xref: /openbmc/qemu/hw/riscv/virt.c (revision 2cc0e2e8)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/hw.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/sysbus.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_htif.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/sifive_plic.h"
34 #include "hw/riscv/sifive_clint.h"
35 #include "hw/riscv/sifive_test.h"
36 #include "hw/riscv/virt.h"
37 #include "chardev/char.h"
38 #include "sysemu/arch_init.h"
39 #include "sysemu/device_tree.h"
40 #include "exec/address-spaces.h"
41 #include "elf.h"
42 
43 static const struct MemmapEntry {
44     hwaddr base;
45     hwaddr size;
46 } virt_memmap[] = {
47     [VIRT_DEBUG] =    {        0x0,      0x100 },
48     [VIRT_MROM] =     {     0x1000,     0x2000 },
49     [VIRT_TEST] =     {     0x4000,     0x1000 },
50     [VIRT_CLINT] =    {  0x2000000,    0x10000 },
51     [VIRT_PLIC] =     {  0xc000000,  0x4000000 },
52     [VIRT_UART0] =    { 0x10000000,      0x100 },
53     [VIRT_VIRTIO] =   { 0x10001000,     0x1000 },
54     [VIRT_DRAM] =     { 0x80000000,        0x0 },
55 };
56 
57 static void copy_le32_to_phys(hwaddr pa, uint32_t *rom, size_t len)
58 {
59     int i;
60     for (i = 0; i < (len >> 2); i++) {
61         stl_phys(&address_space_memory, pa + (i << 2), rom[i]);
62     }
63 }
64 
65 static uint64_t identity_translate(void *opaque, uint64_t addr)
66 {
67     return addr;
68 }
69 
70 static uint64_t load_kernel(const char *kernel_filename)
71 {
72     uint64_t kernel_entry, kernel_high;
73 
74     if (load_elf(kernel_filename, identity_translate, NULL,
75                  &kernel_entry, NULL, &kernel_high,
76                  0, ELF_MACHINE, 1, 0) < 0) {
77         error_report("qemu: could not load kernel '%s'", kernel_filename);
78         exit(1);
79     }
80     return kernel_entry;
81 }
82 
83 static hwaddr load_initrd(const char *filename, uint64_t mem_size,
84                           uint64_t kernel_entry, hwaddr *start)
85 {
86     int size;
87 
88     /* We want to put the initrd far enough into RAM that when the
89      * kernel is uncompressed it will not clobber the initrd. However
90      * on boards without much RAM we must ensure that we still leave
91      * enough room for a decent sized initrd, and on boards with large
92      * amounts of RAM we must avoid the initrd being so far up in RAM
93      * that it is outside lowmem and inaccessible to the kernel.
94      * So for boards with less  than 256MB of RAM we put the initrd
95      * halfway into RAM, and for boards with 256MB of RAM or more we put
96      * the initrd at 128MB.
97      */
98     *start = kernel_entry + MIN(mem_size / 2, 128 * 1024 * 1024);
99 
100     size = load_ramdisk(filename, *start, mem_size - *start);
101     if (size == -1) {
102         size = load_image_targphys(filename, *start, mem_size - *start);
103         if (size == -1) {
104             error_report("qemu: could not load ramdisk '%s'", filename);
105             exit(1);
106         }
107     }
108     return *start + size;
109 }
110 
111 static void *create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
112     uint64_t mem_size, const char *cmdline)
113 {
114     void *fdt;
115     int cpu;
116     uint32_t *cells;
117     char *nodename;
118     uint32_t plic_phandle, phandle = 1;
119     int i;
120 
121     fdt = s->fdt = create_device_tree(&s->fdt_size);
122     if (!fdt) {
123         error_report("create_device_tree() failed");
124         exit(1);
125     }
126 
127     qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
128     qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
129     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
130     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
131 
132     qemu_fdt_add_subnode(fdt, "/soc");
133     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
134     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "riscv-virtio-soc");
135     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
136     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
137 
138     nodename = g_strdup_printf("/memory@%lx",
139         (long)memmap[VIRT_DRAM].base);
140     qemu_fdt_add_subnode(fdt, nodename);
141     qemu_fdt_setprop_cells(fdt, nodename, "reg",
142         memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base,
143         mem_size >> 32, mem_size);
144     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
145     g_free(nodename);
146 
147     qemu_fdt_add_subnode(fdt, "/cpus");
148     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 10000000);
149     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
150     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
151 
152     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
153         int cpu_phandle = phandle++;
154         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
155         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
156         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
157         qemu_fdt_add_subnode(fdt, nodename);
158         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 1000000000);
159         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
160         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
161         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
162         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
163         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
164         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
165         qemu_fdt_add_subnode(fdt, intc);
166         qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
167         qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", cpu_phandle);
168         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
169         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
170         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
171         g_free(isa);
172         g_free(intc);
173         g_free(nodename);
174     }
175 
176     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
177     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
178         nodename =
179             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
180         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
181         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
182         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
183         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
184         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
185         g_free(nodename);
186     }
187     nodename = g_strdup_printf("/soc/clint@%lx",
188         (long)memmap[VIRT_CLINT].base);
189     qemu_fdt_add_subnode(fdt, nodename);
190     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
191     qemu_fdt_setprop_cells(fdt, nodename, "reg",
192         0x0, memmap[VIRT_CLINT].base,
193         0x0, memmap[VIRT_CLINT].size);
194     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
195         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
196     g_free(cells);
197     g_free(nodename);
198 
199     plic_phandle = phandle++;
200     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
201     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
202         nodename =
203             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
204         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
205         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
206         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
207         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
208         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
209         g_free(nodename);
210     }
211     nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
212         (long)memmap[VIRT_PLIC].base);
213     qemu_fdt_add_subnode(fdt, nodename);
214     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
215     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
216     qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
217     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
218         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
219     qemu_fdt_setprop_cells(fdt, nodename, "reg",
220         0x0, memmap[VIRT_PLIC].base,
221         0x0, memmap[VIRT_PLIC].size);
222     qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
223     qemu_fdt_setprop_cell(fdt, nodename, "riscv,max-priority", 7);
224     qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV);
225     qemu_fdt_setprop_cells(fdt, nodename, "phandle", plic_phandle);
226     qemu_fdt_setprop_cells(fdt, nodename, "linux,phandle", plic_phandle);
227     plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
228     g_free(cells);
229     g_free(nodename);
230 
231     for (i = 0; i < VIRTIO_COUNT; i++) {
232         nodename = g_strdup_printf("/virtio_mmio@%lx",
233             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
234         qemu_fdt_add_subnode(fdt, nodename);
235         qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
236         qemu_fdt_setprop_cells(fdt, nodename, "reg",
237             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
238             0x0, memmap[VIRT_VIRTIO].size);
239         qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
240         qemu_fdt_setprop_cells(fdt, nodename, "interrupts", VIRTIO_IRQ + i);
241         g_free(nodename);
242     }
243 
244     nodename = g_strdup_printf("/test@%lx",
245         (long)memmap[VIRT_TEST].base);
246     qemu_fdt_add_subnode(fdt, nodename);
247     qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,test0");
248     qemu_fdt_setprop_cells(fdt, nodename, "reg",
249         0x0, memmap[VIRT_TEST].base,
250         0x0, memmap[VIRT_TEST].size);
251 
252     nodename = g_strdup_printf("/uart@%lx",
253         (long)memmap[VIRT_UART0].base);
254     qemu_fdt_add_subnode(fdt, nodename);
255     qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
256     qemu_fdt_setprop_cells(fdt, nodename, "reg",
257         0x0, memmap[VIRT_UART0].base,
258         0x0, memmap[VIRT_UART0].size);
259     qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400);
260         qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", plic_phandle);
261         qemu_fdt_setprop_cells(fdt, nodename, "interrupts", UART0_IRQ);
262 
263     qemu_fdt_add_subnode(fdt, "/chosen");
264     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
265     qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
266     g_free(nodename);
267 
268     return fdt;
269 }
270 
271 static void riscv_virt_board_init(MachineState *machine)
272 {
273     const struct MemmapEntry *memmap = virt_memmap;
274 
275     RISCVVirtState *s = g_new0(RISCVVirtState, 1);
276     MemoryRegion *system_memory = get_system_memory();
277     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
278     MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
279     char *plic_hart_config;
280     size_t plic_hart_config_len;
281     int i;
282     void *fdt;
283 
284     /* Initialize SOC */
285     object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
286     object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
287                               &error_abort);
288     object_property_set_str(OBJECT(&s->soc), VIRT_CPU, "cpu-type",
289                             &error_abort);
290     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
291                             &error_abort);
292     object_property_set_bool(OBJECT(&s->soc), true, "realized",
293                             &error_abort);
294 
295     /* register system main memory (actual RAM) */
296     memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
297                            machine->ram_size, &error_fatal);
298     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
299         main_mem);
300 
301     /* create device tree */
302     fdt = create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
303 
304     /* boot rom */
305     memory_region_init_ram(boot_rom, NULL, "riscv_virt_board.bootrom",
306                            s->fdt_size + 0x2000, &error_fatal);
307     memory_region_add_subregion(system_memory, 0x0, boot_rom);
308 
309     if (machine->kernel_filename) {
310         uint64_t kernel_entry = load_kernel(machine->kernel_filename);
311 
312         if (machine->initrd_filename) {
313             hwaddr start;
314             hwaddr end = load_initrd(machine->initrd_filename,
315                                      machine->ram_size, kernel_entry,
316                                      &start);
317             qemu_fdt_setprop_cell(fdt, "/chosen",
318                                   "linux,initrd-start", start);
319             qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
320                                   end);
321         }
322     }
323 
324     /* reset vector */
325     uint32_t reset_vec[8] = {
326         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
327         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
328         0xf1402573,                  /*     csrr   a0, mhartid  */
329 #if defined(TARGET_RISCV32)
330         0x0182a283,                  /*     lw     t0, 24(t0) */
331 #elif defined(TARGET_RISCV64)
332         0x0182b283,                  /*     ld     t0, 24(t0) */
333 #endif
334         0x00028067,                  /*     jr     t0 */
335         0x00000000,
336         memmap[VIRT_DRAM].base,      /* start: .dword memmap[VIRT_DRAM].base */
337         0x00000000,
338                                      /* dtb: */
339     };
340 
341     /* copy in the reset vector */
342     copy_le32_to_phys(ROM_BASE, reset_vec, sizeof(reset_vec));
343 
344     /* copy in the device tree */
345     qemu_fdt_dumpdtb(s->fdt, s->fdt_size);
346     cpu_physical_memory_write(ROM_BASE + sizeof(reset_vec),
347         s->fdt, s->fdt_size);
348 
349     /* create PLIC hart topology configuration string */
350     plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;
351     plic_hart_config = g_malloc0(plic_hart_config_len);
352     for (i = 0; i < smp_cpus; i++) {
353         if (i != 0) {
354             strncat(plic_hart_config, ",", plic_hart_config_len);
355         }
356         strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len);
357         plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
358     }
359 
360     /* MMIO */
361     s->plic = sifive_plic_create(memmap[VIRT_PLIC].base,
362         plic_hart_config,
363         VIRT_PLIC_NUM_SOURCES,
364         VIRT_PLIC_NUM_PRIORITIES,
365         VIRT_PLIC_PRIORITY_BASE,
366         VIRT_PLIC_PENDING_BASE,
367         VIRT_PLIC_ENABLE_BASE,
368         VIRT_PLIC_ENABLE_STRIDE,
369         VIRT_PLIC_CONTEXT_BASE,
370         VIRT_PLIC_CONTEXT_STRIDE,
371         memmap[VIRT_PLIC].size);
372     sifive_clint_create(memmap[VIRT_CLINT].base,
373         memmap[VIRT_CLINT].size, smp_cpus,
374         SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
375     sifive_test_create(memmap[VIRT_TEST].base);
376 
377     for (i = 0; i < VIRTIO_COUNT; i++) {
378         sysbus_create_simple("virtio-mmio",
379             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
380             SIFIVE_PLIC(s->plic)->irqs[VIRTIO_IRQ + i]);
381     }
382 
383     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
384         0, SIFIVE_PLIC(s->plic)->irqs[UART0_IRQ], 399193,
385         serial_hd(0), DEVICE_LITTLE_ENDIAN);
386 }
387 
388 static int riscv_virt_board_sysbus_device_init(SysBusDevice *sysbusdev)
389 {
390     return 0;
391 }
392 
393 static void riscv_virt_board_class_init(ObjectClass *klass, void *data)
394 {
395     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
396     k->init = riscv_virt_board_sysbus_device_init;
397 }
398 
399 static const TypeInfo riscv_virt_board_device = {
400     .name          = TYPE_RISCV_VIRT_BOARD,
401     .parent        = TYPE_SYS_BUS_DEVICE,
402     .instance_size = sizeof(RISCVVirtState),
403     .class_init    = riscv_virt_board_class_init,
404 };
405 
406 static void riscv_virt_board_machine_init(MachineClass *mc)
407 {
408     mc->desc = "RISC-V VirtIO Board (Privileged spec v1.10)";
409     mc->init = riscv_virt_board_init;
410     mc->max_cpus = 8; /* hardcoded limit in BBL */
411 }
412 
413 DEFINE_MACHINE("virt", riscv_virt_board_machine_init)
414 
415 static void riscv_virt_board_register_types(void)
416 {
417     type_register_static(&riscv_virt_board_device);
418 }
419 
420 type_init(riscv_virt_board_register_types);
421