xref: /openbmc/qemu/hw/riscv/spike.c (revision 6d9abb6d)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_hart.h"
35 #include "hw/riscv/spike.h"
36 #include "hw/riscv/boot.h"
37 #include "hw/riscv/numa.h"
38 #include "hw/char/riscv_htif.h"
39 #include "hw/intc/sifive_clint.h"
40 #include "chardev/char.h"
41 #include "sysemu/arch_init.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/sysemu.h"
44 
45 static const MemMapEntry spike_memmap[] = {
46     [SPIKE_MROM] =     {     0x1000,     0xf000 },
47     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
48     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
49 };
50 
51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
53 {
54     void *fdt;
55     uint64_t addr, size;
56     unsigned long clint_addr;
57     int cpu, socket;
58     MachineState *mc = MACHINE(s);
59     uint32_t *clint_cells;
60     uint32_t cpu_phandle, intc_phandle, phandle = 1;
61     char *name, *mem_name, *clint_name, *clust_name;
62     char *core_name, *cpu_name, *intc_name;
63 
64     fdt = s->fdt = create_device_tree(&s->fdt_size);
65     if (!fdt) {
66         error_report("create_device_tree() failed");
67         exit(1);
68     }
69 
70     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
71     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
72     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
73     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
74 
75     qemu_fdt_add_subnode(fdt, "/htif");
76     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
77 
78     qemu_fdt_add_subnode(fdt, "/soc");
79     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
80     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
81     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
82     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
83 
84     qemu_fdt_add_subnode(fdt, "/cpus");
85     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
86         SIFIVE_CLINT_TIMEBASE_FREQ);
87     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
88     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
89     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
90 
91     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
92         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
93         qemu_fdt_add_subnode(fdt, clust_name);
94 
95         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
96 
97         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
98             cpu_phandle = phandle++;
99 
100             cpu_name = g_strdup_printf("/cpus/cpu@%d",
101                 s->soc[socket].hartid_base + cpu);
102             qemu_fdt_add_subnode(fdt, cpu_name);
103             if (is_32_bit) {
104                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
105             } else {
106                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
107             }
108             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
109             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
110             g_free(name);
111             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
112             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
113             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
114                 s->soc[socket].hartid_base + cpu);
115             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
116             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
117             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
118 
119             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
120             qemu_fdt_add_subnode(fdt, intc_name);
121             intc_phandle = phandle++;
122             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
123             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
124                 "riscv,cpu-intc");
125             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
126             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
127 
128             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
129             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
130             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
131             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
132 
133             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
134             qemu_fdt_add_subnode(fdt, core_name);
135             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
136 
137             g_free(core_name);
138             g_free(intc_name);
139             g_free(cpu_name);
140         }
141 
142         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
143         size = riscv_socket_mem_size(mc, socket);
144         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
145         qemu_fdt_add_subnode(fdt, mem_name);
146         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
147             addr >> 32, addr, size >> 32, size);
148         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
149         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
150         g_free(mem_name);
151 
152         clint_addr = memmap[SPIKE_CLINT].base +
153             (memmap[SPIKE_CLINT].size * socket);
154         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
155         qemu_fdt_add_subnode(fdt, clint_name);
156         qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
157         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
158             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
159         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
160             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
161         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
162 
163         g_free(clint_name);
164         g_free(clint_cells);
165         g_free(clust_name);
166     }
167 
168     riscv_socket_fdt_write_distance_matrix(mc, fdt);
169 
170     if (cmdline) {
171         qemu_fdt_add_subnode(fdt, "/chosen");
172         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
173     }
174 }
175 
176 static void spike_board_init(MachineState *machine)
177 {
178     const MemMapEntry *memmap = spike_memmap;
179     SpikeState *s = SPIKE_MACHINE(machine);
180     MemoryRegion *system_memory = get_system_memory();
181     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
182     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
183     target_ulong firmware_end_addr, kernel_start_addr;
184     uint32_t fdt_load_addr;
185     uint64_t kernel_entry;
186     char *soc_name;
187     int i, base_hartid, hart_count;
188 
189     /* Check socket count limit */
190     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
191         error_report("number of sockets/nodes should be less than %d",
192             SPIKE_SOCKETS_MAX);
193         exit(1);
194     }
195 
196     /* Initialize sockets */
197     for (i = 0; i < riscv_socket_count(machine); i++) {
198         if (!riscv_socket_check_hartids(machine, i)) {
199             error_report("discontinuous hartids in socket%d", i);
200             exit(1);
201         }
202 
203         base_hartid = riscv_socket_first_hartid(machine, i);
204         if (base_hartid < 0) {
205             error_report("can't find hartid base for socket%d", i);
206             exit(1);
207         }
208 
209         hart_count = riscv_socket_hart_count(machine, i);
210         if (hart_count < 0) {
211             error_report("can't find hart count for socket%d", i);
212             exit(1);
213         }
214 
215         soc_name = g_strdup_printf("soc%d", i);
216         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
217                                 TYPE_RISCV_HART_ARRAY);
218         g_free(soc_name);
219         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
220                                 machine->cpu_type, &error_abort);
221         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
222                                 base_hartid, &error_abort);
223         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
224                                 hart_count, &error_abort);
225         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
226 
227         /* Core Local Interruptor (timer and IPI) for each socket */
228         sifive_clint_create(
229             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
230             memmap[SPIKE_CLINT].size, base_hartid, hart_count,
231             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
232             SIFIVE_CLINT_TIMEBASE_FREQ, false);
233     }
234 
235     /* register system main memory (actual RAM) */
236     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
237                            machine->ram_size, &error_fatal);
238     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
239         main_mem);
240 
241     /* create device tree */
242     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
243                riscv_is_32bit(&s->soc[0]));
244 
245     /* boot rom */
246     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
247                            memmap[SPIKE_MROM].size, &error_fatal);
248     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
249                                 mask_rom);
250 
251     /*
252      * Not like other RISC-V machines that use plain binary bios images,
253      * keeping ELF files here was intentional because BIN files don't work
254      * for the Spike machine as HTIF emulation depends on ELF parsing.
255      */
256     if (riscv_is_32bit(&s->soc[0])) {
257         firmware_end_addr = riscv_find_and_load_firmware(machine,
258                                     "opensbi-riscv32-generic-fw_dynamic.elf",
259                                     memmap[SPIKE_DRAM].base,
260                                     htif_symbol_callback);
261     } else {
262         firmware_end_addr = riscv_find_and_load_firmware(machine,
263                                     "opensbi-riscv64-generic-fw_dynamic.elf",
264                                     memmap[SPIKE_DRAM].base,
265                                     htif_symbol_callback);
266     }
267 
268     if (machine->kernel_filename) {
269         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
270                                                          firmware_end_addr);
271 
272         kernel_entry = riscv_load_kernel(machine->kernel_filename,
273                                          kernel_start_addr,
274                                          htif_symbol_callback);
275 
276         if (machine->initrd_filename) {
277             hwaddr start;
278             hwaddr end = riscv_load_initrd(machine->initrd_filename,
279                                            machine->ram_size, kernel_entry,
280                                            &start);
281             qemu_fdt_setprop_cell(s->fdt, "/chosen",
282                                   "linux,initrd-start", start);
283             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
284                                   end);
285         }
286     } else {
287        /*
288         * If dynamic firmware is used, it doesn't know where is the next mode
289         * if kernel argument is not set.
290         */
291         kernel_entry = 0;
292     }
293 
294     /* Compute the fdt load address in dram */
295     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
296                                    machine->ram_size, s->fdt);
297     /* load the reset vector */
298     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
299                               memmap[SPIKE_MROM].base,
300                               memmap[SPIKE_MROM].size, kernel_entry,
301                               fdt_load_addr, s->fdt);
302 
303     /* initialize HTIF using symbols found in load_kernel */
304     htif_mm_init(system_memory, mask_rom,
305                  &s->soc[0].harts[0].env, serial_hd(0));
306 }
307 
308 static void spike_machine_instance_init(Object *obj)
309 {
310 }
311 
312 static void spike_machine_class_init(ObjectClass *oc, void *data)
313 {
314     MachineClass *mc = MACHINE_CLASS(oc);
315 
316     mc->desc = "RISC-V Spike board";
317     mc->init = spike_board_init;
318     mc->max_cpus = SPIKE_CPUS_MAX;
319     mc->is_default = true;
320     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
321     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
322     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
323     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
324     mc->numa_mem_supported = true;
325 }
326 
327 static const TypeInfo spike_machine_typeinfo = {
328     .name       = MACHINE_TYPE_NAME("spike"),
329     .parent     = TYPE_MACHINE,
330     .class_init = spike_machine_class_init,
331     .instance_init = spike_machine_instance_init,
332     .instance_size = sizeof(SpikeState),
333 };
334 
335 static void spike_machine_init_register_types(void)
336 {
337     type_register_static(&spike_machine_typeinfo);
338 }
339 
340 type_init(spike_machine_init_register_types)
341