1 /* 2 * QEMU RISC-V VirtIO Board 3 * 4 * Copyright (c) 2017 SiFive, Inc. 5 * 6 * RISC-V machine with 16550a UART and VirtIO MMIO 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms and conditions of the GNU General Public License, 10 * version 2 or later, as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope it will be useful, but WITHOUT 13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 15 * more details. 16 * 17 * You should have received a copy of the GNU General Public License along with 18 * this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/log.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "hw/hw.h" 26 #include "hw/boards.h" 27 #include "hw/loader.h" 28 #include "hw/sysbus.h" 29 #include "hw/char/serial.h" 30 #include "target/riscv/cpu.h" 31 #include "hw/riscv/riscv_htif.h" 32 #include "hw/riscv/riscv_hart.h" 33 #include "hw/riscv/sifive_plic.h" 34 #include "hw/riscv/sifive_clint.h" 35 #include "hw/riscv/sifive_test.h" 36 #include "hw/riscv/virt.h" 37 #include "chardev/char.h" 38 #include "sysemu/arch_init.h" 39 #include "sysemu/device_tree.h" 40 #include "exec/address-spaces.h" 41 #include "elf.h" 42 43 static const struct MemmapEntry { 44 hwaddr base; 45 hwaddr size; 46 } virt_memmap[] = { 47 [VIRT_DEBUG] = { 0x0, 0x100 }, 48 [VIRT_MROM] = { 0x1000, 0x2000 }, 49 [VIRT_TEST] = { 0x4000, 0x1000 }, 50 [VIRT_CLINT] = { 0x2000000, 0x10000 }, 51 [VIRT_PLIC] = { 0xc000000, 0x4000000 }, 52 [VIRT_UART0] = { 0x10000000, 0x100 }, 53 [VIRT_VIRTIO] = { 0x10001000, 0x1000 }, 54 [VIRT_DRAM] = { 0x80000000, 0x0 }, 55 }; 56 57 static void copy_le32_to_phys(hwaddr pa, uint32_t *rom, size_t len) 58 { 59 int i; 60 for (i = 0; i < (len >> 2); i++) { 61 stl_phys(&address_space_memory, pa + (i << 2), rom[i]); 62 } 63 } 64 65 static uint64_t load_kernel(const char *kernel_filename) 66 { 67 uint64_t kernel_entry, kernel_high; 68 69 if (load_elf(kernel_filename, NULL, NULL, 70 &kernel_entry, NULL, &kernel_high, 71 0, EM_RISCV, 1, 0) < 0) { 72 error_report("qemu: could not load kernel '%s'", kernel_filename); 73 exit(1); 74 } 75 return kernel_entry; 76 } 77 78 static hwaddr load_initrd(const char *filename, uint64_t mem_size, 79 uint64_t kernel_entry, hwaddr *start) 80 { 81 int size; 82 83 /* We want to put the initrd far enough into RAM that when the 84 * kernel is uncompressed it will not clobber the initrd. However 85 * on boards without much RAM we must ensure that we still leave 86 * enough room for a decent sized initrd, and on boards with large 87 * amounts of RAM we must avoid the initrd being so far up in RAM 88 * that it is outside lowmem and inaccessible to the kernel. 89 * So for boards with less than 256MB of RAM we put the initrd 90 * halfway into RAM, and for boards with 256MB of RAM or more we put 91 * the initrd at 128MB. 92 */ 93 *start = kernel_entry + MIN(mem_size / 2, 128 * 1024 * 1024); 94 95 size = load_ramdisk(filename, *start, mem_size - *start); 96 if (size == -1) { 97 size = load_image_targphys(filename, *start, mem_size - *start); 98 if (size == -1) { 99 error_report("qemu: could not load ramdisk '%s'", filename); 100 exit(1); 101 } 102 } 103 return *start + size; 104 } 105 106 static void *create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap, 107 uint64_t mem_size, const char *cmdline) 108 { 109 void *fdt; 110 int cpu; 111 uint32_t *cells; 112 char *nodename; 113 uint32_t plic_phandle, phandle = 1; 114 int i; 115 116 fdt = s->fdt = create_device_tree(&s->fdt_size); 117 if (!fdt) { 118 error_report("create_device_tree() failed"); 119 exit(1); 120 } 121 122 qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu"); 123 qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio"); 124 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 125 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 126 127 qemu_fdt_add_subnode(fdt, "/soc"); 128 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 129 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "riscv-virtio-soc"); 130 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); 131 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); 132 133 nodename = g_strdup_printf("/memory@%lx", 134 (long)memmap[VIRT_DRAM].base); 135 qemu_fdt_add_subnode(fdt, nodename); 136 qemu_fdt_setprop_cells(fdt, nodename, "reg", 137 memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base, 138 mem_size >> 32, mem_size); 139 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); 140 g_free(nodename); 141 142 qemu_fdt_add_subnode(fdt, "/cpus"); 143 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 144 SIFIVE_CLINT_TIMEBASE_FREQ); 145 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 146 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 147 148 for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) { 149 int cpu_phandle = phandle++; 150 nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 151 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 152 char *isa = riscv_isa_string(&s->soc.harts[cpu]); 153 qemu_fdt_add_subnode(fdt, nodename); 154 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 155 VIRT_CLOCK_FREQ); 156 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); 157 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); 158 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); 159 qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); 160 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); 161 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); 162 qemu_fdt_add_subnode(fdt, intc); 163 qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle); 164 qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", cpu_phandle); 165 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); 166 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); 167 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); 168 g_free(isa); 169 g_free(intc); 170 g_free(nodename); 171 } 172 173 cells = g_new0(uint32_t, s->soc.num_harts * 4); 174 for (cpu = 0; cpu < s->soc.num_harts; cpu++) { 175 nodename = 176 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 177 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); 178 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 179 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); 180 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 181 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); 182 g_free(nodename); 183 } 184 nodename = g_strdup_printf("/soc/clint@%lx", 185 (long)memmap[VIRT_CLINT].base); 186 qemu_fdt_add_subnode(fdt, nodename); 187 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); 188 qemu_fdt_setprop_cells(fdt, nodename, "reg", 189 0x0, memmap[VIRT_CLINT].base, 190 0x0, memmap[VIRT_CLINT].size); 191 qemu_fdt_setprop(fdt, nodename, "interrupts-extended", 192 cells, s->soc.num_harts * sizeof(uint32_t) * 4); 193 g_free(cells); 194 g_free(nodename); 195 196 plic_phandle = phandle++; 197 cells = g_new0(uint32_t, s->soc.num_harts * 4); 198 for (cpu = 0; cpu < s->soc.num_harts; cpu++) { 199 nodename = 200 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 201 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); 202 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 203 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT); 204 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 205 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT); 206 g_free(nodename); 207 } 208 nodename = g_strdup_printf("/soc/interrupt-controller@%lx", 209 (long)memmap[VIRT_PLIC].base); 210 qemu_fdt_add_subnode(fdt, nodename); 211 qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1); 212 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0"); 213 qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); 214 qemu_fdt_setprop(fdt, nodename, "interrupts-extended", 215 cells, s->soc.num_harts * sizeof(uint32_t) * 4); 216 qemu_fdt_setprop_cells(fdt, nodename, "reg", 217 0x0, memmap[VIRT_PLIC].base, 218 0x0, memmap[VIRT_PLIC].size); 219 qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control"); 220 qemu_fdt_setprop_cell(fdt, nodename, "riscv,max-priority", 7); 221 qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV); 222 qemu_fdt_setprop_cells(fdt, nodename, "phandle", plic_phandle); 223 qemu_fdt_setprop_cells(fdt, nodename, "linux,phandle", plic_phandle); 224 plic_phandle = qemu_fdt_get_phandle(fdt, nodename); 225 g_free(cells); 226 g_free(nodename); 227 228 for (i = 0; i < VIRTIO_COUNT; i++) { 229 nodename = g_strdup_printf("/virtio_mmio@%lx", 230 (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size)); 231 qemu_fdt_add_subnode(fdt, nodename); 232 qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio"); 233 qemu_fdt_setprop_cells(fdt, nodename, "reg", 234 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 235 0x0, memmap[VIRT_VIRTIO].size); 236 qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle); 237 qemu_fdt_setprop_cells(fdt, nodename, "interrupts", VIRTIO_IRQ + i); 238 g_free(nodename); 239 } 240 241 nodename = g_strdup_printf("/test@%lx", 242 (long)memmap[VIRT_TEST].base); 243 qemu_fdt_add_subnode(fdt, nodename); 244 qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,test0"); 245 qemu_fdt_setprop_cells(fdt, nodename, "reg", 246 0x0, memmap[VIRT_TEST].base, 247 0x0, memmap[VIRT_TEST].size); 248 249 nodename = g_strdup_printf("/uart@%lx", 250 (long)memmap[VIRT_UART0].base); 251 qemu_fdt_add_subnode(fdt, nodename); 252 qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a"); 253 qemu_fdt_setprop_cells(fdt, nodename, "reg", 254 0x0, memmap[VIRT_UART0].base, 255 0x0, memmap[VIRT_UART0].size); 256 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400); 257 qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle); 258 qemu_fdt_setprop_cells(fdt, nodename, "interrupts", UART0_IRQ); 259 260 qemu_fdt_add_subnode(fdt, "/chosen"); 261 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename); 262 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 263 g_free(nodename); 264 265 return fdt; 266 } 267 268 static void riscv_virt_board_init(MachineState *machine) 269 { 270 const struct MemmapEntry *memmap = virt_memmap; 271 272 RISCVVirtState *s = g_new0(RISCVVirtState, 1); 273 MemoryRegion *system_memory = get_system_memory(); 274 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 275 MemoryRegion *boot_rom = g_new(MemoryRegion, 1); 276 char *plic_hart_config; 277 size_t plic_hart_config_len; 278 int i; 279 void *fdt; 280 281 /* Initialize SOC */ 282 object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY); 283 object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc), 284 &error_abort); 285 object_property_set_str(OBJECT(&s->soc), VIRT_CPU, "cpu-type", 286 &error_abort); 287 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts", 288 &error_abort); 289 object_property_set_bool(OBJECT(&s->soc), true, "realized", 290 &error_abort); 291 292 /* register system main memory (actual RAM) */ 293 memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram", 294 machine->ram_size, &error_fatal); 295 memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base, 296 main_mem); 297 298 /* create device tree */ 299 fdt = create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); 300 301 /* boot rom */ 302 memory_region_init_ram(boot_rom, NULL, "riscv_virt_board.bootrom", 303 s->fdt_size + 0x2000, &error_fatal); 304 memory_region_add_subregion(system_memory, 0x0, boot_rom); 305 306 if (machine->kernel_filename) { 307 uint64_t kernel_entry = load_kernel(machine->kernel_filename); 308 309 if (machine->initrd_filename) { 310 hwaddr start; 311 hwaddr end = load_initrd(machine->initrd_filename, 312 machine->ram_size, kernel_entry, 313 &start); 314 qemu_fdt_setprop_cell(fdt, "/chosen", 315 "linux,initrd-start", start); 316 qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", 317 end); 318 } 319 } 320 321 /* reset vector */ 322 uint32_t reset_vec[8] = { 323 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 324 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */ 325 0xf1402573, /* csrr a0, mhartid */ 326 #if defined(TARGET_RISCV32) 327 0x0182a283, /* lw t0, 24(t0) */ 328 #elif defined(TARGET_RISCV64) 329 0x0182b283, /* ld t0, 24(t0) */ 330 #endif 331 0x00028067, /* jr t0 */ 332 0x00000000, 333 memmap[VIRT_DRAM].base, /* start: .dword memmap[VIRT_DRAM].base */ 334 0x00000000, 335 /* dtb: */ 336 }; 337 338 /* copy in the reset vector */ 339 copy_le32_to_phys(memmap[VIRT_MROM].base, reset_vec, sizeof(reset_vec)); 340 341 /* copy in the device tree */ 342 qemu_fdt_dumpdtb(s->fdt, s->fdt_size); 343 cpu_physical_memory_write(memmap[VIRT_MROM].base + sizeof(reset_vec), 344 s->fdt, s->fdt_size); 345 346 /* create PLIC hart topology configuration string */ 347 plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus; 348 plic_hart_config = g_malloc0(plic_hart_config_len); 349 for (i = 0; i < smp_cpus; i++) { 350 if (i != 0) { 351 strncat(plic_hart_config, ",", plic_hart_config_len); 352 } 353 strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len); 354 plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1); 355 } 356 357 /* MMIO */ 358 s->plic = sifive_plic_create(memmap[VIRT_PLIC].base, 359 plic_hart_config, 360 VIRT_PLIC_NUM_SOURCES, 361 VIRT_PLIC_NUM_PRIORITIES, 362 VIRT_PLIC_PRIORITY_BASE, 363 VIRT_PLIC_PENDING_BASE, 364 VIRT_PLIC_ENABLE_BASE, 365 VIRT_PLIC_ENABLE_STRIDE, 366 VIRT_PLIC_CONTEXT_BASE, 367 VIRT_PLIC_CONTEXT_STRIDE, 368 memmap[VIRT_PLIC].size); 369 sifive_clint_create(memmap[VIRT_CLINT].base, 370 memmap[VIRT_CLINT].size, smp_cpus, 371 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE); 372 sifive_test_create(memmap[VIRT_TEST].base); 373 374 for (i = 0; i < VIRTIO_COUNT; i++) { 375 sysbus_create_simple("virtio-mmio", 376 memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 377 SIFIVE_PLIC(s->plic)->irqs[VIRTIO_IRQ + i]); 378 } 379 380 serial_mm_init(system_memory, memmap[VIRT_UART0].base, 381 0, SIFIVE_PLIC(s->plic)->irqs[UART0_IRQ], 399193, 382 serial_hd(0), DEVICE_LITTLE_ENDIAN); 383 } 384 385 static void riscv_virt_board_machine_init(MachineClass *mc) 386 { 387 mc->desc = "RISC-V VirtIO Board (Privileged ISA v1.10)"; 388 mc->init = riscv_virt_board_init; 389 mc->max_cpus = 8; /* hardcoded limit in BBL */ 390 } 391 392 DEFINE_MACHINE("virt", riscv_virt_board_machine_init) 393