_cells(fdt, name, "bus-range", 0,
374         memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
375     qemu_fdt_setprop(fdt, name, "dma-coherent", NULL, 0);
376     qemu_fdt_setprop_cells(fdt, name, "reg", 0,
377         memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
378     qemu_fdt_setprop_sized_cells(fdt, name, "ranges",
379         1, FDT_PCI_RANGE_IOPORT, 2, 0,
380         2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
381         1, FDT_PCI_RANGE_MMIO,
382         2, memmap[VIRT_PCIE_MMIO].base,
383         2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
384         1, FDT_PCI_RANGE_MMIO_64BIT,
385         2, virt_high_pcie_memmap.base,
386         2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
387 
388     create_pcie_irq_map(fdt, name, plic_pcie_phandle);
389     g_free(name);
390 
391     test_phandle = phandle++;
392     name = g_strdup_printf("/soc/test@%lx",
393         (long)memmap[VIRT_TEST].base);
394     qemu_fdt_add_subnode(fdt, name);
395     {
396         const char compat[] = "sifive,test1\0sifive,test0\0syscon";
397         qemu_fdt_setprop(fdt, name, "compatible", compat, sizeof(compat));
398     }
399     qemu_fdt_setprop_cells(fdt, name, "reg",
400         0x0, memmap[VIRT_TEST].base,
401         0x0, memmap[VIRT_TEST].size);
402     qemu_fdt_setprop_cell(fdt, name, "phandle", test_phandle);
403     test_phandle = qemu_fdt_get_phandle(fdt, name);
404     g_free(name);
405 
406     name = g_strdup_printf("/soc/reboot");
407     qemu_fdt_add_subnode(fdt, name);
408     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
409     qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle);
410     qemu_fdt_setprop_cell(fdt, name, "offset", 0x0);
411     qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_RESET);
412     g_free(name);
413 
414     name = g_strdup_printf("/soc/poweroff");
415     qemu_fdt_add_subnode(fdt, name);
416     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-poweroff");
417     qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle);
418     qemu_fdt_setprop_cell(fdt, name, "offset", 0x0);
419     qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_PASS);
420     g_free(name);
421 
422     name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
423     qemu_fdt_add_subnode(fdt, name);
424     qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
425     qemu_fdt_setprop_cells(fdt, name, "reg",
426         0x0, memmap[VIRT_UART0].base,
427         0x0, memmap[VIRT_UART0].size);
428     qemu_fdt_setprop_cell(fdt, name, "clock-frequency", 3686400);
429     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle);
430     qemu_fdt_setprop_cell(fdt, name, "interrupts", UART0_IRQ);
431 
432     qemu_fdt_add_subnode(fdt, "/chosen");
433     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", name);
434     g_free(name);
435 
436     name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
437     qemu_fdt_add_subnode(fdt, name);
438     qemu_fdt_setprop_string(fdt, name, "compatible", "google,goldfish-rtc");
439     qemu_fdt_setprop_cells(fdt, name, "reg",
440         0x0, memmap[VIRT_RTC].base,
441         0x0, memmap[VIRT_RTC].size);
442     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle);
443     qemu_fdt_setprop_cell(fdt, name, "interrupts", RTC_IRQ);
444     g_free(name);
445 
446     name = g_strdup_printf("/soc/flash@%" PRIx64, flashbase);
447     qemu_fdt_add_subnode(s->fdt, name);
448     qemu_fdt_setprop_string(s->fdt, name, "compatible", "cfi-flash");
449     qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
450                                  2, flashbase, 2, flashsize,
451                                  2, flashbase + flashsize, 2, flashsize);
452     qemu_fdt_setprop_cell(s->fdt, name, "bank-width", 4);
453     g_free(name);
454 
455 update_bootargs:
456     if (cmdline) {
457         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
458     }
459 }
460 
461 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
462                                           hwaddr ecam_base, hwaddr ecam_size,
463                                           hwaddr mmio_base, hwaddr mmio_size,
464                                           hwaddr high_mmio_base,
465                                           hwaddr high_mmio_size,
466                                           hwaddr pio_base,
467                                           DeviceState *plic)
468 {
469     DeviceState *dev;
470     MemoryRegion *ecam_alias, *ecam_reg;
471     MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
472     qemu_irq irq;
473     int i;
474 
475     dev = qdev_new(TYPE_GPEX_HOST);
476 
477     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
478 
479     ecam_alias = g_new0(MemoryRegion, 1);
480     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
481     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
482                              ecam_reg, 0, ecam_size);
483     memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
484 
485     mmio_alias = g_new0(MemoryRegion, 1);
486     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
487     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
488                              mmio_reg, mmio_base, mmio_size);
489     memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
490 
491     /* Map high MMIO space */
492     high_mmio_alias = g_new0(MemoryRegion, 1);
493     memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
494                              mmio_reg, high_mmio_base, high_mmio_size);
495     memory_region_add_subregion(get_system_memory(), high_mmio_base,
496                                 high_mmio_alias);
497 
498     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
499 
500     for (i = 0; i < GPEX_NUM_IRQS; i++) {
501         irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
502 
503         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
504         gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
505     }
506 
507     return dev;
508 }
509 
510 static void virt_machine_init(MachineState *machine)
511 {
512     const MemMapEntry *memmap = virt_memmap;
513     RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
514     MemoryRegion *system_memory = get_system_memory();
515     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
516     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
517     char *plic_hart_config, *soc_name;
518     size_t plic_hart_config_len;
519     target_ulong start_addr = memmap[VIRT_DRAM].base;
520     target_ulong firmware_end_addr, kernel_start_addr;
521     uint32_t fdt_load_addr;
522     uint64_t kernel_entry;
523     DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
524     int i, j, base_hartid, hart_count;
525 
526     /* Check socket count limit */
527     if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
528         error_report("number of sockets/nodes should be less than %d",
529             VIRT_SOCKETS_MAX);
530         exit(1);
531     }
532 
533     /* Initialize sockets */
534     mmio_plic = virtio_plic = pcie_plic = NULL;
535     for (i = 0; i < riscv_socket_count(machine); i++) {
536         if (!riscv_socket_check_hartids(machine, i)) {
537             error_report("discontinuous hartids in socket%d", i);
538             exit(1);
539         }
540 
541         base_hartid = riscv_socket_first_hartid(machine, i);
542         if (base_hartid < 0) {
543             error_report("can't find hartid base for socket%d", i);
544             exit(1);
545         }
546 
547         hart_count = riscv_socket_hart_count(machine, i);
548         if (hart_count < 0) {
549             error_report("can't find hart count for socket%d", i);
550             exit(1);
551         }
552 
553         soc_name = g_strdup_printf("soc%d", i);
554         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
555                                 TYPE_RISCV_HART_ARRAY);
556         g_free(soc_name);
557         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
558                                 machine->cpu_type, &error_abort);
559         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
560                                 base_hartid, &error_abort);
561         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
562                                 hart_count, &error_abort);
563         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
564 
565         /* Per-socket CLINT */
566         sifive_clint_create(
567             memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
568             memmap[VIRT_CLINT].size, base_hartid, hart_count,
569             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
570             SIFIVE_CLINT_TIMEBASE_FREQ, true);
571 
572         /* Per-socket PLIC hart topology configuration string */
573         plic_hart_config_len =
574             (strlen(VIRT_PLIC_HART_CONFIG) + 1) * hart_count;
575         plic_hart_config = g_malloc0(plic_hart_config_len);
576         for (j = 0; j < hart_count; j++) {
577             if (j != 0) {
578                 strncat(plic_hart_config, ",", plic_hart_config_len);
579             }
580             strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG,
581                 plic_hart_config_len);
582             plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
583         }
584 
585         /* Per-socket PLIC */
586         s->plic[i] = sifive_plic_create(
587             memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
588             plic_hart_config, base_hartid,
589             VIRT_PLIC_NUM_SOURCES,
590             VIRT_PLIC_NUM_PRIORITIES,
591             VIRT_PLIC_PRIORITY_BASE,
592             VIRT_PLIC_PENDING_BASE,
593             VIRT_PLIC_ENABLE_BASE,
594             VIRT_PLIC_ENABLE_STRIDE,
595             VIRT_PLIC_CONTEXT_BASE,
596             VIRT_PLIC_CONTEXT_STRIDE,
597             memmap[VIRT_PLIC].size);
598         g_free(plic_hart_config);
599 
600         /* Try to use different PLIC instance based device type */
601         if (i == 0) {
602             mmio_plic = s->plic[i];
603             virtio_plic = s->plic[i];
604             pcie_plic = s->plic[i];
605         }
606         if (i == 1) {
607             virtio_plic = s->plic[i];
608             pcie_plic = s->plic[i];
609         }
610         if (i == 2) {
611             pcie_plic = s->plic[i];
612         }
613     }
614 
615     if (riscv_is_32bit(&s->soc[0])) {
616 #if HOST_LONG_BITS == 64
617         /* limit RAM size in a 32-bit system */
618         if (machine->ram_size > 10 * GiB) {
619             machine->ram_size = 10 * GiB;
620             error_report("Limiting RAM size to 10 GiB");
621         }
622 #endif
623         virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
624         virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
625     } else {
626         virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
627         virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
628         virt_high_pcie_memmap.base =
629             ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
630     }
631 
632     /* register system main memory (actual RAM) */
633     memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
634                            machine->ram_size, &error_fatal);
635     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
636         main_mem);
637 
638     /* create device tree */
639     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
640                riscv_is_32bit(&s->soc[0]));
641 
642     /* boot rom */
643     memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
644                            memmap[VIRT_MROM].size, &error_fatal);
645     memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
646                                 mask_rom);
647 
648     if (riscv_is_32bit(&s->soc[0])) {
649         firmware_end_addr = riscv_find_and_load_firmware(machine,
650                                     "opensbi-riscv32-generic-fw_dynamic.bin",
651                                     start_addr, NULL);
652     } else {
653         firmware_end_addr = riscv_find_and_load_firmware(machine,
654                                     "opensbi-riscv64-generic-fw_dynamic.bin",
655                                     start_addr, NULL);
656     }
657 
658     if (machine->kernel_filename) {
659         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
660                                                          firmware_end_addr);
661 
662         kernel_entry = riscv_load_kernel(machine->kernel_filename,
663                                          kernel_start_addr, NULL);
664 
665         if (machine->initrd_filename) {
666             hwaddr start;
667             hwaddr end = riscv_load_initrd(machine->initrd_filename,
668                                            machine->ram_size, kernel_entry,
669                                            &start);
670             qemu_fdt_setprop_cell(s->fdt, "/chosen",
671                                   "linux,initrd-start", start);
672             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
673                                   end);
674         }
675     } else {
676        /*
677         * If dynamic firmware is used, it doesn't know where is the next mode
678         * if kernel argument is not set.
679         */
680         kernel_entry = 0;
681     }
682 
683     if (drive_get(IF_PFLASH, 0, 0)) {
684         /*
685          * Pflash was supplied, let's overwrite the address we jump to after
686          * reset to the base of the flash.
687          */
688         start_addr = virt_memmap[VIRT_FLASH].base;
689     }
690 
691     /* Compute the fdt load address in dram */
692     fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
693                                    machine->ram_size, s->fdt);
694     /* load the reset vector */
695     riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
696                               virt_memmap[VIRT_MROM].base,
697                               virt_memmap[VIRT_MROM].size, kernel_entry,
698                               fdt_load_addr, s->fdt);
699 
700     /* SiFive Test MMIO device */
701     sifive_test_create(memmap[VIRT_TEST].base);
702 
703     /* VirtIO MMIO devices */
704     for (i = 0; i < VIRTIO_COUNT; i++) {
705         sysbus_create_simple("virtio-mmio",
706             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
707             qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
708     }
709 
710     gpex_pcie_init(system_memory,
711                    memmap[VIRT_PCIE_ECAM].base,
712                    memmap[VIRT_PCIE_ECAM].size,
713                    memmap[VIRT_PCIE_MMIO].base,
714                    memmap[VIRT_PCIE_MMIO].size,
715                    virt_high_pcie_memmap.base,
716                    virt_high_pcie_memmap.size,
717                    memmap[VIRT_PCIE_PIO].base,
718                    DEVICE(pcie_plic));
719 
720     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
721         0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
722         serial_hd(0), DEVICE_LITTLE_ENDIAN);
723 
724     sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
725         qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
726 
727     virt_flash_create(s);
728 
729     for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
730         /* Map legacy -drive if=pflash to machine properties */
731         pflash_cfi01_legacy_drive(s->flash[i],
732                                   drive_get(IF_PFLASH, 0, i));
733     }
734     virt_flash_map(s, system_memory);
735 }
736 
737 static void virt_machine_instance_init(Object *obj)
738 {
739 }
740 
741 static void virt_machine_class_init(ObjectClass *oc, void *data)
742 {
743     MachineClass *mc = MACHINE_CLASS(oc);
744 
745     mc->desc = "RISC-V VirtIO board";
746     mc->init = virt_machine_init;
747     mc->max_cpus = VIRT_CPUS_MAX;
748     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
749     mc->pci_allow_0_address = true;
750     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
751     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
752     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
753     mc->numa_mem_supported = true;
754 }
755 
756 static const TypeInfo virt_machine_typeinfo = {
757     .name       = MACHINE_TYPE_NAME("virt"),
758     .parent     = TYPE_MACHINE,
759     .class_init = virt_machine_class_init,
760     .instance_init = virt_machine_instance_init,
761     .instance_size = sizeof(RISCVVirtState),
762 };
763 
764 static void virt_machine_init_register_types(void)
765 {
766     type_register_static(&virt_machine_typeinfo);
767 }
768 
769 type_init(virt_machine_init_register_types)
770