xref: /openbmc/qemu/hw/riscv/spike.c (revision 9ef82119)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_htif.h"
35 #include "hw/riscv/riscv_hart.h"
36 #include "hw/riscv/sifive_clint.h"
37 #include "hw/riscv/spike.h"
38 #include "hw/riscv/boot.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/sysemu.h"
44 
45 /*
46  * Not like other RISC-V machines that use plain binary bios images,
47  * keeping ELF files here was intentional because BIN files don't work
48  * for the Spike machine as HTIF emulation depends on ELF parsing.
49  */
50 #if defined(TARGET_RISCV32)
51 # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.elf"
52 #else
53 # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.elf"
54 #endif
55 
56 static const struct MemmapEntry {
57     hwaddr base;
58     hwaddr size;
59 } spike_memmap[] = {
60     [SPIKE_MROM] =     {     0x1000,     0xf000 },
61     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
62     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
63 };
64 
65 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
66     uint64_t mem_size, const char *cmdline)
67 {
68     void *fdt;
69     int cpu;
70     uint32_t *cells;
71     char *nodename;
72 
73     fdt = s->fdt = create_device_tree(&s->fdt_size);
74     if (!fdt) {
75         error_report("create_device_tree() failed");
76         exit(1);
77     }
78 
79     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
80     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
81     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
82     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
83 
84     qemu_fdt_add_subnode(fdt, "/htif");
85     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
86 
87     qemu_fdt_add_subnode(fdt, "/soc");
88     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
89     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
90     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
91     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
92 
93     nodename = g_strdup_printf("/memory@%lx",
94         (long)memmap[SPIKE_DRAM].base);
95     qemu_fdt_add_subnode(fdt, nodename);
96     qemu_fdt_setprop_cells(fdt, nodename, "reg",
97         memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
98         mem_size >> 32, mem_size);
99     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
100     g_free(nodename);
101 
102     qemu_fdt_add_subnode(fdt, "/cpus");
103     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
104         SIFIVE_CLINT_TIMEBASE_FREQ);
105     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
106     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
107 
108     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
109         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
110         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
111         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
112         qemu_fdt_add_subnode(fdt, nodename);
113 #if defined(TARGET_RISCV32)
114         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
115 #else
116         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
117 #endif
118         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
119         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
120         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
121         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
122         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
123         qemu_fdt_add_subnode(fdt, intc);
124         qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
125         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
126         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
127         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
128         g_free(isa);
129         g_free(intc);
130         g_free(nodename);
131     }
132 
133     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
134     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
135         nodename =
136             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
137         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
138         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
139         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
140         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
141         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
142         g_free(nodename);
143     }
144     nodename = g_strdup_printf("/soc/clint@%lx",
145         (long)memmap[SPIKE_CLINT].base);
146     qemu_fdt_add_subnode(fdt, nodename);
147     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
148     qemu_fdt_setprop_cells(fdt, nodename, "reg",
149         0x0, memmap[SPIKE_CLINT].base,
150         0x0, memmap[SPIKE_CLINT].size);
151     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
152         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
153     g_free(cells);
154     g_free(nodename);
155 
156     if (cmdline) {
157         qemu_fdt_add_subnode(fdt, "/chosen");
158         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
159     }
160 }
161 
162 static void spike_board_init(MachineState *machine)
163 {
164     const struct MemmapEntry *memmap = spike_memmap;
165 
166     SpikeState *s = g_new0(SpikeState, 1);
167     MemoryRegion *system_memory = get_system_memory();
168     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
169     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
170     unsigned int smp_cpus = machine->smp.cpus;
171     uint32_t fdt_load_addr;
172     uint64_t kernel_entry;
173 
174     /* Initialize SOC */
175     object_initialize_child(OBJECT(machine), "soc", &s->soc,
176                             TYPE_RISCV_HART_ARRAY);
177     object_property_set_str(OBJECT(&s->soc), "cpu-type", machine->cpu_type,
178                             &error_abort);
179     object_property_set_int(OBJECT(&s->soc), "num-harts", smp_cpus,
180                             &error_abort);
181     sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_abort);
182 
183     /* register system main memory (actual RAM) */
184     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
185                            machine->ram_size, &error_fatal);
186     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
187         main_mem);
188 
189     /* create device tree */
190     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
191 
192     /* boot rom */
193     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
194                            memmap[SPIKE_MROM].size, &error_fatal);
195     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
196                                 mask_rom);
197 
198     riscv_find_and_load_firmware(machine, BIOS_FILENAME,
199                                  memmap[SPIKE_DRAM].base,
200                                  htif_symbol_callback);
201 
202     if (machine->kernel_filename) {
203         kernel_entry = riscv_load_kernel(machine->kernel_filename,
204                                          htif_symbol_callback);
205 
206         if (machine->initrd_filename) {
207             hwaddr start;
208             hwaddr end = riscv_load_initrd(machine->initrd_filename,
209                                            machine->ram_size, kernel_entry,
210                                            &start);
211             qemu_fdt_setprop_cell(s->fdt, "/chosen",
212                                   "linux,initrd-start", start);
213             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
214                                   end);
215         }
216     } else {
217        /*
218         * If dynamic firmware is used, it doesn't know where is the next mode
219         * if kernel argument is not set.
220         */
221         kernel_entry = 0;
222     }
223 
224     /* Compute the fdt load address in dram */
225     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
226                                    machine->ram_size, s->fdt);
227     /* load the reset vector */
228     riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base,
229                               memmap[SPIKE_MROM].size, kernel_entry,
230                               fdt_load_addr, s->fdt);
231 
232     /* initialize HTIF using symbols found in load_kernel */
233     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
234 
235     /* Core Local Interruptor (timer and IPI) */
236     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
237         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
238         false);
239 }
240 
241 static void spike_machine_init(MachineClass *mc)
242 {
243     mc->desc = "RISC-V Spike Board";
244     mc->init = spike_board_init;
245     mc->max_cpus = 8;
246     mc->is_default = true;
247     mc->default_cpu_type = SPIKE_V1_10_0_CPU;
248 }
249 
250 DEFINE_MACHINE("spike", spike_machine_init)
251