xref: /openbmc/qemu/hw/riscv/spike.c (revision 8f4bcbcf)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/error-report.h"
28 #include "qapi/error.h"
29 #include "hw/boards.h"
30 #include "hw/loader.h"
31 #include "hw/sysbus.h"
32 #include "target/riscv/cpu.h"
33 #include "hw/riscv/riscv_hart.h"
34 #include "hw/riscv/spike.h"
35 #include "hw/riscv/boot.h"
36 #include "hw/riscv/numa.h"
37 #include "hw/char/riscv_htif.h"
38 #include "hw/intc/riscv_aclint.h"
39 #include "chardev/char.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 
43 #include <libfdt.h>
44 
45 static const MemMapEntry spike_memmap[] = {
46     [SPIKE_MROM] =     {     0x1000,     0xf000 },
47     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
48     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
49     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
50 };
51 
52 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
53                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
54 {
55     void *fdt;
56     uint64_t addr, size;
57     unsigned long clint_addr;
58     int cpu, socket;
59     MachineState *mc = MACHINE(s);
60     uint32_t *clint_cells;
61     uint32_t cpu_phandle, intc_phandle, phandle = 1;
62     char *name, *mem_name, *clint_name, *clust_name;
63     char *core_name, *cpu_name, *intc_name;
64     static const char * const clint_compat[2] = {
65         "sifive,clint0", "riscv,clint0"
66     };
67 
68     fdt = s->fdt = create_device_tree(&s->fdt_size);
69     if (!fdt) {
70         error_report("create_device_tree() failed");
71         exit(1);
72     }
73 
74     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
75     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
76     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
77     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
78 
79     qemu_fdt_add_subnode(fdt, "/htif");
80     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
81     if (!htif_uses_elf_symbols()) {
82         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
83             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
84     }
85 
86     qemu_fdt_add_subnode(fdt, "/soc");
87     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
88     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
89     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
90     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
91 
92     qemu_fdt_add_subnode(fdt, "/cpus");
93     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
94         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
95     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
96     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
97     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
98 
99     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
100         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
101         qemu_fdt_add_subnode(fdt, clust_name);
102 
103         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
104 
105         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
106             cpu_phandle = phandle++;
107 
108             cpu_name = g_strdup_printf("/cpus/cpu@%d",
109                 s->soc[socket].hartid_base + cpu);
110             qemu_fdt_add_subnode(fdt, cpu_name);
111             if (is_32_bit) {
112                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
113             } else {
114                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
115             }
116             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
117             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
118             g_free(name);
119             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
120             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
121             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
122                 s->soc[socket].hartid_base + cpu);
123             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
124             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
125             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
126 
127             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
128             qemu_fdt_add_subnode(fdt, intc_name);
129             intc_phandle = phandle++;
130             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
131             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
132                 "riscv,cpu-intc");
133             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
134             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
135 
136             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
137             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
138             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
139             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
140 
141             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
142             qemu_fdt_add_subnode(fdt, core_name);
143             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
144 
145             g_free(core_name);
146             g_free(intc_name);
147             g_free(cpu_name);
148         }
149 
150         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
151         size = riscv_socket_mem_size(mc, socket);
152         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
153         qemu_fdt_add_subnode(fdt, mem_name);
154         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
155             addr >> 32, addr, size >> 32, size);
156         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
157         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
158         g_free(mem_name);
159 
160         clint_addr = memmap[SPIKE_CLINT].base +
161             (memmap[SPIKE_CLINT].size * socket);
162         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
163         qemu_fdt_add_subnode(fdt, clint_name);
164         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
165             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
166         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
167             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
168         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
169             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
170         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
171 
172         g_free(clint_name);
173         g_free(clint_cells);
174         g_free(clust_name);
175     }
176 
177     riscv_socket_fdt_write_distance_matrix(mc, fdt);
178 
179     qemu_fdt_add_subnode(fdt, "/chosen");
180     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
181 
182     if (cmdline && *cmdline) {
183         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
184     }
185 }
186 
187 static void spike_board_init(MachineState *machine)
188 {
189     const MemMapEntry *memmap = spike_memmap;
190     SpikeState *s = SPIKE_MACHINE(machine);
191     MemoryRegion *system_memory = get_system_memory();
192     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
193     target_ulong firmware_end_addr, kernel_start_addr;
194     uint32_t fdt_load_addr;
195     uint64_t kernel_entry;
196     char *soc_name;
197     int i, base_hartid, hart_count;
198 
199     /* Check socket count limit */
200     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
201         error_report("number of sockets/nodes should be less than %d",
202             SPIKE_SOCKETS_MAX);
203         exit(1);
204     }
205 
206     /* Initialize sockets */
207     for (i = 0; i < riscv_socket_count(machine); i++) {
208         if (!riscv_socket_check_hartids(machine, i)) {
209             error_report("discontinuous hartids in socket%d", i);
210             exit(1);
211         }
212 
213         base_hartid = riscv_socket_first_hartid(machine, i);
214         if (base_hartid < 0) {
215             error_report("can't find hartid base for socket%d", i);
216             exit(1);
217         }
218 
219         hart_count = riscv_socket_hart_count(machine, i);
220         if (hart_count < 0) {
221             error_report("can't find hart count for socket%d", i);
222             exit(1);
223         }
224 
225         soc_name = g_strdup_printf("soc%d", i);
226         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
227                                 TYPE_RISCV_HART_ARRAY);
228         g_free(soc_name);
229         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
230                                 machine->cpu_type, &error_abort);
231         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
232                                 base_hartid, &error_abort);
233         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
234                                 hart_count, &error_abort);
235         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
236 
237         /* Core Local Interruptor (timer and IPI) for each socket */
238         riscv_aclint_swi_create(
239             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
240             base_hartid, hart_count, false);
241         riscv_aclint_mtimer_create(
242             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
243                 RISCV_ACLINT_SWI_SIZE,
244             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
245             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
246             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
247     }
248 
249     /* register system main memory (actual RAM) */
250     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
251         machine->ram);
252 
253     /* boot rom */
254     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
255                            memmap[SPIKE_MROM].size, &error_fatal);
256     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
257                                 mask_rom);
258 
259     /*
260      * Not like other RISC-V machines that use plain binary bios images,
261      * keeping ELF files here was intentional because BIN files don't work
262      * for the Spike machine as HTIF emulation depends on ELF parsing.
263      */
264     if (riscv_is_32bit(&s->soc[0])) {
265         firmware_end_addr = riscv_find_and_load_firmware(machine,
266                                     RISCV32_BIOS_BIN, memmap[SPIKE_DRAM].base,
267                                     htif_symbol_callback);
268     } else {
269         firmware_end_addr = riscv_find_and_load_firmware(machine,
270                                     RISCV64_BIOS_BIN, memmap[SPIKE_DRAM].base,
271                                     htif_symbol_callback);
272     }
273 
274     /* Load kernel */
275     if (machine->kernel_filename) {
276         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
277                                                          firmware_end_addr);
278 
279         kernel_entry = riscv_load_kernel(machine->kernel_filename,
280                                          kernel_start_addr,
281                                          htif_symbol_callback);
282     } else {
283        /*
284         * If dynamic firmware is used, it doesn't know where is the next mode
285         * if kernel argument is not set.
286         */
287         kernel_entry = 0;
288     }
289 
290     /* Create device tree */
291     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
292                riscv_is_32bit(&s->soc[0]));
293 
294     /* Load initrd */
295     if (machine->kernel_filename && machine->initrd_filename) {
296         hwaddr start;
297         hwaddr end = riscv_load_initrd(machine->initrd_filename,
298                                        machine->ram_size, kernel_entry,
299                                        &start);
300         qemu_fdt_setprop_cell(s->fdt, "/chosen",
301                               "linux,initrd-start", start);
302         qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
303                               end);
304     }
305 
306     /* Compute the fdt load address in dram */
307     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
308                                    machine->ram_size, s->fdt);
309 
310     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
311     machine->fdt = s->fdt;
312 
313     /* load the reset vector */
314     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
315                               memmap[SPIKE_MROM].base,
316                               memmap[SPIKE_MROM].size, kernel_entry,
317                               fdt_load_addr);
318 
319     /* initialize HTIF using symbols found in load_kernel */
320     htif_mm_init(system_memory, mask_rom,
321                  &s->soc[0].harts[0].env, serial_hd(0),
322                  memmap[SPIKE_HTIF].base);
323 }
324 
325 static void spike_machine_instance_init(Object *obj)
326 {
327 }
328 
329 static void spike_machine_class_init(ObjectClass *oc, void *data)
330 {
331     MachineClass *mc = MACHINE_CLASS(oc);
332 
333     mc->desc = "RISC-V Spike board";
334     mc->init = spike_board_init;
335     mc->max_cpus = SPIKE_CPUS_MAX;
336     mc->is_default = true;
337     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
338     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
339     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
340     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
341     mc->numa_mem_supported = true;
342     mc->default_ram_id = "riscv.spike.ram";
343 }
344 
345 static const TypeInfo spike_machine_typeinfo = {
346     .name       = MACHINE_TYPE_NAME("spike"),
347     .parent     = TYPE_MACHINE,
348     .class_init = spike_machine_class_init,
349     .instance_init = spike_machine_instance_init,
350     .instance_size = sizeof(SpikeState),
351 };
352 
353 static void spike_machine_init_register_types(void)
354 {
355     type_register_static(&spike_machine_typeinfo);
356 }
357 
358 type_init(spike_machine_init_register_types)
359