xref: /openbmc/qemu/hw/riscv/spike.c (revision e2abbeac)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/error-report.h"
28 #include "qapi/error.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "hw/sysbus.h"
32 #include "target/riscv/cpu.h"
33 #include "hw/riscv/riscv_hart.h"
34 #include "hw/riscv/spike.h"
35 #include "hw/riscv/boot.h"
36 #include "hw/riscv/numa.h"
37 #include "hw/char/riscv_htif.h"
38 #include "hw/intc/sifive_clint.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/sysemu.h"
43 
44 static const MemMapEntry spike_memmap[] = {
45     [SPIKE_MROM] =     {     0x1000,     0xf000 },
46     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
47     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
48 };
49 
50 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
51                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
52 {
53     void *fdt;
54     uint64_t addr, size;
55     unsigned long clint_addr;
56     int cpu, socket;
57     MachineState *mc = MACHINE(s);
58     uint32_t *clint_cells;
59     uint32_t cpu_phandle, intc_phandle, phandle = 1;
60     char *name, *mem_name, *clint_name, *clust_name;
61     char *core_name, *cpu_name, *intc_name;
62     static const char * const clint_compat[2] = {
63         "sifive,clint0", "riscv,clint0"
64     };
65 
66     fdt = s->fdt = create_device_tree(&s->fdt_size);
67     if (!fdt) {
68         error_report("create_device_tree() failed");
69         exit(1);
70     }
71 
72     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
73     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
74     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
75     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
76 
77     qemu_fdt_add_subnode(fdt, "/htif");
78     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
79 
80     qemu_fdt_add_subnode(fdt, "/soc");
81     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
82     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
83     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
84     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
85 
86     qemu_fdt_add_subnode(fdt, "/cpus");
87     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
88         SIFIVE_CLINT_TIMEBASE_FREQ);
89     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
90     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
91     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
92 
93     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
94         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
95         qemu_fdt_add_subnode(fdt, clust_name);
96 
97         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
98 
99         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
100             cpu_phandle = phandle++;
101 
102             cpu_name = g_strdup_printf("/cpus/cpu@%d",
103                 s->soc[socket].hartid_base + cpu);
104             qemu_fdt_add_subnode(fdt, cpu_name);
105             if (is_32_bit) {
106                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
107             } else {
108                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
109             }
110             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
111             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
112             g_free(name);
113             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
114             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
115             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
116                 s->soc[socket].hartid_base + cpu);
117             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
118             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
119             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
120 
121             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
122             qemu_fdt_add_subnode(fdt, intc_name);
123             intc_phandle = phandle++;
124             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
125             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
126                 "riscv,cpu-intc");
127             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
128             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
129 
130             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
131             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
132             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
133             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
134 
135             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
136             qemu_fdt_add_subnode(fdt, core_name);
137             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
138 
139             g_free(core_name);
140             g_free(intc_name);
141             g_free(cpu_name);
142         }
143 
144         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
145         size = riscv_socket_mem_size(mc, socket);
146         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
147         qemu_fdt_add_subnode(fdt, mem_name);
148         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
149             addr >> 32, addr, size >> 32, size);
150         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
151         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
152         g_free(mem_name);
153 
154         clint_addr = memmap[SPIKE_CLINT].base +
155             (memmap[SPIKE_CLINT].size * socket);
156         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
157         qemu_fdt_add_subnode(fdt, clint_name);
158         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
159             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
160         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
161             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
162         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
163             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
164         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
165 
166         g_free(clint_name);
167         g_free(clint_cells);
168         g_free(clust_name);
169     }
170 
171     riscv_socket_fdt_write_distance_matrix(mc, fdt);
172 
173     if (cmdline) {
174         qemu_fdt_add_subnode(fdt, "/chosen");
175         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
176     }
177 }
178 
179 static void spike_board_init(MachineState *machine)
180 {
181     const MemMapEntry *memmap = spike_memmap;
182     SpikeState *s = SPIKE_MACHINE(machine);
183     MemoryRegion *system_memory = get_system_memory();
184     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
185     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
186     target_ulong firmware_end_addr, kernel_start_addr;
187     uint32_t fdt_load_addr;
188     uint64_t kernel_entry;
189     char *soc_name;
190     int i, base_hartid, hart_count;
191 
192     /* Check socket count limit */
193     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
194         error_report("number of sockets/nodes should be less than %d",
195             SPIKE_SOCKETS_MAX);
196         exit(1);
197     }
198 
199     /* Initialize sockets */
200     for (i = 0; i < riscv_socket_count(machine); i++) {
201         if (!riscv_socket_check_hartids(machine, i)) {
202             error_report("discontinuous hartids in socket%d", i);
203             exit(1);
204         }
205 
206         base_hartid = riscv_socket_first_hartid(machine, i);
207         if (base_hartid < 0) {
208             error_report("can't find hartid base for socket%d", i);
209             exit(1);
210         }
211 
212         hart_count = riscv_socket_hart_count(machine, i);
213         if (hart_count < 0) {
214             error_report("can't find hart count for socket%d", i);
215             exit(1);
216         }
217 
218         soc_name = g_strdup_printf("soc%d", i);
219         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
220                                 TYPE_RISCV_HART_ARRAY);
221         g_free(soc_name);
222         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
223                                 machine->cpu_type, &error_abort);
224         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
225                                 base_hartid, &error_abort);
226         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
227                                 hart_count, &error_abort);
228         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
229 
230         /* Core Local Interruptor (timer and IPI) for each socket */
231         sifive_clint_create(
232             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
233             memmap[SPIKE_CLINT].size, base_hartid, hart_count,
234             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
235             SIFIVE_CLINT_TIMEBASE_FREQ, false);
236     }
237 
238     /* register system main memory (actual RAM) */
239     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
240                            machine->ram_size, &error_fatal);
241     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
242         main_mem);
243 
244     /* create device tree */
245     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
246                riscv_is_32bit(&s->soc[0]));
247 
248     /* boot rom */
249     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
250                            memmap[SPIKE_MROM].size, &error_fatal);
251     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
252                                 mask_rom);
253 
254     /*
255      * Not like other RISC-V machines that use plain binary bios images,
256      * keeping ELF files here was intentional because BIN files don't work
257      * for the Spike machine as HTIF emulation depends on ELF parsing.
258      */
259     if (riscv_is_32bit(&s->soc[0])) {
260         firmware_end_addr = riscv_find_and_load_firmware(machine,
261                                     RISCV32_BIOS_ELF, memmap[SPIKE_DRAM].base,
262                                     htif_symbol_callback);
263     } else {
264         firmware_end_addr = riscv_find_and_load_firmware(machine,
265                                     RISCV64_BIOS_ELF, memmap[SPIKE_DRAM].base,
266                                     htif_symbol_callback);
267     }
268 
269     if (machine->kernel_filename) {
270         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
271                                                          firmware_end_addr);
272 
273         kernel_entry = riscv_load_kernel(machine->kernel_filename,
274                                          kernel_start_addr,
275                                          htif_symbol_callback);
276 
277         if (machine->initrd_filename) {
278             hwaddr start;
279             hwaddr end = riscv_load_initrd(machine->initrd_filename,
280                                            machine->ram_size, kernel_entry,
281                                            &start);
282             qemu_fdt_setprop_cell(s->fdt, "/chosen",
283                                   "linux,initrd-start", start);
284             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
285                                   end);
286         }
287     } else {
288        /*
289         * If dynamic firmware is used, it doesn't know where is the next mode
290         * if kernel argument is not set.
291         */
292         kernel_entry = 0;
293     }
294 
295     /* Compute the fdt load address in dram */
296     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
297                                    machine->ram_size, s->fdt);
298     /* load the reset vector */
299     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
300                               memmap[SPIKE_MROM].base,
301                               memmap[SPIKE_MROM].size, kernel_entry,
302                               fdt_load_addr, s->fdt);
303 
304     /* initialize HTIF using symbols found in load_kernel */
305     htif_mm_init(system_memory, mask_rom,
306                  &s->soc[0].harts[0].env, serial_hd(0));
307 }
308 
309 static void spike_machine_instance_init(Object *obj)
310 {
311 }
312 
313 static void spike_machine_class_init(ObjectClass *oc, void *data)
314 {
315     MachineClass *mc = MACHINE_CLASS(oc);
316 
317     mc->desc = "RISC-V Spike board";
318     mc->init = spike_board_init;
319     mc->max_cpus = SPIKE_CPUS_MAX;
320     mc->is_default = true;
321     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
322     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
323     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
324     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
325     mc->numa_mem_supported = true;
326 }
327 
328 static const TypeInfo spike_machine_typeinfo = {
329     .name       = MACHINE_TYPE_NAME("spike"),
330     .parent     = TYPE_MACHINE,
331     .class_init = spike_machine_class_init,
332     .instance_init = spike_machine_instance_init,
333     .instance_size = sizeof(SpikeState),
334 };
335 
336 static void spike_machine_init_register_types(void)
337 {
338     type_register_static(&spike_machine_typeinfo);
339 }
340 
341 type_init(spike_machine_init_register_types)
342