xref: /openbmc/qemu/hw/riscv/spike.c (revision 8e6fe6b8)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/hw.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "hw/sysbus.h"
34 #include "target/riscv/cpu.h"
35 #include "hw/riscv/riscv_htif.h"
36 #include "hw/riscv/riscv_hart.h"
37 #include "hw/riscv/sifive_clint.h"
38 #include "hw/riscv/spike.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/qtest.h"
43 #include "exec/address-spaces.h"
44 #include "elf.h"
45 
46 #include <libfdt.h>
47 
48 static const struct MemmapEntry {
49     hwaddr base;
50     hwaddr size;
51 } spike_memmap[] = {
52     [SPIKE_MROM] =     {     0x1000,    0x11000 },
53     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
54     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
55 };
56 
57 static target_ulong load_kernel(const char *kernel_filename)
58 {
59     uint64_t kernel_entry, kernel_high;
60 
61     if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
62             &kernel_entry, NULL, &kernel_high, 0, EM_RISCV, 1, 0,
63             NULL, true, htif_symbol_callback) < 0) {
64         error_report("could not load kernel '%s'", kernel_filename);
65         exit(1);
66     }
67     return kernel_entry;
68 }
69 
70 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
71     uint64_t mem_size, const char *cmdline)
72 {
73     void *fdt;
74     int cpu;
75     uint32_t *cells;
76     char *nodename;
77 
78     fdt = s->fdt = create_device_tree(&s->fdt_size);
79     if (!fdt) {
80         error_report("create_device_tree() failed");
81         exit(1);
82     }
83 
84     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
85     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
86     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
87     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
88 
89     qemu_fdt_add_subnode(fdt, "/htif");
90     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
91 
92     qemu_fdt_add_subnode(fdt, "/soc");
93     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
94     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
95     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
96     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
97 
98     nodename = g_strdup_printf("/memory@%lx",
99         (long)memmap[SPIKE_DRAM].base);
100     qemu_fdt_add_subnode(fdt, nodename);
101     qemu_fdt_setprop_cells(fdt, nodename, "reg",
102         memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
103         mem_size >> 32, mem_size);
104     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
105     g_free(nodename);
106 
107     qemu_fdt_add_subnode(fdt, "/cpus");
108     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
109         SIFIVE_CLINT_TIMEBASE_FREQ);
110     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
111     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
112 
113     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
114         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
115         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
116         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
117         qemu_fdt_add_subnode(fdt, nodename);
118         qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
119                               SPIKE_CLOCK_FREQ);
120         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
121         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
122         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
123         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
124         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
125         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
126         qemu_fdt_add_subnode(fdt, intc);
127         qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
128         qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", 1);
129         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
130         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
131         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
132         g_free(isa);
133         g_free(intc);
134         g_free(nodename);
135     }
136 
137     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
138     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
139         nodename =
140             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
141         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
142         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
143         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
144         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
145         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
146         g_free(nodename);
147     }
148     nodename = g_strdup_printf("/soc/clint@%lx",
149         (long)memmap[SPIKE_CLINT].base);
150     qemu_fdt_add_subnode(fdt, nodename);
151     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
152     qemu_fdt_setprop_cells(fdt, nodename, "reg",
153         0x0, memmap[SPIKE_CLINT].base,
154         0x0, memmap[SPIKE_CLINT].size);
155     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
156         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
157     g_free(cells);
158     g_free(nodename);
159 
160     if (cmdline) {
161         qemu_fdt_add_subnode(fdt, "/chosen");
162         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
163     }
164 }
165 
166 static void spike_board_init(MachineState *machine)
167 {
168     const struct MemmapEntry *memmap = spike_memmap;
169 
170     SpikeState *s = g_new0(SpikeState, 1);
171     MemoryRegion *system_memory = get_system_memory();
172     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
173     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
174     int i;
175 
176     /* Initialize SOC */
177     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
178                             TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
179     object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type",
180                             &error_abort);
181     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
182                             &error_abort);
183     object_property_set_bool(OBJECT(&s->soc), true, "realized",
184                             &error_abort);
185 
186     /* register system main memory (actual RAM) */
187     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
188                            machine->ram_size, &error_fatal);
189     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
190         main_mem);
191 
192     /* create device tree */
193     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
194 
195     /* boot rom */
196     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
197                            memmap[SPIKE_MROM].size, &error_fatal);
198     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
199                                 mask_rom);
200 
201     if (machine->kernel_filename) {
202         load_kernel(machine->kernel_filename);
203     }
204 
205     /* reset vector */
206     uint32_t reset_vec[8] = {
207         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
208         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
209         0xf1402573,                  /*     csrr   a0, mhartid  */
210 #if defined(TARGET_RISCV32)
211         0x0182a283,                  /*     lw     t0, 24(t0) */
212 #elif defined(TARGET_RISCV64)
213         0x0182b283,                  /*     ld     t0, 24(t0) */
214 #endif
215         0x00028067,                  /*     jr     t0 */
216         0x00000000,
217         memmap[SPIKE_DRAM].base,     /* start: .dword DRAM_BASE */
218         0x00000000,
219                                      /* dtb: */
220     };
221 
222     /* copy in the reset vector in little_endian byte order */
223     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
224         reset_vec[i] = cpu_to_le32(reset_vec[i]);
225     }
226     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
227                           memmap[SPIKE_MROM].base, &address_space_memory);
228 
229     /* copy in the device tree */
230     if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
231             memmap[SPIKE_MROM].size - sizeof(reset_vec)) {
232         error_report("not enough space to store device-tree");
233         exit(1);
234     }
235     qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
236     rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
237                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
238                           &address_space_memory);
239 
240     /* initialize HTIF using symbols found in load_kernel */
241     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
242 
243     /* Core Local Interruptor (timer and IPI) */
244     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
245         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
246 }
247 
248 static void spike_v1_10_0_board_init(MachineState *machine)
249 {
250     const struct MemmapEntry *memmap = spike_memmap;
251 
252     SpikeState *s = g_new0(SpikeState, 1);
253     MemoryRegion *system_memory = get_system_memory();
254     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
255     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
256     int i;
257 
258     if (!qtest_enabled()) {
259         info_report("The Spike v1.10.0 machine has been deprecated. "
260                     "Please use the generic spike machine and specify the ISA "
261                     "versions using -cpu.");
262     }
263 
264     /* Initialize SOC */
265     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
266                             TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
267     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_10_0_CPU, "cpu-type",
268                             &error_abort);
269     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
270                             &error_abort);
271     object_property_set_bool(OBJECT(&s->soc), true, "realized",
272                             &error_abort);
273 
274     /* register system main memory (actual RAM) */
275     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
276                            machine->ram_size, &error_fatal);
277     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
278         main_mem);
279 
280     /* create device tree */
281     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
282 
283     /* boot rom */
284     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
285                            memmap[SPIKE_MROM].size, &error_fatal);
286     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
287                                 mask_rom);
288 
289     if (machine->kernel_filename) {
290         load_kernel(machine->kernel_filename);
291     }
292 
293     /* reset vector */
294     uint32_t reset_vec[8] = {
295         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
296         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
297         0xf1402573,                  /*     csrr   a0, mhartid  */
298 #if defined(TARGET_RISCV32)
299         0x0182a283,                  /*     lw     t0, 24(t0) */
300 #elif defined(TARGET_RISCV64)
301         0x0182b283,                  /*     ld     t0, 24(t0) */
302 #endif
303         0x00028067,                  /*     jr     t0 */
304         0x00000000,
305         memmap[SPIKE_DRAM].base,     /* start: .dword DRAM_BASE */
306         0x00000000,
307                                      /* dtb: */
308     };
309 
310     /* copy in the reset vector in little_endian byte order */
311     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
312         reset_vec[i] = cpu_to_le32(reset_vec[i]);
313     }
314     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
315                           memmap[SPIKE_MROM].base, &address_space_memory);
316 
317     /* copy in the device tree */
318     if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
319             memmap[SPIKE_MROM].size - sizeof(reset_vec)) {
320         error_report("not enough space to store device-tree");
321         exit(1);
322     }
323     qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
324     rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
325                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
326                           &address_space_memory);
327 
328     /* initialize HTIF using symbols found in load_kernel */
329     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
330 
331     /* Core Local Interruptor (timer and IPI) */
332     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
333         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
334 }
335 
336 static void spike_v1_09_1_board_init(MachineState *machine)
337 {
338     const struct MemmapEntry *memmap = spike_memmap;
339 
340     SpikeState *s = g_new0(SpikeState, 1);
341     MemoryRegion *system_memory = get_system_memory();
342     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
343     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
344     int i;
345 
346     if (!qtest_enabled()) {
347         info_report("The Spike v1.09.1 machine has been deprecated. "
348                     "Please use the generic spike machine and specify the ISA "
349                     "versions using -cpu.");
350     }
351 
352     /* Initialize SOC */
353     object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
354                             TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
355     object_property_set_str(OBJECT(&s->soc), SPIKE_V1_09_1_CPU, "cpu-type",
356                             &error_abort);
357     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
358                             &error_abort);
359     object_property_set_bool(OBJECT(&s->soc), true, "realized",
360                             &error_abort);
361 
362     /* register system main memory (actual RAM) */
363     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
364                            machine->ram_size, &error_fatal);
365     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
366         main_mem);
367 
368     /* boot rom */
369     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
370                            memmap[SPIKE_MROM].size, &error_fatal);
371     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
372                                 mask_rom);
373 
374     if (machine->kernel_filename) {
375         load_kernel(machine->kernel_filename);
376     }
377 
378     /* reset vector */
379     uint32_t reset_vec[8] = {
380         0x297 + memmap[SPIKE_DRAM].base - memmap[SPIKE_MROM].base, /* lui */
381         0x00028067,                   /* jump to DRAM_BASE */
382         0x00000000,                   /* reserved */
383         memmap[SPIKE_MROM].base + sizeof(reset_vec), /* config string pointer */
384         0, 0, 0, 0                    /* trap vector */
385     };
386 
387     /* part one of config string - before memory size specified */
388     const char *config_string_tmpl =
389         "platform {\n"
390         "  vendor ucb;\n"
391         "  arch spike;\n"
392         "};\n"
393         "rtc {\n"
394         "  addr 0x%" PRIx64 "x;\n"
395         "};\n"
396         "ram {\n"
397         "  0 {\n"
398         "    addr 0x%" PRIx64 "x;\n"
399         "    size 0x%" PRIx64 "x;\n"
400         "  };\n"
401         "};\n"
402         "core {\n"
403         "  0" " {\n"
404         "    " "0 {\n"
405         "      isa %s;\n"
406         "      timecmp 0x%" PRIx64 "x;\n"
407         "      ipi 0x%" PRIx64 "x;\n"
408         "    };\n"
409         "  };\n"
410         "};\n";
411 
412     /* build config string with supplied memory size */
413     char *isa = riscv_isa_string(&s->soc.harts[0]);
414     char *config_string = g_strdup_printf(config_string_tmpl,
415         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIME_BASE,
416         (uint64_t)memmap[SPIKE_DRAM].base,
417         (uint64_t)ram_size, isa,
418         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIMECMP_BASE,
419         (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_SIP_BASE);
420     g_free(isa);
421     size_t config_string_len = strlen(config_string);
422 
423     /* copy in the reset vector in little_endian byte order */
424     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
425         reset_vec[i] = cpu_to_le32(reset_vec[i]);
426     }
427     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
428                           memmap[SPIKE_MROM].base, &address_space_memory);
429 
430     /* copy in the config string */
431     rom_add_blob_fixed_as("mrom.reset", config_string, config_string_len,
432                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
433                           &address_space_memory);
434 
435     /* initialize HTIF using symbols found in load_kernel */
436     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
437 
438     /* Core Local Interruptor (timer and IPI) */
439     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
440         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
441 
442     g_free(config_string);
443 }
444 
445 static void spike_v1_09_1_machine_init(MachineClass *mc)
446 {
447     mc->desc = "RISC-V Spike Board (Privileged ISA v1.9.1)";
448     mc->init = spike_v1_09_1_board_init;
449     mc->max_cpus = 1;
450 }
451 
452 static void spike_v1_10_0_machine_init(MachineClass *mc)
453 {
454     mc->desc = "RISC-V Spike Board (Privileged ISA v1.10)";
455     mc->init = spike_v1_10_0_board_init;
456     mc->max_cpus = 1;
457 }
458 
459 static void spike_machine_init(MachineClass *mc)
460 {
461     mc->desc = "RISC-V Spike Board";
462     mc->init = spike_board_init;
463     mc->max_cpus = 1;
464     mc->is_default = 1;
465     mc->default_cpu_type = SPIKE_V1_10_0_CPU;
466 }
467 
468 DEFINE_MACHINE("spike_v1.9.1", spike_v1_09_1_machine_init)
469 DEFINE_MACHINE("spike_v1.10", spike_v1_10_0_machine_init)
470 DEFINE_MACHINE("spike", spike_machine_init)
471