xref: /openbmc/qemu/hw/riscv/spike.c (revision a47ef6e9)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_htif.h"
35 #include "hw/riscv/riscv_hart.h"
36 #include "hw/riscv/sifive_clint.h"
37 #include "hw/riscv/spike.h"
38 #include "hw/riscv/boot.h"
39 #include "hw/riscv/numa.h"
40 #include "chardev/char.h"
41 #include "sysemu/arch_init.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/qtest.h"
44 #include "sysemu/sysemu.h"
45 
46 /*
47  * Not like other RISC-V machines that use plain binary bios images,
48  * keeping ELF files here was intentional because BIN files don't work
49  * for the Spike machine as HTIF emulation depends on ELF parsing.
50  */
51 #if defined(TARGET_RISCV32)
52 # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.elf"
53 #else
54 # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.elf"
55 #endif
56 
57 static const struct MemmapEntry {
58     hwaddr base;
59     hwaddr size;
60 } spike_memmap[] = {
61     [SPIKE_MROM] =     {     0x1000,     0xf000 },
62     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
63     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
64 };
65 
66 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
67     uint64_t mem_size, const char *cmdline)
68 {
69     void *fdt;
70     uint64_t addr, size;
71     unsigned long clint_addr;
72     int cpu, socket;
73     MachineState *mc = MACHINE(s);
74     uint32_t *clint_cells;
75     uint32_t cpu_phandle, intc_phandle, phandle = 1;
76     char *name, *mem_name, *clint_name, *clust_name;
77     char *core_name, *cpu_name, *intc_name;
78 
79     fdt = s->fdt = create_device_tree(&s->fdt_size);
80     if (!fdt) {
81         error_report("create_device_tree() failed");
82         exit(1);
83     }
84 
85     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
86     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
87     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
88     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
89 
90     qemu_fdt_add_subnode(fdt, "/htif");
91     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
92 
93     qemu_fdt_add_subnode(fdt, "/soc");
94     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
95     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
96     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
97     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
98 
99     qemu_fdt_add_subnode(fdt, "/cpus");
100     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
101         SIFIVE_CLINT_TIMEBASE_FREQ);
102     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
103     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
104     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
105 
106     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
107         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
108         qemu_fdt_add_subnode(fdt, clust_name);
109 
110         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
111 
112         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
113             cpu_phandle = phandle++;
114 
115             cpu_name = g_strdup_printf("/cpus/cpu@%d",
116                 s->soc[socket].hartid_base + cpu);
117             qemu_fdt_add_subnode(fdt, cpu_name);
118 #if defined(TARGET_RISCV32)
119             qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
120 #else
121             qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
122 #endif
123             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
124             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
125             g_free(name);
126             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
127             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
128             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
129                 s->soc[socket].hartid_base + cpu);
130             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
131             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
132             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
133 
134             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
135             qemu_fdt_add_subnode(fdt, intc_name);
136             intc_phandle = phandle++;
137             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
138             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
139                 "riscv,cpu-intc");
140             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
141             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
142 
143             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
144             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
145             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
146             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
147 
148             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
149             qemu_fdt_add_subnode(fdt, core_name);
150             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
151 
152             g_free(core_name);
153             g_free(intc_name);
154             g_free(cpu_name);
155         }
156 
157         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
158         size = riscv_socket_mem_size(mc, socket);
159         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
160         qemu_fdt_add_subnode(fdt, mem_name);
161         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
162             addr >> 32, addr, size >> 32, size);
163         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
164         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
165         g_free(mem_name);
166 
167         clint_addr = memmap[SPIKE_CLINT].base +
168             (memmap[SPIKE_CLINT].size * socket);
169         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
170         qemu_fdt_add_subnode(fdt, clint_name);
171         qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
172         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
173             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
174         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
175             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
176         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
177 
178         g_free(clint_name);
179         g_free(clint_cells);
180         g_free(clust_name);
181     }
182 
183     riscv_socket_fdt_write_distance_matrix(mc, fdt);
184 
185     if (cmdline) {
186         qemu_fdt_add_subnode(fdt, "/chosen");
187         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
188     }
189 }
190 
191 static void spike_board_init(MachineState *machine)
192 {
193     const struct MemmapEntry *memmap = spike_memmap;
194     SpikeState *s = SPIKE_MACHINE(machine);
195     MemoryRegion *system_memory = get_system_memory();
196     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
197     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
198     uint32_t fdt_load_addr;
199     uint64_t kernel_entry;
200     char *soc_name;
201     int i, base_hartid, hart_count;
202 
203     /* Check socket count limit */
204     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
205         error_report("number of sockets/nodes should be less than %d",
206             SPIKE_SOCKETS_MAX);
207         exit(1);
208     }
209 
210     /* Initialize sockets */
211     for (i = 0; i < riscv_socket_count(machine); i++) {
212         if (!riscv_socket_check_hartids(machine, i)) {
213             error_report("discontinuous hartids in socket%d", i);
214             exit(1);
215         }
216 
217         base_hartid = riscv_socket_first_hartid(machine, i);
218         if (base_hartid < 0) {
219             error_report("can't find hartid base for socket%d", i);
220             exit(1);
221         }
222 
223         hart_count = riscv_socket_hart_count(machine, i);
224         if (hart_count < 0) {
225             error_report("can't find hart count for socket%d", i);
226             exit(1);
227         }
228 
229         soc_name = g_strdup_printf("soc%d", i);
230         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
231                                 TYPE_RISCV_HART_ARRAY);
232         g_free(soc_name);
233         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
234                                 machine->cpu_type, &error_abort);
235         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
236                                 base_hartid, &error_abort);
237         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
238                                 hart_count, &error_abort);
239         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
240 
241         /* Core Local Interruptor (timer and IPI) for each socket */
242         sifive_clint_create(
243             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
244             memmap[SPIKE_CLINT].size, base_hartid, hart_count,
245             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
246             SIFIVE_CLINT_TIMEBASE_FREQ, false);
247     }
248 
249     /* register system main memory (actual RAM) */
250     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
251                            machine->ram_size, &error_fatal);
252     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
253         main_mem);
254 
255     /* create device tree */
256     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
257 
258     /* boot rom */
259     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
260                            memmap[SPIKE_MROM].size, &error_fatal);
261     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
262                                 mask_rom);
263 
264     riscv_find_and_load_firmware(machine, BIOS_FILENAME,
265                                  memmap[SPIKE_DRAM].base,
266                                  htif_symbol_callback);
267 
268     if (machine->kernel_filename) {
269         kernel_entry = riscv_load_kernel(machine->kernel_filename,
270                                          htif_symbol_callback);
271 
272         if (machine->initrd_filename) {
273             hwaddr start;
274             hwaddr end = riscv_load_initrd(machine->initrd_filename,
275                                            machine->ram_size, kernel_entry,
276                                            &start);
277             qemu_fdt_setprop_cell(s->fdt, "/chosen",
278                                   "linux,initrd-start", start);
279             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
280                                   end);
281         }
282     } else {
283        /*
284         * If dynamic firmware is used, it doesn't know where is the next mode
285         * if kernel argument is not set.
286         */
287         kernel_entry = 0;
288     }
289 
290     /* Compute the fdt load address in dram */
291     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
292                                    machine->ram_size, s->fdt);
293     /* load the reset vector */
294     riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base,
295                               memmap[SPIKE_MROM].size, kernel_entry,
296                               fdt_load_addr, s->fdt);
297 
298     /* initialize HTIF using symbols found in load_kernel */
299     htif_mm_init(system_memory, mask_rom,
300                  &s->soc[0].harts[0].env, serial_hd(0));
301 }
302 
303 static void spike_machine_instance_init(Object *obj)
304 {
305 }
306 
307 static void spike_machine_class_init(ObjectClass *oc, void *data)
308 {
309     MachineClass *mc = MACHINE_CLASS(oc);
310 
311     mc->desc = "RISC-V Spike board";
312     mc->init = spike_board_init;
313     mc->max_cpus = SPIKE_CPUS_MAX;
314     mc->is_default = true;
315     mc->default_cpu_type = SPIKE_V1_10_0_CPU;
316     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
317     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
318     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
319     mc->numa_mem_supported = true;
320 }
321 
322 static const TypeInfo spike_machine_typeinfo = {
323     .name       = MACHINE_TYPE_NAME("spike"),
324     .parent     = TYPE_MACHINE,
325     .class_init = spike_machine_class_init,
326     .instance_init = spike_machine_instance_init,
327     .instance_size = sizeof(SpikeState),
328 };
329 
330 static void spike_machine_init_register_types(void)
331 {
332     type_register_static(&spike_machine_typeinfo);
333 }
334 
335 type_init(spike_machine_init_register_types)
336