1 /* 2 * QEMU RISC-V Spike Board 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This provides a RISC-V Board with the following devices: 8 * 9 * 0) HTIF Console and Poweroff 10 * 1) CLINT (Timer and IPI) 11 * 2) PLIC (Platform Level Interrupt Controller) 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms and conditions of the GNU General Public License, 15 * version 2 or later, as published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * You should have received a copy of the GNU General Public License along with 23 * this program. If not, see <http://www.gnu.org/licenses/>. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/log.h" 28 #include "qemu/error-report.h" 29 #include "qapi/error.h" 30 #include "hw/boards.h" 31 #include "hw/loader.h" 32 #include "hw/sysbus.h" 33 #include "target/riscv/cpu.h" 34 #include "hw/riscv/riscv_htif.h" 35 #include "hw/riscv/riscv_hart.h" 36 #include "hw/riscv/sifive_clint.h" 37 #include "hw/riscv/spike.h" 38 #include "hw/riscv/boot.h" 39 #include "hw/riscv/numa.h" 40 #include "chardev/char.h" 41 #include "sysemu/arch_init.h" 42 #include "sysemu/device_tree.h" 43 #include "sysemu/qtest.h" 44 #include "sysemu/sysemu.h" 45 46 /* 47 * Not like other RISC-V machines that use plain binary bios images, 48 * keeping ELF files here was intentional because BIN files don't work 49 * for the Spike machine as HTIF emulation depends on ELF parsing. 50 */ 51 #if defined(TARGET_RISCV32) 52 # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.elf" 53 #else 54 # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.elf" 55 #endif 56 57 static const struct MemmapEntry { 58 hwaddr base; 59 hwaddr size; 60 } spike_memmap[] = { 61 [SPIKE_MROM] = { 0x1000, 0xf000 }, 62 [SPIKE_CLINT] = { 0x2000000, 0x10000 }, 63 [SPIKE_DRAM] = { 0x80000000, 0x0 }, 64 }; 65 66 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap, 67 uint64_t mem_size, const char *cmdline) 68 { 69 void *fdt; 70 uint64_t addr, size; 71 unsigned long clint_addr; 72 int cpu, socket; 73 MachineState *mc = MACHINE(s); 74 uint32_t *clint_cells; 75 uint32_t cpu_phandle, intc_phandle, phandle = 1; 76 char *name, *mem_name, *clint_name, *clust_name; 77 char *core_name, *cpu_name, *intc_name; 78 79 fdt = s->fdt = create_device_tree(&s->fdt_size); 80 if (!fdt) { 81 error_report("create_device_tree() failed"); 82 exit(1); 83 } 84 85 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu"); 86 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev"); 87 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 88 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 89 90 qemu_fdt_add_subnode(fdt, "/htif"); 91 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0"); 92 93 qemu_fdt_add_subnode(fdt, "/soc"); 94 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 95 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 96 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); 97 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); 98 99 qemu_fdt_add_subnode(fdt, "/cpus"); 100 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 101 SIFIVE_CLINT_TIMEBASE_FREQ); 102 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 103 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 104 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map"); 105 106 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) { 107 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket); 108 qemu_fdt_add_subnode(fdt, clust_name); 109 110 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); 111 112 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) { 113 cpu_phandle = phandle++; 114 115 cpu_name = g_strdup_printf("/cpus/cpu@%d", 116 s->soc[socket].hartid_base + cpu); 117 qemu_fdt_add_subnode(fdt, cpu_name); 118 #if defined(TARGET_RISCV32) 119 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32"); 120 #else 121 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48"); 122 #endif 123 name = riscv_isa_string(&s->soc[socket].harts[cpu]); 124 qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name); 125 g_free(name); 126 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv"); 127 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay"); 128 qemu_fdt_setprop_cell(fdt, cpu_name, "reg", 129 s->soc[socket].hartid_base + cpu); 130 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu"); 131 riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket); 132 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle); 133 134 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name); 135 qemu_fdt_add_subnode(fdt, intc_name); 136 intc_phandle = phandle++; 137 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle); 138 qemu_fdt_setprop_string(fdt, intc_name, "compatible", 139 "riscv,cpu-intc"); 140 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0); 141 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1); 142 143 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 144 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); 145 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 146 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); 147 148 core_name = g_strdup_printf("%s/core%d", clust_name, cpu); 149 qemu_fdt_add_subnode(fdt, core_name); 150 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle); 151 152 g_free(core_name); 153 g_free(intc_name); 154 g_free(cpu_name); 155 } 156 157 addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket); 158 size = riscv_socket_mem_size(mc, socket); 159 mem_name = g_strdup_printf("/memory@%lx", (long)addr); 160 qemu_fdt_add_subnode(fdt, mem_name); 161 qemu_fdt_setprop_cells(fdt, mem_name, "reg", 162 addr >> 32, addr, size >> 32, size); 163 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory"); 164 riscv_socket_fdt_write_id(mc, fdt, mem_name, socket); 165 g_free(mem_name); 166 167 clint_addr = memmap[SPIKE_CLINT].base + 168 (memmap[SPIKE_CLINT].size * socket); 169 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr); 170 qemu_fdt_add_subnode(fdt, clint_name); 171 qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0"); 172 qemu_fdt_setprop_cells(fdt, clint_name, "reg", 173 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size); 174 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended", 175 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); 176 riscv_socket_fdt_write_id(mc, fdt, clint_name, socket); 177 178 g_free(clint_name); 179 g_free(clint_cells); 180 g_free(clust_name); 181 } 182 183 riscv_socket_fdt_write_distance_matrix(mc, fdt); 184 185 if (cmdline) { 186 qemu_fdt_add_subnode(fdt, "/chosen"); 187 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 188 } 189 } 190 191 static void spike_board_init(MachineState *machine) 192 { 193 const struct MemmapEntry *memmap = spike_memmap; 194 SpikeState *s = SPIKE_MACHINE(machine); 195 MemoryRegion *system_memory = get_system_memory(); 196 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 197 MemoryRegion *mask_rom = g_new(MemoryRegion, 1); 198 uint32_t fdt_load_addr; 199 uint64_t kernel_entry; 200 char *soc_name; 201 int i, base_hartid, hart_count; 202 203 /* Check socket count limit */ 204 if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) { 205 error_report("number of sockets/nodes should be less than %d", 206 SPIKE_SOCKETS_MAX); 207 exit(1); 208 } 209 210 /* Initialize sockets */ 211 for (i = 0; i < riscv_socket_count(machine); i++) { 212 if (!riscv_socket_check_hartids(machine, i)) { 213 error_report("discontinuous hartids in socket%d", i); 214 exit(1); 215 } 216 217 base_hartid = riscv_socket_first_hartid(machine, i); 218 if (base_hartid < 0) { 219 error_report("can't find hartid base for socket%d", i); 220 exit(1); 221 } 222 223 hart_count = riscv_socket_hart_count(machine, i); 224 if (hart_count < 0) { 225 error_report("can't find hart count for socket%d", i); 226 exit(1); 227 } 228 229 soc_name = g_strdup_printf("soc%d", i); 230 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i], 231 TYPE_RISCV_HART_ARRAY); 232 g_free(soc_name); 233 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type", 234 machine->cpu_type, &error_abort); 235 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base", 236 base_hartid, &error_abort); 237 object_property_set_int(OBJECT(&s->soc[i]), "num-harts", 238 hart_count, &error_abort); 239 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort); 240 241 /* Core Local Interruptor (timer and IPI) for each socket */ 242 sifive_clint_create( 243 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size, 244 memmap[SPIKE_CLINT].size, base_hartid, hart_count, 245 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, 246 SIFIVE_CLINT_TIMEBASE_FREQ, false); 247 } 248 249 /* register system main memory (actual RAM) */ 250 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram", 251 machine->ram_size, &error_fatal); 252 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base, 253 main_mem); 254 255 /* create device tree */ 256 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); 257 258 /* boot rom */ 259 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom", 260 memmap[SPIKE_MROM].size, &error_fatal); 261 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base, 262 mask_rom); 263 264 riscv_find_and_load_firmware(machine, BIOS_FILENAME, 265 memmap[SPIKE_DRAM].base, 266 htif_symbol_callback); 267 268 if (machine->kernel_filename) { 269 kernel_entry = riscv_load_kernel(machine->kernel_filename, 270 htif_symbol_callback); 271 272 if (machine->initrd_filename) { 273 hwaddr start; 274 hwaddr end = riscv_load_initrd(machine->initrd_filename, 275 machine->ram_size, kernel_entry, 276 &start); 277 qemu_fdt_setprop_cell(s->fdt, "/chosen", 278 "linux,initrd-start", start); 279 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end", 280 end); 281 } 282 } else { 283 /* 284 * If dynamic firmware is used, it doesn't know where is the next mode 285 * if kernel argument is not set. 286 */ 287 kernel_entry = 0; 288 } 289 290 /* Compute the fdt load address in dram */ 291 fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base, 292 machine->ram_size, s->fdt); 293 /* load the reset vector */ 294 riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base, 295 memmap[SPIKE_MROM].size, kernel_entry, 296 fdt_load_addr, s->fdt); 297 298 /* initialize HTIF using symbols found in load_kernel */ 299 htif_mm_init(system_memory, mask_rom, 300 &s->soc[0].harts[0].env, serial_hd(0)); 301 } 302 303 static void spike_machine_instance_init(Object *obj) 304 { 305 } 306 307 static void spike_machine_class_init(ObjectClass *oc, void *data) 308 { 309 MachineClass *mc = MACHINE_CLASS(oc); 310 311 mc->desc = "RISC-V Spike board"; 312 mc->init = spike_board_init; 313 mc->max_cpus = SPIKE_CPUS_MAX; 314 mc->is_default = true; 315 mc->default_cpu_type = SPIKE_V1_10_0_CPU; 316 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids; 317 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props; 318 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id; 319 mc->numa_mem_supported = true; 320 } 321 322 static const TypeInfo spike_machine_typeinfo = { 323 .name = MACHINE_TYPE_NAME("spike"), 324 .parent = TYPE_MACHINE, 325 .class_init = spike_machine_class_init, 326 .instance_init = spike_machine_instance_init, 327 .instance_size = sizeof(SpikeState), 328 }; 329 330 static void spike_machine_init_register_types(void) 331 { 332 type_register_static(&spike_machine_typeinfo); 333 } 334 335 type_init(spike_machine_init_register_types) 336