xref: /openbmc/qemu/hw/riscv/virt.c (revision 500eb21c)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/sysbus.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_hart.h"
32 #include "hw/riscv/virt.h"
33 #include "hw/riscv/boot.h"
34 #include "hw/riscv/numa.h"
35 #include "hw/intc/riscv_aclint.h"
36 #include "hw/intc/sifive_plic.h"
37 #include "hw/misc/sifive_test.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci-host/gpex.h"
43 #include "hw/display/ramfb.h"
44 
45 static const MemMapEntry virt_memmap[] = {
46     [VIRT_DEBUG] =       {        0x0,         0x100 },
47     [VIRT_MROM] =        {     0x1000,        0xf000 },
48     [VIRT_TEST] =        {   0x100000,        0x1000 },
49     [VIRT_RTC] =         {   0x101000,        0x1000 },
50     [VIRT_CLINT] =       {  0x2000000,       0x10000 },
51     [VIRT_ACLINT_SSWI] = {  0x2F00000,        0x4000 },
52     [VIRT_PCIE_PIO] =    {  0x3000000,       0x10000 },
53     [VIRT_PLIC] =        {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
54     [VIRT_UART0] =       { 0x10000000,         0x100 },
55     [VIRT_VIRTIO] =      { 0x10001000,        0x1000 },
56     [VIRT_FW_CFG] =      { 0x10100000,          0x18 },
57     [VIRT_FLASH] =       { 0x20000000,     0x4000000 },
58     [VIRT_PCIE_ECAM] =   { 0x30000000,    0x10000000 },
59     [VIRT_PCIE_MMIO] =   { 0x40000000,    0x40000000 },
60     [VIRT_DRAM] =        { 0x80000000,           0x0 },
61 };
62 
63 /* PCIe high mmio is fixed for RV32 */
64 #define VIRT32_HIGH_PCIE_MMIO_BASE  0x300000000ULL
65 #define VIRT32_HIGH_PCIE_MMIO_SIZE  (4 * GiB)
66 
67 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
68 #define VIRT64_HIGH_PCIE_MMIO_SIZE  (16 * GiB)
69 
70 static MemMapEntry virt_high_pcie_memmap;
71 
72 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
73 
74 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
75                                        const char *name,
76                                        const char *alias_prop_name)
77 {
78     /*
79      * Create a single flash device.  We use the same parameters as
80      * the flash devices on the ARM virt board.
81      */
82     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
83 
84     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
85     qdev_prop_set_uint8(dev, "width", 4);
86     qdev_prop_set_uint8(dev, "device-width", 2);
87     qdev_prop_set_bit(dev, "big-endian", false);
88     qdev_prop_set_uint16(dev, "id0", 0x89);
89     qdev_prop_set_uint16(dev, "id1", 0x18);
90     qdev_prop_set_uint16(dev, "id2", 0x00);
91     qdev_prop_set_uint16(dev, "id3", 0x00);
92     qdev_prop_set_string(dev, "name", name);
93 
94     object_property_add_child(OBJECT(s), name, OBJECT(dev));
95     object_property_add_alias(OBJECT(s), alias_prop_name,
96                               OBJECT(dev), "drive");
97 
98     return PFLASH_CFI01(dev);
99 }
100 
101 static void virt_flash_create(RISCVVirtState *s)
102 {
103     s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
104     s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
105 }
106 
107 static void virt_flash_map1(PFlashCFI01 *flash,
108                             hwaddr base, hwaddr size,
109                             MemoryRegion *sysmem)
110 {
111     DeviceState *dev = DEVICE(flash);
112 
113     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
114     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
115     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
116     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
117 
118     memory_region_add_subregion(sysmem, base,
119                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
120                                                        0));
121 }
122 
123 static void virt_flash_map(RISCVVirtState *s,
124                            MemoryRegion *sysmem)
125 {
126     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
127     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
128 
129     virt_flash_map1(s->flash[0], flashbase, flashsize,
130                     sysmem);
131     virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
132                     sysmem);
133 }
134 
135 static void create_pcie_irq_map(void *fdt, char *nodename,
136                                 uint32_t plic_phandle)
137 {
138     int pin, dev;
139     uint32_t
140         full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
141     uint32_t *irq_map = full_irq_map;
142 
143     /* This code creates a standard swizzle of interrupts such that
144      * each device's first interrupt is based on it's PCI_SLOT number.
145      * (See pci_swizzle_map_irq_fn())
146      *
147      * We only need one entry per interrupt in the table (not one per
148      * possible slot) seeing the interrupt-map-mask will allow the table
149      * to wrap to any number of devices.
150      */
151     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
152         int devfn = dev * 0x8;
153 
154         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
155             int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
156             int i = 0;
157 
158             irq_map[i] = cpu_to_be32(devfn << 8);
159 
160             i += FDT_PCI_ADDR_CELLS;
161             irq_map[i] = cpu_to_be32(pin + 1);
162 
163             i += FDT_PCI_INT_CELLS;
164             irq_map[i++] = cpu_to_be32(plic_phandle);
165 
166             i += FDT_PLIC_ADDR_CELLS;
167             irq_map[i] = cpu_to_be32(irq_nr);
168 
169             irq_map += FDT_INT_MAP_WIDTH;
170         }
171     }
172 
173     qemu_fdt_setprop(fdt, nodename, "interrupt-map",
174                      full_irq_map, sizeof(full_irq_map));
175 
176     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
177                            0x1800, 0, 0, 0x7);
178 }
179 
180 static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
181                                    char *clust_name, uint32_t *phandle,
182                                    bool is_32_bit, uint32_t *intc_phandles)
183 {
184     int cpu;
185     uint32_t cpu_phandle;
186     MachineState *mc = MACHINE(s);
187     char *name, *cpu_name, *core_name, *intc_name;
188 
189     for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
190         cpu_phandle = (*phandle)++;
191 
192         cpu_name = g_strdup_printf("/cpus/cpu@%d",
193             s->soc[socket].hartid_base + cpu);
194         qemu_fdt_add_subnode(mc->fdt, cpu_name);
195         qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
196             (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
197         name = riscv_isa_string(&s->soc[socket].harts[cpu]);
198         qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
199         g_free(name);
200         qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
201         qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
202         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
203             s->soc[socket].hartid_base + cpu);
204         qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
205         riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
206         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
207 
208         intc_phandles[cpu] = (*phandle)++;
209 
210         intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
211         qemu_fdt_add_subnode(mc->fdt, intc_name);
212         qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
213             intc_phandles[cpu]);
214         qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
215             "riscv,cpu-intc");
216         qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
217         qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
218 
219         core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
220         qemu_fdt_add_subnode(mc->fdt, core_name);
221         qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
222 
223         g_free(core_name);
224         g_free(intc_name);
225         g_free(cpu_name);
226     }
227 }
228 
229 static void create_fdt_socket_memory(RISCVVirtState *s,
230                                      const MemMapEntry *memmap, int socket)
231 {
232     char *mem_name;
233     uint64_t addr, size;
234     MachineState *mc = MACHINE(s);
235 
236     addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
237     size = riscv_socket_mem_size(mc, socket);
238     mem_name = g_strdup_printf("/memory@%lx", (long)addr);
239     qemu_fdt_add_subnode(mc->fdt, mem_name);
240     qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
241         addr >> 32, addr, size >> 32, size);
242     qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
243     riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
244     g_free(mem_name);
245 }
246 
247 static void create_fdt_socket_clint(RISCVVirtState *s,
248                                     const MemMapEntry *memmap, int socket,
249                                     uint32_t *intc_phandles)
250 {
251     int cpu;
252     char *clint_name;
253     uint32_t *clint_cells;
254     unsigned long clint_addr;
255     MachineState *mc = MACHINE(s);
256     static const char * const clint_compat[2] = {
257         "sifive,clint0", "riscv,clint0"
258     };
259 
260     clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
261 
262     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
263         clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
264         clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
265         clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
266         clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
267     }
268 
269     clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
270     clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
271     qemu_fdt_add_subnode(mc->fdt, clint_name);
272     qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
273                                   (char **)&clint_compat,
274                                   ARRAY_SIZE(clint_compat));
275     qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
276         0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
277     qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
278         clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
279     riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
280     g_free(clint_name);
281 
282     g_free(clint_cells);
283 }
284 
285 static void create_fdt_socket_aclint(RISCVVirtState *s,
286                                      const MemMapEntry *memmap, int socket,
287                                      uint32_t *intc_phandles)
288 {
289     int cpu;
290     char *name;
291     unsigned long addr;
292     uint32_t aclint_cells_size;
293     uint32_t *aclint_mswi_cells;
294     uint32_t *aclint_sswi_cells;
295     uint32_t *aclint_mtimer_cells;
296     MachineState *mc = MACHINE(s);
297 
298     aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
299     aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
300     aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
301 
302     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
303         aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
304         aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
305         aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
306         aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
307         aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
308         aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
309     }
310     aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
311 
312     addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
313     name = g_strdup_printf("/soc/mswi@%lx", addr);
314     qemu_fdt_add_subnode(mc->fdt, name);
315     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
316     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
317         0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
318     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
319         aclint_mswi_cells, aclint_cells_size);
320     qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
321     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
322     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
323     g_free(name);
324 
325     addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
326         (memmap[VIRT_CLINT].size * socket);
327     name = g_strdup_printf("/soc/mtimer@%lx", addr);
328     qemu_fdt_add_subnode(mc->fdt, name);
329     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
330         "riscv,aclint-mtimer");
331     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
332         0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
333         0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
334              RISCV_ACLINT_DEFAULT_MTIME,
335         0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
336         0x0, RISCV_ACLINT_DEFAULT_MTIME);
337     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
338         aclint_mtimer_cells, aclint_cells_size);
339     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
340     g_free(name);
341 
342     addr = memmap[VIRT_ACLINT_SSWI].base +
343         (memmap[VIRT_ACLINT_SSWI].size * socket);
344     name = g_strdup_printf("/soc/sswi@%lx", addr);
345     qemu_fdt_add_subnode(mc->fdt, name);
346     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
347     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
348         0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
349     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
350         aclint_sswi_cells, aclint_cells_size);
351     qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
352     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
353     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
354     g_free(name);
355 
356     g_free(aclint_mswi_cells);
357     g_free(aclint_mtimer_cells);
358     g_free(aclint_sswi_cells);
359 }
360 
361 static void create_fdt_socket_plic(RISCVVirtState *s,
362                                    const MemMapEntry *memmap, int socket,
363                                    uint32_t *phandle, uint32_t *intc_phandles,
364                                    uint32_t *plic_phandles)
365 {
366     int cpu;
367     char *plic_name;
368     uint32_t *plic_cells;
369     unsigned long plic_addr;
370     MachineState *mc = MACHINE(s);
371     static const char * const plic_compat[2] = {
372         "sifive,plic-1.0.0", "riscv,plic0"
373     };
374 
375     plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
376 
377     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
378         plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
379         plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
380         plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
381         plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
382     }
383 
384     plic_phandles[socket] = (*phandle)++;
385     plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
386     plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
387     qemu_fdt_add_subnode(mc->fdt, plic_name);
388     qemu_fdt_setprop_cell(mc->fdt, plic_name,
389         "#address-cells", FDT_PLIC_ADDR_CELLS);
390     qemu_fdt_setprop_cell(mc->fdt, plic_name,
391         "#interrupt-cells", FDT_PLIC_INT_CELLS);
392     qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
393                                   (char **)&plic_compat,
394                                   ARRAY_SIZE(plic_compat));
395     qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
396     qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
397         plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
398     qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
399         0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
400     qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
401     riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
402     qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
403         plic_phandles[socket]);
404     g_free(plic_name);
405 
406     g_free(plic_cells);
407 }
408 
409 static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
410                                bool is_32_bit, uint32_t *phandle,
411                                uint32_t *irq_mmio_phandle,
412                                uint32_t *irq_pcie_phandle,
413                                uint32_t *irq_virtio_phandle)
414 {
415     int socket;
416     char *clust_name;
417     uint32_t *intc_phandles;
418     MachineState *mc = MACHINE(s);
419     uint32_t xplic_phandles[MAX_NODES];
420 
421     qemu_fdt_add_subnode(mc->fdt, "/cpus");
422     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
423                           RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
424     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
425     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
426     qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
427 
428     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
429         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
430         qemu_fdt_add_subnode(mc->fdt, clust_name);
431 
432         intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
433 
434         create_fdt_socket_cpus(s, socket, clust_name, phandle,
435             is_32_bit, intc_phandles);
436 
437         create_fdt_socket_memory(s, memmap, socket);
438 
439         if (s->have_aclint) {
440             create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
441         } else {
442             create_fdt_socket_clint(s, memmap, socket, intc_phandles);
443         }
444 
445         create_fdt_socket_plic(s, memmap, socket, phandle,
446             intc_phandles, xplic_phandles);
447 
448         g_free(intc_phandles);
449         g_free(clust_name);
450     }
451 
452     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
453         if (socket == 0) {
454             *irq_mmio_phandle = xplic_phandles[socket];
455             *irq_virtio_phandle = xplic_phandles[socket];
456             *irq_pcie_phandle = xplic_phandles[socket];
457         }
458         if (socket == 1) {
459             *irq_virtio_phandle = xplic_phandles[socket];
460             *irq_pcie_phandle = xplic_phandles[socket];
461         }
462         if (socket == 2) {
463             *irq_pcie_phandle = xplic_phandles[socket];
464         }
465     }
466 
467     riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
468 }
469 
470 static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
471                               uint32_t irq_virtio_phandle)
472 {
473     int i;
474     char *name;
475     MachineState *mc = MACHINE(s);
476 
477     for (i = 0; i < VIRTIO_COUNT; i++) {
478         name = g_strdup_printf("/soc/virtio_mmio@%lx",
479             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
480         qemu_fdt_add_subnode(mc->fdt, name);
481         qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
482         qemu_fdt_setprop_cells(mc->fdt, name, "reg",
483             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
484             0x0, memmap[VIRT_VIRTIO].size);
485         qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
486             irq_virtio_phandle);
487         qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
488         g_free(name);
489     }
490 }
491 
492 static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
493                             uint32_t irq_pcie_phandle)
494 {
495     char *name;
496     MachineState *mc = MACHINE(s);
497 
498     name = g_strdup_printf("/soc/pci@%lx",
499         (long) memmap[VIRT_PCIE_ECAM].base);
500     qemu_fdt_add_subnode(mc->fdt, name);
501     qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
502         FDT_PCI_ADDR_CELLS);
503     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
504         FDT_PCI_INT_CELLS);
505     qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
506     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
507         "pci-host-ecam-generic");
508     qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
509     qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
510     qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
511         memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
512     qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
513     qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
514         memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
515     qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
516         1, FDT_PCI_RANGE_IOPORT, 2, 0,
517         2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
518         1, FDT_PCI_RANGE_MMIO,
519         2, memmap[VIRT_PCIE_MMIO].base,
520         2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
521         1, FDT_PCI_RANGE_MMIO_64BIT,
522         2, virt_high_pcie_memmap.base,
523         2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
524 
525     create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
526     g_free(name);
527 }
528 
529 static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
530                              uint32_t *phandle)
531 {
532     char *name;
533     uint32_t test_phandle;
534     MachineState *mc = MACHINE(s);
535 
536     test_phandle = (*phandle)++;
537     name = g_strdup_printf("/soc/test@%lx",
538         (long)memmap[VIRT_TEST].base);
539     qemu_fdt_add_subnode(mc->fdt, name);
540     {
541         static const char * const compat[3] = {
542             "sifive,test1", "sifive,test0", "syscon"
543         };
544         qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
545                                       (char **)&compat, ARRAY_SIZE(compat));
546     }
547     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
548         0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
549     qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
550     test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
551     g_free(name);
552 
553     name = g_strdup_printf("/soc/reboot");
554     qemu_fdt_add_subnode(mc->fdt, name);
555     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
556     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
557     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
558     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
559     g_free(name);
560 
561     name = g_strdup_printf("/soc/poweroff");
562     qemu_fdt_add_subnode(mc->fdt, name);
563     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
564     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
565     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
566     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
567     g_free(name);
568 }
569 
570 static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
571                             uint32_t irq_mmio_phandle)
572 {
573     char *name;
574     MachineState *mc = MACHINE(s);
575 
576     name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
577     qemu_fdt_add_subnode(mc->fdt, name);
578     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
579     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
580         0x0, memmap[VIRT_UART0].base,
581         0x0, memmap[VIRT_UART0].size);
582     qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
583     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
584     qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
585 
586     qemu_fdt_add_subnode(mc->fdt, "/chosen");
587     qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
588     g_free(name);
589 }
590 
591 static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
592                            uint32_t irq_mmio_phandle)
593 {
594     char *name;
595     MachineState *mc = MACHINE(s);
596 
597     name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
598     qemu_fdt_add_subnode(mc->fdt, name);
599     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
600         "google,goldfish-rtc");
601     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
602         0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
603     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
604         irq_mmio_phandle);
605     qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
606     g_free(name);
607 }
608 
609 static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
610 {
611     char *name;
612     MachineState *mc = MACHINE(s);
613     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
614     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
615 
616     name = g_strdup_printf("/flash@%" PRIx64, flashbase);
617     qemu_fdt_add_subnode(mc->fdt, name);
618     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
619     qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
620                                  2, flashbase, 2, flashsize,
621                                  2, flashbase + flashsize, 2, flashsize);
622     qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
623     g_free(name);
624 }
625 
626 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
627                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
628 {
629     MachineState *mc = MACHINE(s);
630     uint32_t phandle = 1, irq_mmio_phandle = 1;
631     uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
632 
633     if (mc->dtb) {
634         mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
635         if (!mc->fdt) {
636             error_report("load_device_tree() failed");
637             exit(1);
638         }
639         goto update_bootargs;
640     } else {
641         mc->fdt = create_device_tree(&s->fdt_size);
642         if (!mc->fdt) {
643             error_report("create_device_tree() failed");
644             exit(1);
645         }
646     }
647 
648     qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
649     qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
650     qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
651     qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
652 
653     qemu_fdt_add_subnode(mc->fdt, "/soc");
654     qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
655     qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
656     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
657     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
658 
659     create_fdt_sockets(s, memmap, is_32_bit, &phandle,
660         &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
661 
662     create_fdt_virtio(s, memmap, irq_virtio_phandle);
663 
664     create_fdt_pcie(s, memmap, irq_pcie_phandle);
665 
666     create_fdt_reset(s, memmap, &phandle);
667 
668     create_fdt_uart(s, memmap, irq_mmio_phandle);
669 
670     create_fdt_rtc(s, memmap, irq_mmio_phandle);
671 
672     create_fdt_flash(s, memmap);
673 
674 update_bootargs:
675     if (cmdline) {
676         qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
677     }
678 }
679 
680 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
681                                           hwaddr ecam_base, hwaddr ecam_size,
682                                           hwaddr mmio_base, hwaddr mmio_size,
683                                           hwaddr high_mmio_base,
684                                           hwaddr high_mmio_size,
685                                           hwaddr pio_base,
686                                           DeviceState *plic)
687 {
688     DeviceState *dev;
689     MemoryRegion *ecam_alias, *ecam_reg;
690     MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
691     qemu_irq irq;
692     int i;
693 
694     dev = qdev_new(TYPE_GPEX_HOST);
695 
696     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
697 
698     ecam_alias = g_new0(MemoryRegion, 1);
699     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
700     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
701                              ecam_reg, 0, ecam_size);
702     memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
703 
704     mmio_alias = g_new0(MemoryRegion, 1);
705     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
706     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
707                              mmio_reg, mmio_base, mmio_size);
708     memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
709 
710     /* Map high MMIO space */
711     high_mmio_alias = g_new0(MemoryRegion, 1);
712     memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
713                              mmio_reg, high_mmio_base, high_mmio_size);
714     memory_region_add_subregion(get_system_memory(), high_mmio_base,
715                                 high_mmio_alias);
716 
717     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
718 
719     for (i = 0; i < GPEX_NUM_IRQS; i++) {
720         irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
721 
722         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
723         gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
724     }
725 
726     return dev;
727 }
728 
729 static FWCfgState *create_fw_cfg(const MachineState *mc)
730 {
731     hwaddr base = virt_memmap[VIRT_FW_CFG].base;
732     hwaddr size = virt_memmap[VIRT_FW_CFG].size;
733     FWCfgState *fw_cfg;
734     char *nodename;
735 
736     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
737                                   &address_space_memory);
738     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
739 
740     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
741     qemu_fdt_add_subnode(mc->fdt, nodename);
742     qemu_fdt_setprop_string(mc->fdt, nodename,
743                             "compatible", "qemu,fw-cfg-mmio");
744     qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
745                                  2, base, 2, size);
746     qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
747     g_free(nodename);
748     return fw_cfg;
749 }
750 
751 /*
752  * Return the per-socket PLIC hart topology configuration string
753  * (caller must free with g_free())
754  */
755 static char *plic_hart_config_string(int hart_count)
756 {
757     g_autofree const char **vals = g_new(const char *, hart_count + 1);
758     int i;
759 
760     for (i = 0; i < hart_count; i++) {
761         vals[i] = VIRT_PLIC_HART_CONFIG;
762     }
763     vals[i] = NULL;
764 
765     /* g_strjoinv() obliges us to cast away const here */
766     return g_strjoinv(",", (char **)vals);
767 }
768 
769 static void virt_machine_init(MachineState *machine)
770 {
771     const MemMapEntry *memmap = virt_memmap;
772     RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
773     MemoryRegion *system_memory = get_system_memory();
774     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
775     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
776     char *plic_hart_config, *soc_name;
777     target_ulong start_addr = memmap[VIRT_DRAM].base;
778     target_ulong firmware_end_addr, kernel_start_addr;
779     uint32_t fdt_load_addr;
780     uint64_t kernel_entry;
781     DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
782     int i, base_hartid, hart_count;
783 
784     /* Check socket count limit */
785     if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
786         error_report("number of sockets/nodes should be less than %d",
787             VIRT_SOCKETS_MAX);
788         exit(1);
789     }
790 
791     /* Initialize sockets */
792     mmio_plic = virtio_plic = pcie_plic = NULL;
793     for (i = 0; i < riscv_socket_count(machine); i++) {
794         if (!riscv_socket_check_hartids(machine, i)) {
795             error_report("discontinuous hartids in socket%d", i);
796             exit(1);
797         }
798 
799         base_hartid = riscv_socket_first_hartid(machine, i);
800         if (base_hartid < 0) {
801             error_report("can't find hartid base for socket%d", i);
802             exit(1);
803         }
804 
805         hart_count = riscv_socket_hart_count(machine, i);
806         if (hart_count < 0) {
807             error_report("can't find hart count for socket%d", i);
808             exit(1);
809         }
810 
811         soc_name = g_strdup_printf("soc%d", i);
812         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
813                                 TYPE_RISCV_HART_ARRAY);
814         g_free(soc_name);
815         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
816                                 machine->cpu_type, &error_abort);
817         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
818                                 base_hartid, &error_abort);
819         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
820                                 hart_count, &error_abort);
821         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
822 
823         /* Per-socket CLINT */
824         riscv_aclint_swi_create(
825             memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
826             base_hartid, hart_count, false);
827         riscv_aclint_mtimer_create(
828             memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
829                 RISCV_ACLINT_SWI_SIZE,
830             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
831             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
832             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
833 
834         /* Per-socket ACLINT SSWI */
835         if (s->have_aclint) {
836             riscv_aclint_swi_create(
837                 memmap[VIRT_ACLINT_SSWI].base +
838                     i * memmap[VIRT_ACLINT_SSWI].size,
839                 base_hartid, hart_count, true);
840         }
841 
842         /* Per-socket PLIC hart topology configuration string */
843         plic_hart_config = plic_hart_config_string(hart_count);
844 
845         /* Per-socket PLIC */
846         s->plic[i] = sifive_plic_create(
847             memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
848             plic_hart_config, hart_count, base_hartid,
849             VIRT_PLIC_NUM_SOURCES,
850             VIRT_PLIC_NUM_PRIORITIES,
851             VIRT_PLIC_PRIORITY_BASE,
852             VIRT_PLIC_PENDING_BASE,
853             VIRT_PLIC_ENABLE_BASE,
854             VIRT_PLIC_ENABLE_STRIDE,
855             VIRT_PLIC_CONTEXT_BASE,
856             VIRT_PLIC_CONTEXT_STRIDE,
857             memmap[VIRT_PLIC].size);
858         g_free(plic_hart_config);
859 
860         /* Try to use different PLIC instance based device type */
861         if (i == 0) {
862             mmio_plic = s->plic[i];
863             virtio_plic = s->plic[i];
864             pcie_plic = s->plic[i];
865         }
866         if (i == 1) {
867             virtio_plic = s->plic[i];
868             pcie_plic = s->plic[i];
869         }
870         if (i == 2) {
871             pcie_plic = s->plic[i];
872         }
873     }
874 
875     if (riscv_is_32bit(&s->soc[0])) {
876 #if HOST_LONG_BITS == 64
877         /* limit RAM size in a 32-bit system */
878         if (machine->ram_size > 10 * GiB) {
879             machine->ram_size = 10 * GiB;
880             error_report("Limiting RAM size to 10 GiB");
881         }
882 #endif
883         virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
884         virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
885     } else {
886         virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
887         virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
888         virt_high_pcie_memmap.base =
889             ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
890     }
891 
892     /* register system main memory (actual RAM) */
893     memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
894                            machine->ram_size, &error_fatal);
895     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
896         main_mem);
897 
898     /* create device tree */
899     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
900                riscv_is_32bit(&s->soc[0]));
901 
902     /* boot rom */
903     memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
904                            memmap[VIRT_MROM].size, &error_fatal);
905     memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
906                                 mask_rom);
907 
908     if (riscv_is_32bit(&s->soc[0])) {
909         firmware_end_addr = riscv_find_and_load_firmware(machine,
910                                     RISCV32_BIOS_BIN, start_addr, NULL);
911     } else {
912         firmware_end_addr = riscv_find_and_load_firmware(machine,
913                                     RISCV64_BIOS_BIN, start_addr, NULL);
914     }
915 
916     if (machine->kernel_filename) {
917         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
918                                                          firmware_end_addr);
919 
920         kernel_entry = riscv_load_kernel(machine->kernel_filename,
921                                          kernel_start_addr, NULL);
922 
923         if (machine->initrd_filename) {
924             hwaddr start;
925             hwaddr end = riscv_load_initrd(machine->initrd_filename,
926                                            machine->ram_size, kernel_entry,
927                                            &start);
928             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
929                                   "linux,initrd-start", start);
930             qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
931                                   end);
932         }
933     } else {
934        /*
935         * If dynamic firmware is used, it doesn't know where is the next mode
936         * if kernel argument is not set.
937         */
938         kernel_entry = 0;
939     }
940 
941     if (drive_get(IF_PFLASH, 0, 0)) {
942         /*
943          * Pflash was supplied, let's overwrite the address we jump to after
944          * reset to the base of the flash.
945          */
946         start_addr = virt_memmap[VIRT_FLASH].base;
947     }
948 
949     /*
950      * Init fw_cfg.  Must be done before riscv_load_fdt, otherwise the device
951      * tree cannot be altered and we get FDT_ERR_NOSPACE.
952      */
953     s->fw_cfg = create_fw_cfg(machine);
954     rom_set_fw(s->fw_cfg);
955 
956     /* Compute the fdt load address in dram */
957     fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
958                                    machine->ram_size, machine->fdt);
959     /* load the reset vector */
960     riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
961                               virt_memmap[VIRT_MROM].base,
962                               virt_memmap[VIRT_MROM].size, kernel_entry,
963                               fdt_load_addr, machine->fdt);
964 
965     /* SiFive Test MMIO device */
966     sifive_test_create(memmap[VIRT_TEST].base);
967 
968     /* VirtIO MMIO devices */
969     for (i = 0; i < VIRTIO_COUNT; i++) {
970         sysbus_create_simple("virtio-mmio",
971             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
972             qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
973     }
974 
975     gpex_pcie_init(system_memory,
976                    memmap[VIRT_PCIE_ECAM].base,
977                    memmap[VIRT_PCIE_ECAM].size,
978                    memmap[VIRT_PCIE_MMIO].base,
979                    memmap[VIRT_PCIE_MMIO].size,
980                    virt_high_pcie_memmap.base,
981                    virt_high_pcie_memmap.size,
982                    memmap[VIRT_PCIE_PIO].base,
983                    DEVICE(pcie_plic));
984 
985     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
986         0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
987         serial_hd(0), DEVICE_LITTLE_ENDIAN);
988 
989     sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
990         qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
991 
992     virt_flash_create(s);
993 
994     for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
995         /* Map legacy -drive if=pflash to machine properties */
996         pflash_cfi01_legacy_drive(s->flash[i],
997                                   drive_get(IF_PFLASH, 0, i));
998     }
999     virt_flash_map(s, system_memory);
1000 }
1001 
1002 static void virt_machine_instance_init(Object *obj)
1003 {
1004 }
1005 
1006 static bool virt_get_aclint(Object *obj, Error **errp)
1007 {
1008     MachineState *ms = MACHINE(obj);
1009     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1010 
1011     return s->have_aclint;
1012 }
1013 
1014 static void virt_set_aclint(Object *obj, bool value, Error **errp)
1015 {
1016     MachineState *ms = MACHINE(obj);
1017     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1018 
1019     s->have_aclint = value;
1020 }
1021 
1022 static void virt_machine_class_init(ObjectClass *oc, void *data)
1023 {
1024     MachineClass *mc = MACHINE_CLASS(oc);
1025 
1026     mc->desc = "RISC-V VirtIO board";
1027     mc->init = virt_machine_init;
1028     mc->max_cpus = VIRT_CPUS_MAX;
1029     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
1030     mc->pci_allow_0_address = true;
1031     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
1032     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
1033     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
1034     mc->numa_mem_supported = true;
1035 
1036     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1037 
1038     object_class_property_add_bool(oc, "aclint", virt_get_aclint,
1039                                    virt_set_aclint);
1040     object_class_property_set_description(oc, "aclint",
1041                                           "Set on/off to enable/disable "
1042                                           "emulating ACLINT devices");
1043 }
1044 
1045 static const TypeInfo virt_machine_typeinfo = {
1046     .name       = MACHINE_TYPE_NAME("virt"),
1047     .parent     = TYPE_MACHINE,
1048     .class_init = virt_machine_class_init,
1049     .instance_init = virt_machine_instance_init,
1050     .instance_size = sizeof(RISCVVirtState),
1051 };
1052 
1053 static void virt_machine_init_register_types(void)
1054 {
1055     type_register_static(&virt_machine_typeinfo);
1056 }
1057 
1058 type_init(virt_machine_init_register_types)
1059