xref: /openbmc/qemu/hw/riscv/virt.c (revision 89854803)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/hw.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/sysbus.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_htif.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/sifive_plic.h"
34 #include "hw/riscv/sifive_clint.h"
35 #include "hw/riscv/sifive_test.h"
36 #include "hw/riscv/virt.h"
37 #include "chardev/char.h"
38 #include "sysemu/arch_init.h"
39 #include "sysemu/device_tree.h"
40 #include "exec/address-spaces.h"
41 #include "elf.h"
42 
43 static const struct MemmapEntry {
44     hwaddr base;
45     hwaddr size;
46 } virt_memmap[] = {
47     [VIRT_DEBUG] =    {        0x0,      0x100 },
48     [VIRT_MROM] =     {     0x1000,     0x2000 },
49     [VIRT_TEST] =     {     0x4000,     0x1000 },
50     [VIRT_CLINT] =    {  0x2000000,    0x10000 },
51     [VIRT_PLIC] =     {  0xc000000,  0x4000000 },
52     [VIRT_UART0] =    { 0x10000000,      0x100 },
53     [VIRT_VIRTIO] =   { 0x10001000,     0x1000 },
54     [VIRT_DRAM] =     { 0x80000000,        0x0 },
55 };
56 
57 static void copy_le32_to_phys(hwaddr pa, uint32_t *rom, size_t len)
58 {
59     int i;
60     for (i = 0; i < (len >> 2); i++) {
61         stl_phys(&address_space_memory, pa + (i << 2), rom[i]);
62     }
63 }
64 
65 static uint64_t load_kernel(const char *kernel_filename)
66 {
67     uint64_t kernel_entry, kernel_high;
68 
69     if (load_elf(kernel_filename, NULL, NULL,
70                  &kernel_entry, NULL, &kernel_high,
71                  0, EM_RISCV, 1, 0) < 0) {
72         error_report("qemu: could not load kernel '%s'", kernel_filename);
73         exit(1);
74     }
75     return kernel_entry;
76 }
77 
78 static hwaddr load_initrd(const char *filename, uint64_t mem_size,
79                           uint64_t kernel_entry, hwaddr *start)
80 {
81     int size;
82 
83     /* We want to put the initrd far enough into RAM that when the
84      * kernel is uncompressed it will not clobber the initrd. However
85      * on boards without much RAM we must ensure that we still leave
86      * enough room for a decent sized initrd, and on boards with large
87      * amounts of RAM we must avoid the initrd being so far up in RAM
88      * that it is outside lowmem and inaccessible to the kernel.
89      * So for boards with less  than 256MB of RAM we put the initrd
90      * halfway into RAM, and for boards with 256MB of RAM or more we put
91      * the initrd at 128MB.
92      */
93     *start = kernel_entry + MIN(mem_size / 2, 128 * 1024 * 1024);
94 
95     size = load_ramdisk(filename, *start, mem_size - *start);
96     if (size == -1) {
97         size = load_image_targphys(filename, *start, mem_size - *start);
98         if (size == -1) {
99             error_report("qemu: could not load ramdisk '%s'", filename);
100             exit(1);
101         }
102     }
103     return *start + size;
104 }
105 
106 static void *create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
107     uint64_t mem_size, const char *cmdline)
108 {
109     void *fdt;
110     int cpu;
111     uint32_t *cells;
112     char *nodename;
113     uint32_t plic_phandle, phandle = 1;
114     int i;
115 
116     fdt = s->fdt = create_device_tree(&s->fdt_size);
117     if (!fdt) {
118         error_report("create_device_tree() failed");
119         exit(1);
120     }
121 
122     qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
123     qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
124     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
125     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
126 
127     qemu_fdt_add_subnode(fdt, "/soc");
128     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
129     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "riscv-virtio-soc");
130     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
131     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
132 
133     nodename = g_strdup_printf("/memory@%lx",
134         (long)memmap[VIRT_DRAM].base);
135     qemu_fdt_add_subnode(fdt, nodename);
136     qemu_fdt_setprop_cells(fdt, nodename, "reg",
137         memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base,
138         mem_size >> 32, mem_size);
139     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
140     g_free(nodename);
141 
142     qemu_fdt_add_subnode(fdt, "/cpus");
143     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
144                           SIFIVE_CLINT_TIMEBASE_FREQ);
145     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
146     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
147 
148     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
149         int cpu_phandle = phandle++;
150         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
151         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
152         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
153         qemu_fdt_add_subnode(fdt, nodename);
154         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
155                               VIRT_CLOCK_FREQ);
156         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
157         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
158         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
159         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
160         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
161         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
162         qemu_fdt_add_subnode(fdt, intc);
163         qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
164         qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", cpu_phandle);
165         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
166         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
167         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
168         g_free(isa);
169         g_free(intc);
170         g_free(nodename);
171     }
172 
173     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
174     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
175         nodename =
176             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
177         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
178         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
179         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
180         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
181         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
182         g_free(nodename);
183     }
184     nodename = g_strdup_printf("/soc/clint@%lx",
185         (long)memmap[VIRT_CLINT].base);
186     qemu_fdt_add_subnode(fdt, nodename);
187     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
188     qemu_fdt_setprop_cells(fdt, nodename, "reg",
189         0x0, memmap[VIRT_CLINT].base,
190         0x0, memmap[VIRT_CLINT].size);
191     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
192         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
193     g_free(cells);
194     g_free(nodename);
195 
196     plic_phandle = phandle++;
197     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
198     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
199         nodename =
200             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
201         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
202         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
203         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
204         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
205         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
206         g_free(nodename);
207     }
208     nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
209         (long)memmap[VIRT_PLIC].base);
210     qemu_fdt_add_subnode(fdt, nodename);
211     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
212     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
213     qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
214     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
215         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
216     qemu_fdt_setprop_cells(fdt, nodename, "reg",
217         0x0, memmap[VIRT_PLIC].base,
218         0x0, memmap[VIRT_PLIC].size);
219     qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
220     qemu_fdt_setprop_cell(fdt, nodename, "riscv,max-priority", 7);
221     qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV);
222     qemu_fdt_setprop_cells(fdt, nodename, "phandle", plic_phandle);
223     qemu_fdt_setprop_cells(fdt, nodename, "linux,phandle", plic_phandle);
224     plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
225     g_free(cells);
226     g_free(nodename);
227 
228     for (i = 0; i < VIRTIO_COUNT; i++) {
229         nodename = g_strdup_printf("/virtio_mmio@%lx",
230             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
231         qemu_fdt_add_subnode(fdt, nodename);
232         qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
233         qemu_fdt_setprop_cells(fdt, nodename, "reg",
234             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
235             0x0, memmap[VIRT_VIRTIO].size);
236         qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
237         qemu_fdt_setprop_cells(fdt, nodename, "interrupts", VIRTIO_IRQ + i);
238         g_free(nodename);
239     }
240 
241     nodename = g_strdup_printf("/test@%lx",
242         (long)memmap[VIRT_TEST].base);
243     qemu_fdt_add_subnode(fdt, nodename);
244     qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,test0");
245     qemu_fdt_setprop_cells(fdt, nodename, "reg",
246         0x0, memmap[VIRT_TEST].base,
247         0x0, memmap[VIRT_TEST].size);
248 
249     nodename = g_strdup_printf("/uart@%lx",
250         (long)memmap[VIRT_UART0].base);
251     qemu_fdt_add_subnode(fdt, nodename);
252     qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
253     qemu_fdt_setprop_cells(fdt, nodename, "reg",
254         0x0, memmap[VIRT_UART0].base,
255         0x0, memmap[VIRT_UART0].size);
256     qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400);
257         qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
258         qemu_fdt_setprop_cells(fdt, nodename, "interrupts", UART0_IRQ);
259 
260     qemu_fdt_add_subnode(fdt, "/chosen");
261     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
262     qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
263     g_free(nodename);
264 
265     return fdt;
266 }
267 
268 static void riscv_virt_board_init(MachineState *machine)
269 {
270     const struct MemmapEntry *memmap = virt_memmap;
271 
272     RISCVVirtState *s = g_new0(RISCVVirtState, 1);
273     MemoryRegion *system_memory = get_system_memory();
274     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
275     MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
276     char *plic_hart_config;
277     size_t plic_hart_config_len;
278     int i;
279     void *fdt;
280 
281     /* Initialize SOC */
282     object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
283     object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
284                               &error_abort);
285     object_property_set_str(OBJECT(&s->soc), VIRT_CPU, "cpu-type",
286                             &error_abort);
287     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
288                             &error_abort);
289     object_property_set_bool(OBJECT(&s->soc), true, "realized",
290                             &error_abort);
291 
292     /* register system main memory (actual RAM) */
293     memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
294                            machine->ram_size, &error_fatal);
295     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
296         main_mem);
297 
298     /* create device tree */
299     fdt = create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
300 
301     /* boot rom */
302     memory_region_init_ram(boot_rom, NULL, "riscv_virt_board.bootrom",
303                            s->fdt_size + 0x2000, &error_fatal);
304     memory_region_add_subregion(system_memory, 0x0, boot_rom);
305 
306     if (machine->kernel_filename) {
307         uint64_t kernel_entry = load_kernel(machine->kernel_filename);
308 
309         if (machine->initrd_filename) {
310             hwaddr start;
311             hwaddr end = load_initrd(machine->initrd_filename,
312                                      machine->ram_size, kernel_entry,
313                                      &start);
314             qemu_fdt_setprop_cell(fdt, "/chosen",
315                                   "linux,initrd-start", start);
316             qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
317                                   end);
318         }
319     }
320 
321     /* reset vector */
322     uint32_t reset_vec[8] = {
323         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
324         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
325         0xf1402573,                  /*     csrr   a0, mhartid  */
326 #if defined(TARGET_RISCV32)
327         0x0182a283,                  /*     lw     t0, 24(t0) */
328 #elif defined(TARGET_RISCV64)
329         0x0182b283,                  /*     ld     t0, 24(t0) */
330 #endif
331         0x00028067,                  /*     jr     t0 */
332         0x00000000,
333         memmap[VIRT_DRAM].base,      /* start: .dword memmap[VIRT_DRAM].base */
334         0x00000000,
335                                      /* dtb: */
336     };
337 
338     /* copy in the reset vector */
339     copy_le32_to_phys(memmap[VIRT_MROM].base, reset_vec, sizeof(reset_vec));
340 
341     /* copy in the device tree */
342     qemu_fdt_dumpdtb(s->fdt, s->fdt_size);
343     cpu_physical_memory_write(memmap[VIRT_MROM].base + sizeof(reset_vec),
344         s->fdt, s->fdt_size);
345 
346     /* create PLIC hart topology configuration string */
347     plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;
348     plic_hart_config = g_malloc0(plic_hart_config_len);
349     for (i = 0; i < smp_cpus; i++) {
350         if (i != 0) {
351             strncat(plic_hart_config, ",", plic_hart_config_len);
352         }
353         strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len);
354         plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
355     }
356 
357     /* MMIO */
358     s->plic = sifive_plic_create(memmap[VIRT_PLIC].base,
359         plic_hart_config,
360         VIRT_PLIC_NUM_SOURCES,
361         VIRT_PLIC_NUM_PRIORITIES,
362         VIRT_PLIC_PRIORITY_BASE,
363         VIRT_PLIC_PENDING_BASE,
364         VIRT_PLIC_ENABLE_BASE,
365         VIRT_PLIC_ENABLE_STRIDE,
366         VIRT_PLIC_CONTEXT_BASE,
367         VIRT_PLIC_CONTEXT_STRIDE,
368         memmap[VIRT_PLIC].size);
369     sifive_clint_create(memmap[VIRT_CLINT].base,
370         memmap[VIRT_CLINT].size, smp_cpus,
371         SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
372     sifive_test_create(memmap[VIRT_TEST].base);
373 
374     for (i = 0; i < VIRTIO_COUNT; i++) {
375         sysbus_create_simple("virtio-mmio",
376             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
377             SIFIVE_PLIC(s->plic)->irqs[VIRTIO_IRQ + i]);
378     }
379 
380     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
381         0, SIFIVE_PLIC(s->plic)->irqs[UART0_IRQ], 399193,
382         serial_hd(0), DEVICE_LITTLE_ENDIAN);
383 }
384 
385 static void riscv_virt_board_machine_init(MachineClass *mc)
386 {
387     mc->desc = "RISC-V VirtIO Board (Privileged ISA v1.10)";
388     mc->init = riscv_virt_board_init;
389     mc->max_cpus = 8; /* hardcoded limit in BBL */
390 }
391 
392 DEFINE_MACHINE("virt", riscv_virt_board_machine_init)
393