xref: /openbmc/qemu/hw/riscv/virt.c (revision bb22d391121fc0de42a04d1ed99f602441ea70e1)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "qemu/guest-random.h"
25 #include "qapi/error.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/sysbus.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/char/serial.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/core/sysbus-fdt.h"
33 #include "target/riscv/pmu.h"
34 #include "hw/riscv/riscv_hart.h"
35 #include "hw/riscv/virt.h"
36 #include "hw/riscv/boot.h"
37 #include "hw/riscv/numa.h"
38 #include "hw/intc/riscv_aclint.h"
39 #include "hw/intc/riscv_aplic.h"
40 #include "hw/intc/riscv_imsic.h"
41 #include "hw/intc/sifive_plic.h"
42 #include "hw/misc/sifive_test.h"
43 #include "hw/platform-bus.h"
44 #include "chardev/char.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/tpm.h"
49 #include "hw/pci/pci.h"
50 #include "hw/pci-host/gpex.h"
51 #include "hw/display/ramfb.h"
52 
53 /*
54  * The virt machine physical address space used by some of the devices
55  * namely ACLINT, PLIC, APLIC, and IMSIC depend on number of Sockets,
56  * number of CPUs, and number of IMSIC guest files.
57  *
58  * Various limits defined by VIRT_SOCKETS_MAX_BITS, VIRT_CPUS_MAX_BITS,
59  * and VIRT_IRQCHIP_MAX_GUESTS_BITS are tuned for maximum utilization
60  * of virt machine physical address space.
61  */
62 
63 #define VIRT_IMSIC_GROUP_MAX_SIZE      (1U << IMSIC_MMIO_GROUP_MIN_SHIFT)
64 #if VIRT_IMSIC_GROUP_MAX_SIZE < \
65     IMSIC_GROUP_SIZE(VIRT_CPUS_MAX_BITS, VIRT_IRQCHIP_MAX_GUESTS_BITS)
66 #error "Can't accomodate single IMSIC group in address space"
67 #endif
68 
69 #define VIRT_IMSIC_MAX_SIZE            (VIRT_SOCKETS_MAX * \
70                                         VIRT_IMSIC_GROUP_MAX_SIZE)
71 #if 0x4000000 < VIRT_IMSIC_MAX_SIZE
72 #error "Can't accomodate all IMSIC groups in address space"
73 #endif
74 
75 static const MemMapEntry virt_memmap[] = {
76     [VIRT_DEBUG] =        {        0x0,         0x100 },
77     [VIRT_MROM] =         {     0x1000,        0xf000 },
78     [VIRT_TEST] =         {   0x100000,        0x1000 },
79     [VIRT_RTC] =          {   0x101000,        0x1000 },
80     [VIRT_CLINT] =        {  0x2000000,       0x10000 },
81     [VIRT_ACLINT_SSWI] =  {  0x2F00000,        0x4000 },
82     [VIRT_PCIE_PIO] =     {  0x3000000,       0x10000 },
83     [VIRT_PLATFORM_BUS] = {  0x4000000,     0x2000000 },
84     [VIRT_PLIC] =         {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
85     [VIRT_APLIC_M] =      {  0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
86     [VIRT_APLIC_S] =      {  0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
87     [VIRT_UART0] =        { 0x10000000,         0x100 },
88     [VIRT_VIRTIO] =       { 0x10001000,        0x1000 },
89     [VIRT_FW_CFG] =       { 0x10100000,          0x18 },
90     [VIRT_FLASH] =        { 0x20000000,     0x4000000 },
91     [VIRT_IMSIC_M] =      { 0x24000000, VIRT_IMSIC_MAX_SIZE },
92     [VIRT_IMSIC_S] =      { 0x28000000, VIRT_IMSIC_MAX_SIZE },
93     [VIRT_PCIE_ECAM] =    { 0x30000000,    0x10000000 },
94     [VIRT_PCIE_MMIO] =    { 0x40000000,    0x40000000 },
95     [VIRT_DRAM] =         { 0x80000000,           0x0 },
96 };
97 
98 /* PCIe high mmio is fixed for RV32 */
99 #define VIRT32_HIGH_PCIE_MMIO_BASE  0x300000000ULL
100 #define VIRT32_HIGH_PCIE_MMIO_SIZE  (4 * GiB)
101 
102 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
103 #define VIRT64_HIGH_PCIE_MMIO_SIZE  (16 * GiB)
104 
105 static MemMapEntry virt_high_pcie_memmap;
106 
107 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
108 
109 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
110                                        const char *name,
111                                        const char *alias_prop_name)
112 {
113     /*
114      * Create a single flash device.  We use the same parameters as
115      * the flash devices on the ARM virt board.
116      */
117     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
118 
119     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
120     qdev_prop_set_uint8(dev, "width", 4);
121     qdev_prop_set_uint8(dev, "device-width", 2);
122     qdev_prop_set_bit(dev, "big-endian", false);
123     qdev_prop_set_uint16(dev, "id0", 0x89);
124     qdev_prop_set_uint16(dev, "id1", 0x18);
125     qdev_prop_set_uint16(dev, "id2", 0x00);
126     qdev_prop_set_uint16(dev, "id3", 0x00);
127     qdev_prop_set_string(dev, "name", name);
128 
129     object_property_add_child(OBJECT(s), name, OBJECT(dev));
130     object_property_add_alias(OBJECT(s), alias_prop_name,
131                               OBJECT(dev), "drive");
132 
133     return PFLASH_CFI01(dev);
134 }
135 
136 static void virt_flash_create(RISCVVirtState *s)
137 {
138     s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
139     s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
140 }
141 
142 static void virt_flash_map1(PFlashCFI01 *flash,
143                             hwaddr base, hwaddr size,
144                             MemoryRegion *sysmem)
145 {
146     DeviceState *dev = DEVICE(flash);
147 
148     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
149     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
150     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
151     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
152 
153     memory_region_add_subregion(sysmem, base,
154                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
155                                                        0));
156 }
157 
158 static void virt_flash_map(RISCVVirtState *s,
159                            MemoryRegion *sysmem)
160 {
161     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
162     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
163 
164     virt_flash_map1(s->flash[0], flashbase, flashsize,
165                     sysmem);
166     virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
167                     sysmem);
168 }
169 
170 static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
171                                 uint32_t irqchip_phandle)
172 {
173     int pin, dev;
174     uint32_t irq_map_stride = 0;
175     uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
176                           FDT_MAX_INT_MAP_WIDTH] = {};
177     uint32_t *irq_map = full_irq_map;
178 
179     /* This code creates a standard swizzle of interrupts such that
180      * each device's first interrupt is based on it's PCI_SLOT number.
181      * (See pci_swizzle_map_irq_fn())
182      *
183      * We only need one entry per interrupt in the table (not one per
184      * possible slot) seeing the interrupt-map-mask will allow the table
185      * to wrap to any number of devices.
186      */
187     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
188         int devfn = dev * 0x8;
189 
190         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
191             int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
192             int i = 0;
193 
194             /* Fill PCI address cells */
195             irq_map[i] = cpu_to_be32(devfn << 8);
196             i += FDT_PCI_ADDR_CELLS;
197 
198             /* Fill PCI Interrupt cells */
199             irq_map[i] = cpu_to_be32(pin + 1);
200             i += FDT_PCI_INT_CELLS;
201 
202             /* Fill interrupt controller phandle and cells */
203             irq_map[i++] = cpu_to_be32(irqchip_phandle);
204             irq_map[i++] = cpu_to_be32(irq_nr);
205             if (s->aia_type != VIRT_AIA_TYPE_NONE) {
206                 irq_map[i++] = cpu_to_be32(0x4);
207             }
208 
209             if (!irq_map_stride) {
210                 irq_map_stride = i;
211             }
212             irq_map += irq_map_stride;
213         }
214     }
215 
216     qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
217                      GPEX_NUM_IRQS * GPEX_NUM_IRQS *
218                      irq_map_stride * sizeof(uint32_t));
219 
220     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
221                            0x1800, 0, 0, 0x7);
222 }
223 
224 static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
225                                    char *clust_name, uint32_t *phandle,
226                                    bool is_32_bit, uint32_t *intc_phandles)
227 {
228     int cpu;
229     uint32_t cpu_phandle;
230     MachineState *mc = MACHINE(s);
231     char *name, *cpu_name, *core_name, *intc_name;
232 
233     for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
234         cpu_phandle = (*phandle)++;
235 
236         cpu_name = g_strdup_printf("/cpus/cpu@%d",
237             s->soc[socket].hartid_base + cpu);
238         qemu_fdt_add_subnode(mc->fdt, cpu_name);
239         if (riscv_feature(&s->soc[socket].harts[cpu].env,
240                           RISCV_FEATURE_MMU)) {
241             qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
242                                     (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
243         } else {
244             qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
245                                     "riscv,none");
246         }
247         name = riscv_isa_string(&s->soc[socket].harts[cpu]);
248         qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
249         g_free(name);
250         qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
251         qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
252         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
253             s->soc[socket].hartid_base + cpu);
254         qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
255         riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
256         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
257 
258         intc_phandles[cpu] = (*phandle)++;
259 
260         intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
261         qemu_fdt_add_subnode(mc->fdt, intc_name);
262         qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
263             intc_phandles[cpu]);
264         qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
265             "riscv,cpu-intc");
266         qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
267         qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
268 
269         core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
270         qemu_fdt_add_subnode(mc->fdt, core_name);
271         qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
272 
273         g_free(core_name);
274         g_free(intc_name);
275         g_free(cpu_name);
276     }
277 }
278 
279 static void create_fdt_socket_memory(RISCVVirtState *s,
280                                      const MemMapEntry *memmap, int socket)
281 {
282     char *mem_name;
283     uint64_t addr, size;
284     MachineState *mc = MACHINE(s);
285 
286     addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
287     size = riscv_socket_mem_size(mc, socket);
288     mem_name = g_strdup_printf("/memory@%lx", (long)addr);
289     qemu_fdt_add_subnode(mc->fdt, mem_name);
290     qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
291         addr >> 32, addr, size >> 32, size);
292     qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
293     riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
294     g_free(mem_name);
295 }
296 
297 static void create_fdt_socket_clint(RISCVVirtState *s,
298                                     const MemMapEntry *memmap, int socket,
299                                     uint32_t *intc_phandles)
300 {
301     int cpu;
302     char *clint_name;
303     uint32_t *clint_cells;
304     unsigned long clint_addr;
305     MachineState *mc = MACHINE(s);
306     static const char * const clint_compat[2] = {
307         "sifive,clint0", "riscv,clint0"
308     };
309 
310     clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
311 
312     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
313         clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
314         clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
315         clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
316         clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
317     }
318 
319     clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
320     clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
321     qemu_fdt_add_subnode(mc->fdt, clint_name);
322     qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
323                                   (char **)&clint_compat,
324                                   ARRAY_SIZE(clint_compat));
325     qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
326         0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
327     qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
328         clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
329     riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
330     g_free(clint_name);
331 
332     g_free(clint_cells);
333 }
334 
335 static void create_fdt_socket_aclint(RISCVVirtState *s,
336                                      const MemMapEntry *memmap, int socket,
337                                      uint32_t *intc_phandles)
338 {
339     int cpu;
340     char *name;
341     unsigned long addr, size;
342     uint32_t aclint_cells_size;
343     uint32_t *aclint_mswi_cells;
344     uint32_t *aclint_sswi_cells;
345     uint32_t *aclint_mtimer_cells;
346     MachineState *mc = MACHINE(s);
347 
348     aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
349     aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
350     aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
351 
352     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
353         aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
354         aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
355         aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
356         aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
357         aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
358         aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
359     }
360     aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
361 
362     if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
363         addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
364         name = g_strdup_printf("/soc/mswi@%lx", addr);
365         qemu_fdt_add_subnode(mc->fdt, name);
366         qemu_fdt_setprop_string(mc->fdt, name, "compatible",
367             "riscv,aclint-mswi");
368         qemu_fdt_setprop_cells(mc->fdt, name, "reg",
369             0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
370         qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
371             aclint_mswi_cells, aclint_cells_size);
372         qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
373         qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
374         riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
375         g_free(name);
376     }
377 
378     if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
379         addr = memmap[VIRT_CLINT].base +
380                (RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
381         size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
382     } else {
383         addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
384             (memmap[VIRT_CLINT].size * socket);
385         size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
386     }
387     name = g_strdup_printf("/soc/mtimer@%lx", addr);
388     qemu_fdt_add_subnode(mc->fdt, name);
389     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
390         "riscv,aclint-mtimer");
391     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
392         0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
393         0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
394         0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
395         0x0, RISCV_ACLINT_DEFAULT_MTIME);
396     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
397         aclint_mtimer_cells, aclint_cells_size);
398     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
399     g_free(name);
400 
401     if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
402         addr = memmap[VIRT_ACLINT_SSWI].base +
403             (memmap[VIRT_ACLINT_SSWI].size * socket);
404         name = g_strdup_printf("/soc/sswi@%lx", addr);
405         qemu_fdt_add_subnode(mc->fdt, name);
406         qemu_fdt_setprop_string(mc->fdt, name, "compatible",
407             "riscv,aclint-sswi");
408         qemu_fdt_setprop_cells(mc->fdt, name, "reg",
409             0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
410         qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
411             aclint_sswi_cells, aclint_cells_size);
412         qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
413         qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
414         riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
415         g_free(name);
416     }
417 
418     g_free(aclint_mswi_cells);
419     g_free(aclint_mtimer_cells);
420     g_free(aclint_sswi_cells);
421 }
422 
423 static void create_fdt_socket_plic(RISCVVirtState *s,
424                                    const MemMapEntry *memmap, int socket,
425                                    uint32_t *phandle, uint32_t *intc_phandles,
426                                    uint32_t *plic_phandles)
427 {
428     int cpu;
429     char *plic_name;
430     uint32_t *plic_cells;
431     unsigned long plic_addr;
432     MachineState *mc = MACHINE(s);
433     static const char * const plic_compat[2] = {
434         "sifive,plic-1.0.0", "riscv,plic0"
435     };
436 
437     if (kvm_enabled()) {
438         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
439     } else {
440         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
441     }
442 
443     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
444         if (kvm_enabled()) {
445             plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
446             plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
447         } else {
448             plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
449             plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
450             plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
451             plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
452         }
453     }
454 
455     plic_phandles[socket] = (*phandle)++;
456     plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
457     plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
458     qemu_fdt_add_subnode(mc->fdt, plic_name);
459     qemu_fdt_setprop_cell(mc->fdt, plic_name,
460         "#interrupt-cells", FDT_PLIC_INT_CELLS);
461     qemu_fdt_setprop_cell(mc->fdt, plic_name,
462         "#address-cells", FDT_PLIC_ADDR_CELLS);
463     qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
464                                   (char **)&plic_compat,
465                                   ARRAY_SIZE(plic_compat));
466     qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
467     qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
468         plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
469     qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
470         0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
471     qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
472     riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
473     qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
474         plic_phandles[socket]);
475 
476     if (!socket) {
477         platform_bus_add_all_fdt_nodes(mc->fdt, plic_name,
478                                        memmap[VIRT_PLATFORM_BUS].base,
479                                        memmap[VIRT_PLATFORM_BUS].size,
480                                        VIRT_PLATFORM_BUS_IRQ);
481     }
482 
483     g_free(plic_name);
484 
485     g_free(plic_cells);
486 }
487 
488 static uint32_t imsic_num_bits(uint32_t count)
489 {
490     uint32_t ret = 0;
491 
492     while (BIT(ret) < count) {
493         ret++;
494     }
495 
496     return ret;
497 }
498 
499 static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
500                              uint32_t *phandle, uint32_t *intc_phandles,
501                              uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
502 {
503     int cpu, socket;
504     char *imsic_name;
505     MachineState *mc = MACHINE(s);
506     uint32_t imsic_max_hart_per_socket, imsic_guest_bits;
507     uint32_t *imsic_cells, *imsic_regs, imsic_addr, imsic_size;
508 
509     *msi_m_phandle = (*phandle)++;
510     *msi_s_phandle = (*phandle)++;
511     imsic_cells = g_new0(uint32_t, mc->smp.cpus * 2);
512     imsic_regs = g_new0(uint32_t, riscv_socket_count(mc) * 4);
513 
514     /* M-level IMSIC node */
515     for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
516         imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
517         imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
518     }
519     imsic_max_hart_per_socket = 0;
520     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
521         imsic_addr = memmap[VIRT_IMSIC_M].base +
522                      socket * VIRT_IMSIC_GROUP_MAX_SIZE;
523         imsic_size = IMSIC_HART_SIZE(0) * s->soc[socket].num_harts;
524         imsic_regs[socket * 4 + 0] = 0;
525         imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
526         imsic_regs[socket * 4 + 2] = 0;
527         imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
528         if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
529             imsic_max_hart_per_socket = s->soc[socket].num_harts;
530         }
531     }
532     imsic_name = g_strdup_printf("/soc/imsics@%lx",
533         (unsigned long)memmap[VIRT_IMSIC_M].base);
534     qemu_fdt_add_subnode(mc->fdt, imsic_name);
535     qemu_fdt_setprop_string(mc->fdt, imsic_name, "compatible",
536         "riscv,imsics");
537     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "#interrupt-cells",
538         FDT_IMSIC_INT_CELLS);
539     qemu_fdt_setprop(mc->fdt, imsic_name, "interrupt-controller",
540         NULL, 0);
541     qemu_fdt_setprop(mc->fdt, imsic_name, "msi-controller",
542         NULL, 0);
543     qemu_fdt_setprop(mc->fdt, imsic_name, "interrupts-extended",
544         imsic_cells, mc->smp.cpus * sizeof(uint32_t) * 2);
545     qemu_fdt_setprop(mc->fdt, imsic_name, "reg", imsic_regs,
546         riscv_socket_count(mc) * sizeof(uint32_t) * 4);
547     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,num-ids",
548         VIRT_IRQCHIP_NUM_MSIS);
549     if (riscv_socket_count(mc) > 1) {
550         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,hart-index-bits",
551             imsic_num_bits(imsic_max_hart_per_socket));
552         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-bits",
553             imsic_num_bits(riscv_socket_count(mc)));
554         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-shift",
555             IMSIC_MMIO_GROUP_MIN_SHIFT);
556     }
557     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "phandle", *msi_m_phandle);
558 
559     g_free(imsic_name);
560 
561     /* S-level IMSIC node */
562     for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
563         imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
564         imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
565     }
566     imsic_guest_bits = imsic_num_bits(s->aia_guests + 1);
567     imsic_max_hart_per_socket = 0;
568     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
569         imsic_addr = memmap[VIRT_IMSIC_S].base +
570                      socket * VIRT_IMSIC_GROUP_MAX_SIZE;
571         imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
572                      s->soc[socket].num_harts;
573         imsic_regs[socket * 4 + 0] = 0;
574         imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
575         imsic_regs[socket * 4 + 2] = 0;
576         imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
577         if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
578             imsic_max_hart_per_socket = s->soc[socket].num_harts;
579         }
580     }
581     imsic_name = g_strdup_printf("/soc/imsics@%lx",
582         (unsigned long)memmap[VIRT_IMSIC_S].base);
583     qemu_fdt_add_subnode(mc->fdt, imsic_name);
584     qemu_fdt_setprop_string(mc->fdt, imsic_name, "compatible",
585         "riscv,imsics");
586     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "#interrupt-cells",
587         FDT_IMSIC_INT_CELLS);
588     qemu_fdt_setprop(mc->fdt, imsic_name, "interrupt-controller",
589         NULL, 0);
590     qemu_fdt_setprop(mc->fdt, imsic_name, "msi-controller",
591         NULL, 0);
592     qemu_fdt_setprop(mc->fdt, imsic_name, "interrupts-extended",
593         imsic_cells, mc->smp.cpus * sizeof(uint32_t) * 2);
594     qemu_fdt_setprop(mc->fdt, imsic_name, "reg", imsic_regs,
595         riscv_socket_count(mc) * sizeof(uint32_t) * 4);
596     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,num-ids",
597         VIRT_IRQCHIP_NUM_MSIS);
598     if (imsic_guest_bits) {
599         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,guest-index-bits",
600             imsic_guest_bits);
601     }
602     if (riscv_socket_count(mc) > 1) {
603         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,hart-index-bits",
604             imsic_num_bits(imsic_max_hart_per_socket));
605         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-bits",
606             imsic_num_bits(riscv_socket_count(mc)));
607         qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-shift",
608             IMSIC_MMIO_GROUP_MIN_SHIFT);
609     }
610     qemu_fdt_setprop_cell(mc->fdt, imsic_name, "phandle", *msi_s_phandle);
611     g_free(imsic_name);
612 
613     g_free(imsic_regs);
614     g_free(imsic_cells);
615 }
616 
617 static void create_fdt_socket_aplic(RISCVVirtState *s,
618                                     const MemMapEntry *memmap, int socket,
619                                     uint32_t msi_m_phandle,
620                                     uint32_t msi_s_phandle,
621                                     uint32_t *phandle,
622                                     uint32_t *intc_phandles,
623                                     uint32_t *aplic_phandles)
624 {
625     int cpu;
626     char *aplic_name;
627     uint32_t *aplic_cells;
628     unsigned long aplic_addr;
629     MachineState *mc = MACHINE(s);
630     uint32_t aplic_m_phandle, aplic_s_phandle;
631 
632     aplic_m_phandle = (*phandle)++;
633     aplic_s_phandle = (*phandle)++;
634     aplic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
635 
636     /* M-level APLIC node */
637     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
638         aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
639         aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
640     }
641     aplic_addr = memmap[VIRT_APLIC_M].base +
642                  (memmap[VIRT_APLIC_M].size * socket);
643     aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
644     qemu_fdt_add_subnode(mc->fdt, aplic_name);
645     qemu_fdt_setprop_string(mc->fdt, aplic_name, "compatible", "riscv,aplic");
646     qemu_fdt_setprop_cell(mc->fdt, aplic_name,
647         "#interrupt-cells", FDT_APLIC_INT_CELLS);
648     qemu_fdt_setprop(mc->fdt, aplic_name, "interrupt-controller", NULL, 0);
649     if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
650         qemu_fdt_setprop(mc->fdt, aplic_name, "interrupts-extended",
651             aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
652     } else {
653         qemu_fdt_setprop_cell(mc->fdt, aplic_name, "msi-parent",
654             msi_m_phandle);
655     }
656     qemu_fdt_setprop_cells(mc->fdt, aplic_name, "reg",
657         0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_M].size);
658     qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,num-sources",
659         VIRT_IRQCHIP_NUM_SOURCES);
660     qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,children",
661         aplic_s_phandle);
662     qemu_fdt_setprop_cells(mc->fdt, aplic_name, "riscv,delegate",
663         aplic_s_phandle, 0x1, VIRT_IRQCHIP_NUM_SOURCES);
664     riscv_socket_fdt_write_id(mc, mc->fdt, aplic_name, socket);
665     qemu_fdt_setprop_cell(mc->fdt, aplic_name, "phandle", aplic_m_phandle);
666     g_free(aplic_name);
667 
668     /* S-level APLIC node */
669     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
670         aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
671         aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
672     }
673     aplic_addr = memmap[VIRT_APLIC_S].base +
674                  (memmap[VIRT_APLIC_S].size * socket);
675     aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
676     qemu_fdt_add_subnode(mc->fdt, aplic_name);
677     qemu_fdt_setprop_string(mc->fdt, aplic_name, "compatible", "riscv,aplic");
678     qemu_fdt_setprop_cell(mc->fdt, aplic_name,
679         "#interrupt-cells", FDT_APLIC_INT_CELLS);
680     qemu_fdt_setprop(mc->fdt, aplic_name, "interrupt-controller", NULL, 0);
681     if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
682         qemu_fdt_setprop(mc->fdt, aplic_name, "interrupts-extended",
683             aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
684     } else {
685         qemu_fdt_setprop_cell(mc->fdt, aplic_name, "msi-parent",
686             msi_s_phandle);
687     }
688     qemu_fdt_setprop_cells(mc->fdt, aplic_name, "reg",
689         0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_S].size);
690     qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,num-sources",
691         VIRT_IRQCHIP_NUM_SOURCES);
692     riscv_socket_fdt_write_id(mc, mc->fdt, aplic_name, socket);
693     qemu_fdt_setprop_cell(mc->fdt, aplic_name, "phandle", aplic_s_phandle);
694 
695     if (!socket) {
696         platform_bus_add_all_fdt_nodes(mc->fdt, aplic_name,
697                                        memmap[VIRT_PLATFORM_BUS].base,
698                                        memmap[VIRT_PLATFORM_BUS].size,
699                                        VIRT_PLATFORM_BUS_IRQ);
700     }
701 
702     g_free(aplic_name);
703 
704     g_free(aplic_cells);
705     aplic_phandles[socket] = aplic_s_phandle;
706 }
707 
708 static void create_fdt_pmu(RISCVVirtState *s)
709 {
710     char *pmu_name;
711     MachineState *mc = MACHINE(s);
712     RISCVCPU hart = s->soc[0].harts[0];
713 
714     pmu_name = g_strdup_printf("/soc/pmu");
715     qemu_fdt_add_subnode(mc->fdt, pmu_name);
716     qemu_fdt_setprop_string(mc->fdt, pmu_name, "compatible", "riscv,pmu");
717     riscv_pmu_generate_fdt_node(mc->fdt, hart.cfg.pmu_num, pmu_name);
718 
719     g_free(pmu_name);
720 }
721 
722 static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
723                                bool is_32_bit, uint32_t *phandle,
724                                uint32_t *irq_mmio_phandle,
725                                uint32_t *irq_pcie_phandle,
726                                uint32_t *irq_virtio_phandle,
727                                uint32_t *msi_pcie_phandle)
728 {
729     char *clust_name;
730     int socket, phandle_pos;
731     MachineState *mc = MACHINE(s);
732     uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
733     uint32_t *intc_phandles, xplic_phandles[MAX_NODES];
734 
735     qemu_fdt_add_subnode(mc->fdt, "/cpus");
736     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
737                           RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
738     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
739     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
740     qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
741 
742     intc_phandles = g_new0(uint32_t, mc->smp.cpus);
743 
744     phandle_pos = mc->smp.cpus;
745     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
746         phandle_pos -= s->soc[socket].num_harts;
747 
748         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
749         qemu_fdt_add_subnode(mc->fdt, clust_name);
750 
751         create_fdt_socket_cpus(s, socket, clust_name, phandle,
752             is_32_bit, &intc_phandles[phandle_pos]);
753 
754         create_fdt_socket_memory(s, memmap, socket);
755 
756         g_free(clust_name);
757 
758         if (!kvm_enabled()) {
759             if (s->have_aclint) {
760                 create_fdt_socket_aclint(s, memmap, socket,
761                     &intc_phandles[phandle_pos]);
762             } else {
763                 create_fdt_socket_clint(s, memmap, socket,
764                     &intc_phandles[phandle_pos]);
765             }
766         }
767     }
768 
769     if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
770         create_fdt_imsic(s, memmap, phandle, intc_phandles,
771             &msi_m_phandle, &msi_s_phandle);
772         *msi_pcie_phandle = msi_s_phandle;
773     }
774 
775     phandle_pos = mc->smp.cpus;
776     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
777         phandle_pos -= s->soc[socket].num_harts;
778 
779         if (s->aia_type == VIRT_AIA_TYPE_NONE) {
780             create_fdt_socket_plic(s, memmap, socket, phandle,
781                 &intc_phandles[phandle_pos], xplic_phandles);
782         } else {
783             create_fdt_socket_aplic(s, memmap, socket,
784                 msi_m_phandle, msi_s_phandle, phandle,
785                 &intc_phandles[phandle_pos], xplic_phandles);
786         }
787     }
788 
789     g_free(intc_phandles);
790 
791     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
792         if (socket == 0) {
793             *irq_mmio_phandle = xplic_phandles[socket];
794             *irq_virtio_phandle = xplic_phandles[socket];
795             *irq_pcie_phandle = xplic_phandles[socket];
796         }
797         if (socket == 1) {
798             *irq_virtio_phandle = xplic_phandles[socket];
799             *irq_pcie_phandle = xplic_phandles[socket];
800         }
801         if (socket == 2) {
802             *irq_pcie_phandle = xplic_phandles[socket];
803         }
804     }
805 
806     riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
807 }
808 
809 static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
810                               uint32_t irq_virtio_phandle)
811 {
812     int i;
813     char *name;
814     MachineState *mc = MACHINE(s);
815 
816     for (i = 0; i < VIRTIO_COUNT; i++) {
817         name = g_strdup_printf("/soc/virtio_mmio@%lx",
818             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
819         qemu_fdt_add_subnode(mc->fdt, name);
820         qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
821         qemu_fdt_setprop_cells(mc->fdt, name, "reg",
822             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
823             0x0, memmap[VIRT_VIRTIO].size);
824         qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
825             irq_virtio_phandle);
826         if (s->aia_type == VIRT_AIA_TYPE_NONE) {
827             qemu_fdt_setprop_cell(mc->fdt, name, "interrupts",
828                                   VIRTIO_IRQ + i);
829         } else {
830             qemu_fdt_setprop_cells(mc->fdt, name, "interrupts",
831                                    VIRTIO_IRQ + i, 0x4);
832         }
833         g_free(name);
834     }
835 }
836 
837 static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
838                             uint32_t irq_pcie_phandle,
839                             uint32_t msi_pcie_phandle)
840 {
841     char *name;
842     MachineState *mc = MACHINE(s);
843 
844     name = g_strdup_printf("/soc/pci@%lx",
845         (long) memmap[VIRT_PCIE_ECAM].base);
846     qemu_fdt_add_subnode(mc->fdt, name);
847     qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
848         FDT_PCI_ADDR_CELLS);
849     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
850         FDT_PCI_INT_CELLS);
851     qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
852     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
853         "pci-host-ecam-generic");
854     qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
855     qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
856     qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
857         memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
858     qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
859     if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
860         qemu_fdt_setprop_cell(mc->fdt, name, "msi-parent", msi_pcie_phandle);
861     }
862     qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
863         memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
864     qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
865         1, FDT_PCI_RANGE_IOPORT, 2, 0,
866         2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
867         1, FDT_PCI_RANGE_MMIO,
868         2, memmap[VIRT_PCIE_MMIO].base,
869         2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
870         1, FDT_PCI_RANGE_MMIO_64BIT,
871         2, virt_high_pcie_memmap.base,
872         2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
873 
874     create_pcie_irq_map(s, mc->fdt, name, irq_pcie_phandle);
875     g_free(name);
876 }
877 
878 static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
879                              uint32_t *phandle)
880 {
881     char *name;
882     uint32_t test_phandle;
883     MachineState *mc = MACHINE(s);
884 
885     test_phandle = (*phandle)++;
886     name = g_strdup_printf("/soc/test@%lx",
887         (long)memmap[VIRT_TEST].base);
888     qemu_fdt_add_subnode(mc->fdt, name);
889     {
890         static const char * const compat[3] = {
891             "sifive,test1", "sifive,test0", "syscon"
892         };
893         qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
894                                       (char **)&compat, ARRAY_SIZE(compat));
895     }
896     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
897         0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
898     qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
899     test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
900     g_free(name);
901 
902     name = g_strdup_printf("/reboot");
903     qemu_fdt_add_subnode(mc->fdt, name);
904     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
905     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
906     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
907     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
908     g_free(name);
909 
910     name = g_strdup_printf("/poweroff");
911     qemu_fdt_add_subnode(mc->fdt, name);
912     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
913     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
914     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
915     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
916     g_free(name);
917 }
918 
919 static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
920                             uint32_t irq_mmio_phandle)
921 {
922     char *name;
923     MachineState *mc = MACHINE(s);
924 
925     name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
926     qemu_fdt_add_subnode(mc->fdt, name);
927     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
928     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
929         0x0, memmap[VIRT_UART0].base,
930         0x0, memmap[VIRT_UART0].size);
931     qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
932     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
933     if (s->aia_type == VIRT_AIA_TYPE_NONE) {
934         qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
935     } else {
936         qemu_fdt_setprop_cells(mc->fdt, name, "interrupts", UART0_IRQ, 0x4);
937     }
938 
939     qemu_fdt_add_subnode(mc->fdt, "/chosen");
940     qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
941     g_free(name);
942 }
943 
944 static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
945                            uint32_t irq_mmio_phandle)
946 {
947     char *name;
948     MachineState *mc = MACHINE(s);
949 
950     name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
951     qemu_fdt_add_subnode(mc->fdt, name);
952     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
953         "google,goldfish-rtc");
954     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
955         0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
956     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
957         irq_mmio_phandle);
958     if (s->aia_type == VIRT_AIA_TYPE_NONE) {
959         qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
960     } else {
961         qemu_fdt_setprop_cells(mc->fdt, name, "interrupts", RTC_IRQ, 0x4);
962     }
963     g_free(name);
964 }
965 
966 static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
967 {
968     char *name;
969     MachineState *mc = MACHINE(s);
970     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
971     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
972 
973     name = g_strdup_printf("/flash@%" PRIx64, flashbase);
974     qemu_fdt_add_subnode(mc->fdt, name);
975     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
976     qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
977                                  2, flashbase, 2, flashsize,
978                                  2, flashbase + flashsize, 2, flashsize);
979     qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
980     g_free(name);
981 }
982 
983 static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
984 {
985     char *nodename;
986     MachineState *mc = MACHINE(s);
987     hwaddr base = memmap[VIRT_FW_CFG].base;
988     hwaddr size = memmap[VIRT_FW_CFG].size;
989 
990     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
991     qemu_fdt_add_subnode(mc->fdt, nodename);
992     qemu_fdt_setprop_string(mc->fdt, nodename,
993                             "compatible", "qemu,fw-cfg-mmio");
994     qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
995                                  2, base, 2, size);
996     qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
997     g_free(nodename);
998 }
999 
1000 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
1001                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
1002 {
1003     MachineState *mc = MACHINE(s);
1004     uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
1005     uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
1006     uint8_t rng_seed[32];
1007 
1008     if (mc->dtb) {
1009         mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
1010         if (!mc->fdt) {
1011             error_report("load_device_tree() failed");
1012             exit(1);
1013         }
1014         goto update_bootargs;
1015     } else {
1016         mc->fdt = create_device_tree(&s->fdt_size);
1017         if (!mc->fdt) {
1018             error_report("create_device_tree() failed");
1019             exit(1);
1020         }
1021     }
1022 
1023     qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
1024     qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
1025     qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
1026     qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
1027 
1028     qemu_fdt_add_subnode(mc->fdt, "/soc");
1029     qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
1030     qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
1031     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
1032     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
1033 
1034     create_fdt_sockets(s, memmap, is_32_bit, &phandle,
1035         &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle,
1036         &msi_pcie_phandle);
1037 
1038     create_fdt_virtio(s, memmap, irq_virtio_phandle);
1039 
1040     create_fdt_pcie(s, memmap, irq_pcie_phandle, msi_pcie_phandle);
1041 
1042     create_fdt_reset(s, memmap, &phandle);
1043 
1044     create_fdt_uart(s, memmap, irq_mmio_phandle);
1045 
1046     create_fdt_rtc(s, memmap, irq_mmio_phandle);
1047 
1048     create_fdt_flash(s, memmap);
1049     create_fdt_fw_cfg(s, memmap);
1050     create_fdt_pmu(s);
1051 
1052 update_bootargs:
1053     if (cmdline && *cmdline) {
1054         qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
1055     }
1056 
1057     /* Pass seed to RNG */
1058     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1059     qemu_fdt_setprop(mc->fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
1060 }
1061 
1062 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
1063                                           hwaddr ecam_base, hwaddr ecam_size,
1064                                           hwaddr mmio_base, hwaddr mmio_size,
1065                                           hwaddr high_mmio_base,
1066                                           hwaddr high_mmio_size,
1067                                           hwaddr pio_base,
1068                                           DeviceState *irqchip)
1069 {
1070     DeviceState *dev;
1071     MemoryRegion *ecam_alias, *ecam_reg;
1072     MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
1073     qemu_irq irq;
1074     int i;
1075 
1076     dev = qdev_new(TYPE_GPEX_HOST);
1077 
1078     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1079 
1080     ecam_alias = g_new0(MemoryRegion, 1);
1081     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1082     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1083                              ecam_reg, 0, ecam_size);
1084     memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
1085 
1086     mmio_alias = g_new0(MemoryRegion, 1);
1087     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1088     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1089                              mmio_reg, mmio_base, mmio_size);
1090     memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
1091 
1092     /* Map high MMIO space */
1093     high_mmio_alias = g_new0(MemoryRegion, 1);
1094     memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1095                              mmio_reg, high_mmio_base, high_mmio_size);
1096     memory_region_add_subregion(get_system_memory(), high_mmio_base,
1097                                 high_mmio_alias);
1098 
1099     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
1100 
1101     for (i = 0; i < GPEX_NUM_IRQS; i++) {
1102         irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
1103 
1104         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
1105         gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
1106     }
1107 
1108     return dev;
1109 }
1110 
1111 static FWCfgState *create_fw_cfg(const MachineState *mc)
1112 {
1113     hwaddr base = virt_memmap[VIRT_FW_CFG].base;
1114     FWCfgState *fw_cfg;
1115 
1116     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
1117                                   &address_space_memory);
1118     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
1119 
1120     return fw_cfg;
1121 }
1122 
1123 static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
1124                                      int base_hartid, int hart_count)
1125 {
1126     DeviceState *ret;
1127     char *plic_hart_config;
1128 
1129     /* Per-socket PLIC hart topology configuration string */
1130     plic_hart_config = riscv_plic_hart_config_string(hart_count);
1131 
1132     /* Per-socket PLIC */
1133     ret = sifive_plic_create(
1134             memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
1135             plic_hart_config, hart_count, base_hartid,
1136             VIRT_IRQCHIP_NUM_SOURCES,
1137             ((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
1138             VIRT_PLIC_PRIORITY_BASE,
1139             VIRT_PLIC_PENDING_BASE,
1140             VIRT_PLIC_ENABLE_BASE,
1141             VIRT_PLIC_ENABLE_STRIDE,
1142             VIRT_PLIC_CONTEXT_BASE,
1143             VIRT_PLIC_CONTEXT_STRIDE,
1144             memmap[VIRT_PLIC].size);
1145 
1146     g_free(plic_hart_config);
1147 
1148     return ret;
1149 }
1150 
1151 static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
1152                                     const MemMapEntry *memmap, int socket,
1153                                     int base_hartid, int hart_count)
1154 {
1155     int i;
1156     hwaddr addr;
1157     uint32_t guest_bits;
1158     DeviceState *aplic_m;
1159     bool msimode = (aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) ? true : false;
1160 
1161     if (msimode) {
1162         /* Per-socket M-level IMSICs */
1163         addr = memmap[VIRT_IMSIC_M].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
1164         for (i = 0; i < hart_count; i++) {
1165             riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
1166                                base_hartid + i, true, 1,
1167                                VIRT_IRQCHIP_NUM_MSIS);
1168         }
1169 
1170         /* Per-socket S-level IMSICs */
1171         guest_bits = imsic_num_bits(aia_guests + 1);
1172         addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
1173         for (i = 0; i < hart_count; i++) {
1174             riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
1175                                base_hartid + i, false, 1 + aia_guests,
1176                                VIRT_IRQCHIP_NUM_MSIS);
1177         }
1178     }
1179 
1180     /* Per-socket M-level APLIC */
1181     aplic_m = riscv_aplic_create(
1182         memmap[VIRT_APLIC_M].base + socket * memmap[VIRT_APLIC_M].size,
1183         memmap[VIRT_APLIC_M].size,
1184         (msimode) ? 0 : base_hartid,
1185         (msimode) ? 0 : hart_count,
1186         VIRT_IRQCHIP_NUM_SOURCES,
1187         VIRT_IRQCHIP_NUM_PRIO_BITS,
1188         msimode, true, NULL);
1189 
1190     if (aplic_m) {
1191         /* Per-socket S-level APLIC */
1192         riscv_aplic_create(
1193             memmap[VIRT_APLIC_S].base + socket * memmap[VIRT_APLIC_S].size,
1194             memmap[VIRT_APLIC_S].size,
1195             (msimode) ? 0 : base_hartid,
1196             (msimode) ? 0 : hart_count,
1197             VIRT_IRQCHIP_NUM_SOURCES,
1198             VIRT_IRQCHIP_NUM_PRIO_BITS,
1199             msimode, false, aplic_m);
1200     }
1201 
1202     return aplic_m;
1203 }
1204 
1205 static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
1206 {
1207     DeviceState *dev;
1208     SysBusDevice *sysbus;
1209     const MemMapEntry *memmap = virt_memmap;
1210     int i;
1211     MemoryRegion *sysmem = get_system_memory();
1212 
1213     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
1214     dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
1215     qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
1216     qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
1217     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1218     s->platform_bus_dev = dev;
1219 
1220     sysbus = SYS_BUS_DEVICE(dev);
1221     for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
1222         int irq = VIRT_PLATFORM_BUS_IRQ + i;
1223         sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
1224     }
1225 
1226     memory_region_add_subregion(sysmem,
1227                                 memmap[VIRT_PLATFORM_BUS].base,
1228                                 sysbus_mmio_get_region(sysbus, 0));
1229 }
1230 
1231 static void virt_machine_done(Notifier *notifier, void *data)
1232 {
1233     RISCVVirtState *s = container_of(notifier, RISCVVirtState,
1234                                      machine_done);
1235     const MemMapEntry *memmap = virt_memmap;
1236     MachineState *machine = MACHINE(s);
1237     target_ulong start_addr = memmap[VIRT_DRAM].base;
1238     target_ulong firmware_end_addr, kernel_start_addr;
1239     uint32_t fdt_load_addr;
1240     uint64_t kernel_entry;
1241 
1242     /*
1243      * Only direct boot kernel is currently supported for KVM VM,
1244      * so the "-bios" parameter is not supported when KVM is enabled.
1245      */
1246     if (kvm_enabled()) {
1247         if (machine->firmware) {
1248             if (strcmp(machine->firmware, "none")) {
1249                 error_report("Machine mode firmware is not supported in "
1250                              "combination with KVM.");
1251                 exit(1);
1252             }
1253         } else {
1254             machine->firmware = g_strdup("none");
1255         }
1256     }
1257 
1258     if (riscv_is_32bit(&s->soc[0])) {
1259         firmware_end_addr = riscv_find_and_load_firmware(machine,
1260                                     RISCV32_BIOS_BIN, start_addr, NULL);
1261     } else {
1262         firmware_end_addr = riscv_find_and_load_firmware(machine,
1263                                     RISCV64_BIOS_BIN, start_addr, NULL);
1264     }
1265 
1266     /*
1267      * Init fw_cfg.  Must be done before riscv_load_fdt, otherwise the device
1268      * tree cannot be altered and we get FDT_ERR_NOSPACE.
1269      */
1270     s->fw_cfg = create_fw_cfg(machine);
1271     rom_set_fw(s->fw_cfg);
1272 
1273     if (drive_get(IF_PFLASH, 0, 1)) {
1274         /*
1275          * S-mode FW like EDK2 will be kept in second plash (unit 1).
1276          * When both kernel, initrd and pflash options are provided in the
1277          * command line, the kernel and initrd will be copied to the fw_cfg
1278          * table and opensbi will jump to the flash address which is the
1279          * entry point of S-mode FW. It is the job of the S-mode FW to load
1280          * the kernel and initrd using fw_cfg table.
1281          *
1282          * If only pflash is given but not -kernel, then it is the job of
1283          * of the S-mode firmware to locate and load the kernel.
1284          * In either case, the next_addr for opensbi will be the flash address.
1285          */
1286         riscv_setup_firmware_boot(machine);
1287         kernel_entry = virt_memmap[VIRT_FLASH].base +
1288                        virt_memmap[VIRT_FLASH].size / 2;
1289     } else if (machine->kernel_filename) {
1290         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
1291                                                          firmware_end_addr);
1292 
1293         kernel_entry = riscv_load_kernel(machine->kernel_filename,
1294                                          kernel_start_addr, NULL);
1295 
1296         if (machine->initrd_filename) {
1297             hwaddr start;
1298             hwaddr end = riscv_load_initrd(machine->initrd_filename,
1299                                            machine->ram_size, kernel_entry,
1300                                            &start);
1301             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
1302                                   "linux,initrd-start", start);
1303             qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
1304                                   end);
1305         }
1306     } else {
1307        /*
1308         * If dynamic firmware is used, it doesn't know where is the next mode
1309         * if kernel argument is not set.
1310         */
1311         kernel_entry = 0;
1312     }
1313 
1314     if (drive_get(IF_PFLASH, 0, 0)) {
1315         /*
1316          * Pflash was supplied, let's overwrite the address we jump to after
1317          * reset to the base of the flash.
1318          */
1319         start_addr = virt_memmap[VIRT_FLASH].base;
1320     }
1321 
1322     /* Compute the fdt load address in dram */
1323     fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
1324                                    machine->ram_size, machine->fdt);
1325     /* load the reset vector */
1326     riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
1327                               virt_memmap[VIRT_MROM].base,
1328                               virt_memmap[VIRT_MROM].size, kernel_entry,
1329                               fdt_load_addr);
1330 
1331     /*
1332      * Only direct boot kernel is currently supported for KVM VM,
1333      * So here setup kernel start address and fdt address.
1334      * TODO:Support firmware loading and integrate to TCG start
1335      */
1336     if (kvm_enabled()) {
1337         riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
1338     }
1339 }
1340 
1341 static void virt_machine_init(MachineState *machine)
1342 {
1343     const MemMapEntry *memmap = virt_memmap;
1344     RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
1345     MemoryRegion *system_memory = get_system_memory();
1346     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
1347     char *soc_name;
1348     DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
1349     int i, base_hartid, hart_count;
1350 
1351     /* Check socket count limit */
1352     if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
1353         error_report("number of sockets/nodes should be less than %d",
1354             VIRT_SOCKETS_MAX);
1355         exit(1);
1356     }
1357 
1358     /* Initialize sockets */
1359     mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
1360     for (i = 0; i < riscv_socket_count(machine); i++) {
1361         if (!riscv_socket_check_hartids(machine, i)) {
1362             error_report("discontinuous hartids in socket%d", i);
1363             exit(1);
1364         }
1365 
1366         base_hartid = riscv_socket_first_hartid(machine, i);
1367         if (base_hartid < 0) {
1368             error_report("can't find hartid base for socket%d", i);
1369             exit(1);
1370         }
1371 
1372         hart_count = riscv_socket_hart_count(machine, i);
1373         if (hart_count < 0) {
1374             error_report("can't find hart count for socket%d", i);
1375             exit(1);
1376         }
1377 
1378         soc_name = g_strdup_printf("soc%d", i);
1379         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
1380                                 TYPE_RISCV_HART_ARRAY);
1381         g_free(soc_name);
1382         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
1383                                 machine->cpu_type, &error_abort);
1384         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
1385                                 base_hartid, &error_abort);
1386         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
1387                                 hart_count, &error_abort);
1388         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
1389 
1390         if (!kvm_enabled()) {
1391             if (s->have_aclint) {
1392                 if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
1393                     /* Per-socket ACLINT MTIMER */
1394                     riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
1395                             i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
1396                         RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
1397                         base_hartid, hart_count,
1398                         RISCV_ACLINT_DEFAULT_MTIMECMP,
1399                         RISCV_ACLINT_DEFAULT_MTIME,
1400                         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
1401                 } else {
1402                     /* Per-socket ACLINT MSWI, MTIMER, and SSWI */
1403                     riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
1404                             i * memmap[VIRT_CLINT].size,
1405                         base_hartid, hart_count, false);
1406                     riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
1407                             i * memmap[VIRT_CLINT].size +
1408                             RISCV_ACLINT_SWI_SIZE,
1409                         RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
1410                         base_hartid, hart_count,
1411                         RISCV_ACLINT_DEFAULT_MTIMECMP,
1412                         RISCV_ACLINT_DEFAULT_MTIME,
1413                         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
1414                     riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
1415                             i * memmap[VIRT_ACLINT_SSWI].size,
1416                         base_hartid, hart_count, true);
1417                 }
1418             } else {
1419                 /* Per-socket SiFive CLINT */
1420                 riscv_aclint_swi_create(
1421                     memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
1422                     base_hartid, hart_count, false);
1423                 riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
1424                         i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
1425                     RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
1426                     RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
1427                     RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
1428             }
1429         }
1430 
1431         /* Per-socket interrupt controller */
1432         if (s->aia_type == VIRT_AIA_TYPE_NONE) {
1433             s->irqchip[i] = virt_create_plic(memmap, i,
1434                                              base_hartid, hart_count);
1435         } else {
1436             s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
1437                                             memmap, i, base_hartid,
1438                                             hart_count);
1439         }
1440 
1441         /* Try to use different IRQCHIP instance based device type */
1442         if (i == 0) {
1443             mmio_irqchip = s->irqchip[i];
1444             virtio_irqchip = s->irqchip[i];
1445             pcie_irqchip = s->irqchip[i];
1446         }
1447         if (i == 1) {
1448             virtio_irqchip = s->irqchip[i];
1449             pcie_irqchip = s->irqchip[i];
1450         }
1451         if (i == 2) {
1452             pcie_irqchip = s->irqchip[i];
1453         }
1454     }
1455 
1456     if (riscv_is_32bit(&s->soc[0])) {
1457 #if HOST_LONG_BITS == 64
1458         /* limit RAM size in a 32-bit system */
1459         if (machine->ram_size > 10 * GiB) {
1460             machine->ram_size = 10 * GiB;
1461             error_report("Limiting RAM size to 10 GiB");
1462         }
1463 #endif
1464         virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
1465         virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
1466     } else {
1467         virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
1468         virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
1469         virt_high_pcie_memmap.base =
1470             ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
1471     }
1472 
1473     /* register system main memory (actual RAM) */
1474     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
1475         machine->ram);
1476 
1477     /* boot rom */
1478     memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
1479                            memmap[VIRT_MROM].size, &error_fatal);
1480     memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
1481                                 mask_rom);
1482 
1483     /* SiFive Test MMIO device */
1484     sifive_test_create(memmap[VIRT_TEST].base);
1485 
1486     /* VirtIO MMIO devices */
1487     for (i = 0; i < VIRTIO_COUNT; i++) {
1488         sysbus_create_simple("virtio-mmio",
1489             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
1490             qdev_get_gpio_in(DEVICE(virtio_irqchip), VIRTIO_IRQ + i));
1491     }
1492 
1493     gpex_pcie_init(system_memory,
1494                    memmap[VIRT_PCIE_ECAM].base,
1495                    memmap[VIRT_PCIE_ECAM].size,
1496                    memmap[VIRT_PCIE_MMIO].base,
1497                    memmap[VIRT_PCIE_MMIO].size,
1498                    virt_high_pcie_memmap.base,
1499                    virt_high_pcie_memmap.size,
1500                    memmap[VIRT_PCIE_PIO].base,
1501                    DEVICE(pcie_irqchip));
1502 
1503     create_platform_bus(s, DEVICE(mmio_irqchip));
1504 
1505     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
1506         0, qdev_get_gpio_in(DEVICE(mmio_irqchip), UART0_IRQ), 399193,
1507         serial_hd(0), DEVICE_LITTLE_ENDIAN);
1508 
1509     sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
1510         qdev_get_gpio_in(DEVICE(mmio_irqchip), RTC_IRQ));
1511 
1512     virt_flash_create(s);
1513 
1514     for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
1515         /* Map legacy -drive if=pflash to machine properties */
1516         pflash_cfi01_legacy_drive(s->flash[i],
1517                                   drive_get(IF_PFLASH, 0, i));
1518     }
1519     virt_flash_map(s, system_memory);
1520 
1521     /* create device tree */
1522     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
1523                riscv_is_32bit(&s->soc[0]));
1524 
1525     s->machine_done.notify = virt_machine_done;
1526     qemu_add_machine_init_done_notifier(&s->machine_done);
1527 }
1528 
1529 static void virt_machine_instance_init(Object *obj)
1530 {
1531 }
1532 
1533 static char *virt_get_aia_guests(Object *obj, Error **errp)
1534 {
1535     RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
1536     char val[32];
1537 
1538     sprintf(val, "%d", s->aia_guests);
1539     return g_strdup(val);
1540 }
1541 
1542 static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
1543 {
1544     RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
1545 
1546     s->aia_guests = atoi(val);
1547     if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
1548         error_setg(errp, "Invalid number of AIA IMSIC guests");
1549         error_append_hint(errp, "Valid values be between 0 and %d.\n",
1550                           VIRT_IRQCHIP_MAX_GUESTS);
1551     }
1552 }
1553 
1554 static char *virt_get_aia(Object *obj, Error **errp)
1555 {
1556     RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
1557     const char *val;
1558 
1559     switch (s->aia_type) {
1560     case VIRT_AIA_TYPE_APLIC:
1561         val = "aplic";
1562         break;
1563     case VIRT_AIA_TYPE_APLIC_IMSIC:
1564         val = "aplic-imsic";
1565         break;
1566     default:
1567         val = "none";
1568         break;
1569     };
1570 
1571     return g_strdup(val);
1572 }
1573 
1574 static void virt_set_aia(Object *obj, const char *val, Error **errp)
1575 {
1576     RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
1577 
1578     if (!strcmp(val, "none")) {
1579         s->aia_type = VIRT_AIA_TYPE_NONE;
1580     } else if (!strcmp(val, "aplic")) {
1581         s->aia_type = VIRT_AIA_TYPE_APLIC;
1582     } else if (!strcmp(val, "aplic-imsic")) {
1583         s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
1584     } else {
1585         error_setg(errp, "Invalid AIA interrupt controller type");
1586         error_append_hint(errp, "Valid values are none, aplic, and "
1587                           "aplic-imsic.\n");
1588     }
1589 }
1590 
1591 static bool virt_get_aclint(Object *obj, Error **errp)
1592 {
1593     MachineState *ms = MACHINE(obj);
1594     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1595 
1596     return s->have_aclint;
1597 }
1598 
1599 static void virt_set_aclint(Object *obj, bool value, Error **errp)
1600 {
1601     MachineState *ms = MACHINE(obj);
1602     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1603 
1604     s->have_aclint = value;
1605 }
1606 
1607 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1608                                                         DeviceState *dev)
1609 {
1610     MachineClass *mc = MACHINE_GET_CLASS(machine);
1611 
1612     if (device_is_dynamic_sysbus(mc, dev)) {
1613         return HOTPLUG_HANDLER(machine);
1614     }
1615     return NULL;
1616 }
1617 
1618 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1619                                         DeviceState *dev, Error **errp)
1620 {
1621     RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
1622 
1623     if (s->platform_bus_dev) {
1624         MachineClass *mc = MACHINE_GET_CLASS(s);
1625 
1626         if (device_is_dynamic_sysbus(mc, dev)) {
1627             platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
1628                                      SYS_BUS_DEVICE(dev));
1629         }
1630     }
1631 }
1632 
1633 static void virt_machine_class_init(ObjectClass *oc, void *data)
1634 {
1635     char str[128];
1636     MachineClass *mc = MACHINE_CLASS(oc);
1637     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1638 
1639     mc->desc = "RISC-V VirtIO board";
1640     mc->init = virt_machine_init;
1641     mc->max_cpus = VIRT_CPUS_MAX;
1642     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
1643     mc->pci_allow_0_address = true;
1644     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
1645     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
1646     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
1647     mc->numa_mem_supported = true;
1648     mc->default_ram_id = "riscv_virt_board.ram";
1649     assert(!mc->get_hotplug_handler);
1650     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1651 
1652     hc->plug = virt_machine_device_plug_cb;
1653 
1654     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1655 #ifdef CONFIG_TPM
1656     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
1657 #endif
1658 
1659     object_class_property_add_bool(oc, "aclint", virt_get_aclint,
1660                                    virt_set_aclint);
1661     object_class_property_set_description(oc, "aclint",
1662                                           "Set on/off to enable/disable "
1663                                           "emulating ACLINT devices");
1664 
1665     object_class_property_add_str(oc, "aia", virt_get_aia,
1666                                   virt_set_aia);
1667     object_class_property_set_description(oc, "aia",
1668                                           "Set type of AIA interrupt "
1669                                           "conttoller. Valid values are "
1670                                           "none, aplic, and aplic-imsic.");
1671 
1672     object_class_property_add_str(oc, "aia-guests",
1673                                   virt_get_aia_guests,
1674                                   virt_set_aia_guests);
1675     sprintf(str, "Set number of guest MMIO pages for AIA IMSIC. Valid value "
1676                  "should be between 0 and %d.", VIRT_IRQCHIP_MAX_GUESTS);
1677     object_class_property_set_description(oc, "aia-guests", str);
1678 }
1679 
1680 static const TypeInfo virt_machine_typeinfo = {
1681     .name       = MACHINE_TYPE_NAME("virt"),
1682     .parent     = TYPE_MACHINE,
1683     .class_init = virt_machine_class_init,
1684     .instance_init = virt_machine_instance_init,
1685     .instance_size = sizeof(RISCVVirtState),
1686     .interfaces = (InterfaceInfo[]) {
1687          { TYPE_HOTPLUG_HANDLER },
1688          { }
1689     },
1690 };
1691 
1692 static void virt_machine_init_register_types(void)
1693 {
1694     type_register_static(&virt_machine_typeinfo);
1695 }
1696 
1697 type_init(virt_machine_init_register_types)
1698