1 /* 2 * QEMU RISC-V Spike Board 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This provides a RISC-V Board with the following devices: 8 * 9 * 0) HTIF Console and Poweroff 10 * 1) CLINT (Timer and IPI) 11 * 2) PLIC (Platform Level Interrupt Controller) 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms and conditions of the GNU General Public License, 15 * version 2 or later, as published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * You should have received a copy of the GNU General Public License along with 23 * this program. If not, see <http://www.gnu.org/licenses/>. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/log.h" 28 #include "qemu/error-report.h" 29 #include "qapi/error.h" 30 #include "hw/hw.h" 31 #include "hw/boards.h" 32 #include "hw/loader.h" 33 #include "hw/sysbus.h" 34 #include "target/riscv/cpu.h" 35 #include "hw/riscv/riscv_htif.h" 36 #include "hw/riscv/riscv_hart.h" 37 #include "hw/riscv/sifive_clint.h" 38 #include "hw/riscv/spike.h" 39 #include "chardev/char.h" 40 #include "sysemu/arch_init.h" 41 #include "sysemu/device_tree.h" 42 #include "exec/address-spaces.h" 43 #include "elf.h" 44 45 #include <libfdt.h> 46 47 static const struct MemmapEntry { 48 hwaddr base; 49 hwaddr size; 50 } spike_memmap[] = { 51 [SPIKE_MROM] = { 0x1000, 0x11000 }, 52 [SPIKE_CLINT] = { 0x2000000, 0x10000 }, 53 [SPIKE_DRAM] = { 0x80000000, 0x0 }, 54 }; 55 56 static target_ulong load_kernel(const char *kernel_filename) 57 { 58 uint64_t kernel_entry, kernel_high; 59 60 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, 61 &kernel_entry, NULL, &kernel_high, 0, EM_RISCV, 1, 0, 62 NULL, true, htif_symbol_callback) < 0) { 63 error_report("could not load kernel '%s'", kernel_filename); 64 exit(1); 65 } 66 return kernel_entry; 67 } 68 69 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap, 70 uint64_t mem_size, const char *cmdline) 71 { 72 void *fdt; 73 int cpu; 74 uint32_t *cells; 75 char *nodename; 76 77 fdt = s->fdt = create_device_tree(&s->fdt_size); 78 if (!fdt) { 79 error_report("create_device_tree() failed"); 80 exit(1); 81 } 82 83 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu"); 84 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev"); 85 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 86 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 87 88 qemu_fdt_add_subnode(fdt, "/htif"); 89 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0"); 90 91 qemu_fdt_add_subnode(fdt, "/soc"); 92 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 93 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 94 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); 95 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); 96 97 nodename = g_strdup_printf("/memory@%lx", 98 (long)memmap[SPIKE_DRAM].base); 99 qemu_fdt_add_subnode(fdt, nodename); 100 qemu_fdt_setprop_cells(fdt, nodename, "reg", 101 memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base, 102 mem_size >> 32, mem_size); 103 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); 104 g_free(nodename); 105 106 qemu_fdt_add_subnode(fdt, "/cpus"); 107 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 108 SIFIVE_CLINT_TIMEBASE_FREQ); 109 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 110 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 111 112 for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) { 113 nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 114 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 115 char *isa = riscv_isa_string(&s->soc.harts[cpu]); 116 qemu_fdt_add_subnode(fdt, nodename); 117 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 118 SPIKE_CLOCK_FREQ); 119 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); 120 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); 121 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); 122 qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); 123 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); 124 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); 125 qemu_fdt_add_subnode(fdt, intc); 126 qemu_fdt_setprop_cell(fdt, intc, "phandle", 1); 127 qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", 1); 128 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); 129 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); 130 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); 131 g_free(isa); 132 g_free(intc); 133 g_free(nodename); 134 } 135 136 cells = g_new0(uint32_t, s->soc.num_harts * 4); 137 for (cpu = 0; cpu < s->soc.num_harts; cpu++) { 138 nodename = 139 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 140 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); 141 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 142 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); 143 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 144 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); 145 g_free(nodename); 146 } 147 nodename = g_strdup_printf("/soc/clint@%lx", 148 (long)memmap[SPIKE_CLINT].base); 149 qemu_fdt_add_subnode(fdt, nodename); 150 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); 151 qemu_fdt_setprop_cells(fdt, nodename, "reg", 152 0x0, memmap[SPIKE_CLINT].base, 153 0x0, memmap[SPIKE_CLINT].size); 154 qemu_fdt_setprop(fdt, nodename, "interrupts-extended", 155 cells, s->soc.num_harts * sizeof(uint32_t) * 4); 156 g_free(cells); 157 g_free(nodename); 158 159 if (cmdline) { 160 qemu_fdt_add_subnode(fdt, "/chosen"); 161 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 162 } 163 } 164 165 static void spike_v1_10_0_board_init(MachineState *machine) 166 { 167 const struct MemmapEntry *memmap = spike_memmap; 168 169 SpikeState *s = g_new0(SpikeState, 1); 170 MemoryRegion *system_memory = get_system_memory(); 171 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 172 MemoryRegion *mask_rom = g_new(MemoryRegion, 1); 173 int i; 174 175 /* Initialize SOC */ 176 object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc), 177 TYPE_RISCV_HART_ARRAY, &error_abort, NULL); 178 object_property_set_str(OBJECT(&s->soc), SPIKE_V1_10_0_CPU, "cpu-type", 179 &error_abort); 180 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts", 181 &error_abort); 182 object_property_set_bool(OBJECT(&s->soc), true, "realized", 183 &error_abort); 184 185 /* register system main memory (actual RAM) */ 186 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram", 187 machine->ram_size, &error_fatal); 188 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base, 189 main_mem); 190 191 /* create device tree */ 192 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); 193 194 /* boot rom */ 195 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom", 196 memmap[SPIKE_MROM].size, &error_fatal); 197 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base, 198 mask_rom); 199 200 if (machine->kernel_filename) { 201 load_kernel(machine->kernel_filename); 202 } 203 204 /* reset vector */ 205 uint32_t reset_vec[8] = { 206 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 207 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */ 208 0xf1402573, /* csrr a0, mhartid */ 209 #if defined(TARGET_RISCV32) 210 0x0182a283, /* lw t0, 24(t0) */ 211 #elif defined(TARGET_RISCV64) 212 0x0182b283, /* ld t0, 24(t0) */ 213 #endif 214 0x00028067, /* jr t0 */ 215 0x00000000, 216 memmap[SPIKE_DRAM].base, /* start: .dword DRAM_BASE */ 217 0x00000000, 218 /* dtb: */ 219 }; 220 221 /* copy in the reset vector in little_endian byte order */ 222 for (i = 0; i < sizeof(reset_vec) >> 2; i++) { 223 reset_vec[i] = cpu_to_le32(reset_vec[i]); 224 } 225 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), 226 memmap[SPIKE_MROM].base, &address_space_memory); 227 228 /* copy in the device tree */ 229 if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) > 230 memmap[SPIKE_MROM].size - sizeof(reset_vec)) { 231 error_report("not enough space to store device-tree"); 232 exit(1); 233 } 234 qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt)); 235 rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt), 236 memmap[SPIKE_MROM].base + sizeof(reset_vec), 237 &address_space_memory); 238 239 /* initialize HTIF using symbols found in load_kernel */ 240 htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0)); 241 242 /* Core Local Interruptor (timer and IPI) */ 243 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size, 244 smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE); 245 } 246 247 static void spike_v1_09_1_board_init(MachineState *machine) 248 { 249 const struct MemmapEntry *memmap = spike_memmap; 250 251 SpikeState *s = g_new0(SpikeState, 1); 252 MemoryRegion *system_memory = get_system_memory(); 253 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 254 MemoryRegion *mask_rom = g_new(MemoryRegion, 1); 255 int i; 256 257 /* Initialize SOC */ 258 object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc), 259 TYPE_RISCV_HART_ARRAY, &error_abort, NULL); 260 object_property_set_str(OBJECT(&s->soc), SPIKE_V1_09_1_CPU, "cpu-type", 261 &error_abort); 262 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts", 263 &error_abort); 264 object_property_set_bool(OBJECT(&s->soc), true, "realized", 265 &error_abort); 266 267 /* register system main memory (actual RAM) */ 268 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram", 269 machine->ram_size, &error_fatal); 270 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base, 271 main_mem); 272 273 /* boot rom */ 274 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom", 275 memmap[SPIKE_MROM].size, &error_fatal); 276 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base, 277 mask_rom); 278 279 if (machine->kernel_filename) { 280 load_kernel(machine->kernel_filename); 281 } 282 283 /* reset vector */ 284 uint32_t reset_vec[8] = { 285 0x297 + memmap[SPIKE_DRAM].base - memmap[SPIKE_MROM].base, /* lui */ 286 0x00028067, /* jump to DRAM_BASE */ 287 0x00000000, /* reserved */ 288 memmap[SPIKE_MROM].base + sizeof(reset_vec), /* config string pointer */ 289 0, 0, 0, 0 /* trap vector */ 290 }; 291 292 /* part one of config string - before memory size specified */ 293 const char *config_string_tmpl = 294 "platform {\n" 295 " vendor ucb;\n" 296 " arch spike;\n" 297 "};\n" 298 "rtc {\n" 299 " addr 0x%" PRIx64 "x;\n" 300 "};\n" 301 "ram {\n" 302 " 0 {\n" 303 " addr 0x%" PRIx64 "x;\n" 304 " size 0x%" PRIx64 "x;\n" 305 " };\n" 306 "};\n" 307 "core {\n" 308 " 0" " {\n" 309 " " "0 {\n" 310 " isa %s;\n" 311 " timecmp 0x%" PRIx64 "x;\n" 312 " ipi 0x%" PRIx64 "x;\n" 313 " };\n" 314 " };\n" 315 "};\n"; 316 317 /* build config string with supplied memory size */ 318 char *isa = riscv_isa_string(&s->soc.harts[0]); 319 char *config_string = g_strdup_printf(config_string_tmpl, 320 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIME_BASE, 321 (uint64_t)memmap[SPIKE_DRAM].base, 322 (uint64_t)ram_size, isa, 323 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIMECMP_BASE, 324 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_SIP_BASE); 325 g_free(isa); 326 size_t config_string_len = strlen(config_string); 327 328 /* copy in the reset vector in little_endian byte order */ 329 for (i = 0; i < sizeof(reset_vec) >> 2; i++) { 330 reset_vec[i] = cpu_to_le32(reset_vec[i]); 331 } 332 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), 333 memmap[SPIKE_MROM].base, &address_space_memory); 334 335 /* copy in the config string */ 336 rom_add_blob_fixed_as("mrom.reset", config_string, config_string_len, 337 memmap[SPIKE_MROM].base + sizeof(reset_vec), 338 &address_space_memory); 339 340 /* initialize HTIF using symbols found in load_kernel */ 341 htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0)); 342 343 /* Core Local Interruptor (timer and IPI) */ 344 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size, 345 smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE); 346 347 g_free(config_string); 348 } 349 350 static void spike_v1_09_1_machine_init(MachineClass *mc) 351 { 352 mc->desc = "RISC-V Spike Board (Privileged ISA v1.9.1)"; 353 mc->init = spike_v1_09_1_board_init; 354 mc->max_cpus = 1; 355 } 356 357 static void spike_v1_10_0_machine_init(MachineClass *mc) 358 { 359 mc->desc = "RISC-V Spike Board (Privileged ISA v1.10)"; 360 mc->init = spike_v1_10_0_board_init; 361 mc->max_cpus = 1; 362 mc->is_default = 1; 363 } 364 365 DEFINE_MACHINE("spike_v1.9.1", spike_v1_09_1_machine_init) 366 DEFINE_MACHINE("spike_v1.10", spike_v1_10_0_machine_init) 367