xref: /openbmc/qemu/hw/riscv/spike.c (revision b9a65476)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2 or later, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/loader.h"
30 #include "hw/sysbus.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/spike.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/char/riscv_htif.h"
37 #include "hw/intc/riscv_aclint.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 
42 #include <libfdt.h>
43 
44 static const MemMapEntry spike_memmap[] = {
45     [SPIKE_MROM] =     {     0x1000,     0xf000 },
46     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
47     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
48     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
49 };
50 
51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52                        uint64_t mem_size, const char *cmdline,
53                        bool is_32_bit, bool htif_custom_base)
54 {
55     void *fdt;
56     int fdt_size;
57     uint64_t addr, size;
58     unsigned long clint_addr;
59     int cpu, socket;
60     MachineState *mc = MACHINE(s);
61     uint32_t *clint_cells;
62     uint32_t cpu_phandle, intc_phandle, phandle = 1;
63     char *name, *mem_name, *clint_name, *clust_name;
64     char *core_name, *cpu_name, *intc_name;
65     static const char * const clint_compat[2] = {
66         "sifive,clint0", "riscv,clint0"
67     };
68 
69     fdt = mc->fdt = create_device_tree(&fdt_size);
70     if (!fdt) {
71         error_report("create_device_tree() failed");
72         exit(1);
73     }
74 
75     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
76     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
77     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
78     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
79 
80     qemu_fdt_add_subnode(fdt, "/htif");
81     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
82     if (htif_custom_base) {
83         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
84             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
85     }
86 
87     qemu_fdt_add_subnode(fdt, "/soc");
88     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
89     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
90     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
91     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
92 
93     qemu_fdt_add_subnode(fdt, "/cpus");
94     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
95         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
96     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
97     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
98     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
99 
100     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
101         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
102         qemu_fdt_add_subnode(fdt, clust_name);
103 
104         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
105 
106         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
107             cpu_phandle = phandle++;
108 
109             cpu_name = g_strdup_printf("/cpus/cpu@%d",
110                 s->soc[socket].hartid_base + cpu);
111             qemu_fdt_add_subnode(fdt, cpu_name);
112             if (is_32_bit) {
113                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
114             } else {
115                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
116             }
117             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
118             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
119             g_free(name);
120             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
121             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
122             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
123                 s->soc[socket].hartid_base + cpu);
124             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
125             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
126             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
127 
128             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
129             qemu_fdt_add_subnode(fdt, intc_name);
130             intc_phandle = phandle++;
131             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
132             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
133                 "riscv,cpu-intc");
134             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
135             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
136 
137             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
138             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
139             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
140             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
141 
142             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
143             qemu_fdt_add_subnode(fdt, core_name);
144             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
145 
146             g_free(core_name);
147             g_free(intc_name);
148             g_free(cpu_name);
149         }
150 
151         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
152         size = riscv_socket_mem_size(mc, socket);
153         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
154         qemu_fdt_add_subnode(fdt, mem_name);
155         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
156             addr >> 32, addr, size >> 32, size);
157         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
158         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
159         g_free(mem_name);
160 
161         clint_addr = memmap[SPIKE_CLINT].base +
162             (memmap[SPIKE_CLINT].size * socket);
163         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
164         qemu_fdt_add_subnode(fdt, clint_name);
165         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
166             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
167         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
168             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
169         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
170             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
171         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
172 
173         g_free(clint_name);
174         g_free(clint_cells);
175         g_free(clust_name);
176     }
177 
178     riscv_socket_fdt_write_distance_matrix(mc, fdt);
179 
180     qemu_fdt_add_subnode(fdt, "/chosen");
181     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
182 
183     if (cmdline && *cmdline) {
184         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
185     }
186 }
187 
188 static bool spike_test_elf_image(char *filename)
189 {
190     Error *err = NULL;
191 
192     load_elf_hdr(filename, NULL, NULL, &err);
193     if (err) {
194         error_free(err);
195         return false;
196     } else {
197         return true;
198     }
199 }
200 
201 static void spike_board_init(MachineState *machine)
202 {
203     const MemMapEntry *memmap = spike_memmap;
204     SpikeState *s = SPIKE_MACHINE(machine);
205     MemoryRegion *system_memory = get_system_memory();
206     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
207     target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
208     target_ulong kernel_start_addr;
209     char *firmware_name;
210     uint32_t fdt_load_addr;
211     uint64_t kernel_entry;
212     char *soc_name;
213     int i, base_hartid, hart_count;
214     bool htif_custom_base = false;
215 
216     /* Check socket count limit */
217     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
218         error_report("number of sockets/nodes should be less than %d",
219             SPIKE_SOCKETS_MAX);
220         exit(1);
221     }
222 
223     /* Initialize sockets */
224     for (i = 0; i < riscv_socket_count(machine); i++) {
225         if (!riscv_socket_check_hartids(machine, i)) {
226             error_report("discontinuous hartids in socket%d", i);
227             exit(1);
228         }
229 
230         base_hartid = riscv_socket_first_hartid(machine, i);
231         if (base_hartid < 0) {
232             error_report("can't find hartid base for socket%d", i);
233             exit(1);
234         }
235 
236         hart_count = riscv_socket_hart_count(machine, i);
237         if (hart_count < 0) {
238             error_report("can't find hart count for socket%d", i);
239             exit(1);
240         }
241 
242         soc_name = g_strdup_printf("soc%d", i);
243         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
244                                 TYPE_RISCV_HART_ARRAY);
245         g_free(soc_name);
246         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
247                                 machine->cpu_type, &error_abort);
248         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
249                                 base_hartid, &error_abort);
250         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
251                                 hart_count, &error_abort);
252         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
253 
254         /* Core Local Interruptor (timer and IPI) for each socket */
255         riscv_aclint_swi_create(
256             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
257             base_hartid, hart_count, false);
258         riscv_aclint_mtimer_create(
259             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
260                 RISCV_ACLINT_SWI_SIZE,
261             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
262             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
263             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
264     }
265 
266     /* register system main memory (actual RAM) */
267     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
268         machine->ram);
269 
270     /* boot rom */
271     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
272                            memmap[SPIKE_MROM].size, &error_fatal);
273     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
274                                 mask_rom);
275 
276     /* Find firmware */
277     firmware_name = riscv_find_firmware(machine->firmware,
278                         riscv_default_firmware_name(&s->soc[0]));
279 
280     /*
281      * Test the given firmware or kernel file to see if it is an ELF image.
282      * If it is an ELF, we assume it contains the symbols required for
283      * the HTIF console, otherwise we fall back to use the custom base
284      * passed from device tree for the HTIF console.
285      */
286     if (!firmware_name && !machine->kernel_filename) {
287         htif_custom_base = true;
288     } else {
289         if (firmware_name) {
290             htif_custom_base = !spike_test_elf_image(firmware_name);
291         }
292         if (!htif_custom_base && machine->kernel_filename) {
293             htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
294         }
295     }
296 
297     /* Load firmware */
298     if (firmware_name) {
299         firmware_end_addr = riscv_load_firmware(firmware_name,
300                                                 memmap[SPIKE_DRAM].base,
301                                                 htif_symbol_callback);
302         g_free(firmware_name);
303     }
304 
305     /* Create device tree */
306     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
307                riscv_is_32bit(&s->soc[0]), htif_custom_base);
308 
309     /* Load kernel */
310     if (machine->kernel_filename) {
311         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
312                                                          firmware_end_addr);
313 
314         kernel_entry = riscv_load_kernel(machine->kernel_filename,
315                                          kernel_start_addr,
316                                          htif_symbol_callback);
317 
318         if (machine->initrd_filename) {
319             riscv_load_initrd(machine->initrd_filename, machine->ram_size,
320                               kernel_entry, machine->fdt);
321         }
322     } else {
323        /*
324         * If dynamic firmware is used, it doesn't know where is the next mode
325         * if kernel argument is not set.
326         */
327         kernel_entry = 0;
328     }
329 
330     /* Compute the fdt load address in dram */
331     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
332                                    machine->ram_size, machine->fdt);
333 
334     /* load the reset vector */
335     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
336                               memmap[SPIKE_MROM].base,
337                               memmap[SPIKE_MROM].size, kernel_entry,
338                               fdt_load_addr);
339 
340     /* initialize HTIF using symbols found in load_kernel */
341     htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
342                  htif_custom_base);
343 }
344 
345 static void spike_machine_instance_init(Object *obj)
346 {
347 }
348 
349 static void spike_machine_class_init(ObjectClass *oc, void *data)
350 {
351     MachineClass *mc = MACHINE_CLASS(oc);
352 
353     mc->desc = "RISC-V Spike board";
354     mc->init = spike_board_init;
355     mc->max_cpus = SPIKE_CPUS_MAX;
356     mc->is_default = true;
357     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
358     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
359     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
360     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
361     mc->numa_mem_supported = true;
362     mc->default_ram_id = "riscv.spike.ram";
363 }
364 
365 static const TypeInfo spike_machine_typeinfo = {
366     .name       = MACHINE_TYPE_NAME("spike"),
367     .parent     = TYPE_MACHINE,
368     .class_init = spike_machine_class_init,
369     .instance_init = spike_machine_instance_init,
370     .instance_size = sizeof(SpikeState),
371 };
372 
373 static void spike_machine_init_register_types(void)
374 {
375     type_register_static(&spike_machine_typeinfo);
376 }
377 
378 type_init(spike_machine_init_register_types)
379