xref: /openbmc/qemu/hw/riscv/spike.c (revision 2055dbc1)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_htif.h"
35 #include "hw/riscv/riscv_hart.h"
36 #include "hw/riscv/sifive_clint.h"
37 #include "hw/riscv/spike.h"
38 #include "hw/riscv/boot.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/sysemu.h"
44 #include "exec/address-spaces.h"
45 
46 #include <libfdt.h>
47 
48 #if defined(TARGET_RISCV32)
49 # define BIOS_FILENAME "opensbi-riscv32-spike-fw_jump.elf"
50 #else
51 # define BIOS_FILENAME "opensbi-riscv64-spike-fw_jump.elf"
52 #endif
53 
54 static const struct MemmapEntry {
55     hwaddr base;
56     hwaddr size;
57 } spike_memmap[] = {
58     [SPIKE_MROM] =     {     0x1000,    0x11000 },
59     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
60     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
61 };
62 
63 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
64     uint64_t mem_size, const char *cmdline)
65 {
66     void *fdt;
67     int cpu;
68     uint32_t *cells;
69     char *nodename;
70 
71     fdt = s->fdt = create_device_tree(&s->fdt_size);
72     if (!fdt) {
73         error_report("create_device_tree() failed");
74         exit(1);
75     }
76 
77     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
78     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
79     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
80     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
81 
82     qemu_fdt_add_subnode(fdt, "/htif");
83     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
84 
85     qemu_fdt_add_subnode(fdt, "/soc");
86     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
87     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
88     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
89     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
90 
91     nodename = g_strdup_printf("/memory@%lx",
92         (long)memmap[SPIKE_DRAM].base);
93     qemu_fdt_add_subnode(fdt, nodename);
94     qemu_fdt_setprop_cells(fdt, nodename, "reg",
95         memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
96         mem_size >> 32, mem_size);
97     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
98     g_free(nodename);
99 
100     qemu_fdt_add_subnode(fdt, "/cpus");
101     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
102         SIFIVE_CLINT_TIMEBASE_FREQ);
103     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
104     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
105 
106     for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
107         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
108         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
109         char *isa = riscv_isa_string(&s->soc.harts[cpu]);
110         qemu_fdt_add_subnode(fdt, nodename);
111 #if defined(TARGET_RISCV32)
112         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
113 #else
114         qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
115 #endif
116         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
117         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
118         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
119         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
120         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
121         qemu_fdt_add_subnode(fdt, intc);
122         qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
123         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
124         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
125         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
126         g_free(isa);
127         g_free(intc);
128         g_free(nodename);
129     }
130 
131     cells =  g_new0(uint32_t, s->soc.num_harts * 4);
132     for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
133         nodename =
134             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
135         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
136         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
137         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
138         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
139         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
140         g_free(nodename);
141     }
142     nodename = g_strdup_printf("/soc/clint@%lx",
143         (long)memmap[SPIKE_CLINT].base);
144     qemu_fdt_add_subnode(fdt, nodename);
145     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
146     qemu_fdt_setprop_cells(fdt, nodename, "reg",
147         0x0, memmap[SPIKE_CLINT].base,
148         0x0, memmap[SPIKE_CLINT].size);
149     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
150         cells, s->soc.num_harts * sizeof(uint32_t) * 4);
151     g_free(cells);
152     g_free(nodename);
153 
154     if (cmdline) {
155         qemu_fdt_add_subnode(fdt, "/chosen");
156         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
157     }
158 }
159 
160 static void spike_board_init(MachineState *machine)
161 {
162     const struct MemmapEntry *memmap = spike_memmap;
163 
164     SpikeState *s = g_new0(SpikeState, 1);
165     MemoryRegion *system_memory = get_system_memory();
166     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
167     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
168     int i;
169     unsigned int smp_cpus = machine->smp.cpus;
170 
171     /* Initialize SOC */
172     object_initialize_child(OBJECT(machine), "soc", &s->soc,
173                             TYPE_RISCV_HART_ARRAY);
174     object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type",
175                             &error_abort);
176     object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
177                             &error_abort);
178     sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_abort);
179 
180     /* register system main memory (actual RAM) */
181     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
182                            machine->ram_size, &error_fatal);
183     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
184         main_mem);
185 
186     /* create device tree */
187     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
188 
189     /* boot rom */
190     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
191                            memmap[SPIKE_MROM].size, &error_fatal);
192     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
193                                 mask_rom);
194 
195     riscv_find_and_load_firmware(machine, BIOS_FILENAME,
196                                  memmap[SPIKE_DRAM].base,
197                                  htif_symbol_callback);
198 
199     if (machine->kernel_filename) {
200         uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
201                                                   htif_symbol_callback);
202 
203         if (machine->initrd_filename) {
204             hwaddr start;
205             hwaddr end = riscv_load_initrd(machine->initrd_filename,
206                                            machine->ram_size, kernel_entry,
207                                            &start);
208             qemu_fdt_setprop_cell(s->fdt, "/chosen",
209                                   "linux,initrd-start", start);
210             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
211                                   end);
212         }
213     }
214 
215     /* reset vector */
216     uint32_t reset_vec[8] = {
217         0x00000297,                  /* 1:  auipc  t0, %pcrel_hi(dtb) */
218         0x02028593,                  /*     addi   a1, t0, %pcrel_lo(1b) */
219         0xf1402573,                  /*     csrr   a0, mhartid  */
220 #if defined(TARGET_RISCV32)
221         0x0182a283,                  /*     lw     t0, 24(t0) */
222 #elif defined(TARGET_RISCV64)
223         0x0182b283,                  /*     ld     t0, 24(t0) */
224 #endif
225         0x00028067,                  /*     jr     t0 */
226         0x00000000,
227         memmap[SPIKE_DRAM].base,     /* start: .dword DRAM_BASE */
228         0x00000000,
229                                      /* dtb: */
230     };
231 
232     /* copy in the reset vector in little_endian byte order */
233     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
234         reset_vec[i] = cpu_to_le32(reset_vec[i]);
235     }
236     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
237                           memmap[SPIKE_MROM].base, &address_space_memory);
238 
239     /* copy in the device tree */
240     if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
241             memmap[SPIKE_MROM].size - sizeof(reset_vec)) {
242         error_report("not enough space to store device-tree");
243         exit(1);
244     }
245     qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
246     rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
247                           memmap[SPIKE_MROM].base + sizeof(reset_vec),
248                           &address_space_memory);
249 
250     /* initialize HTIF using symbols found in load_kernel */
251     htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
252 
253     /* Core Local Interruptor (timer and IPI) */
254     sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
255         smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
256         false);
257 }
258 
259 static void spike_machine_init(MachineClass *mc)
260 {
261     mc->desc = "RISC-V Spike Board";
262     mc->init = spike_board_init;
263     mc->max_cpus = 8;
264     mc->is_default = true;
265     mc->default_cpu_type = SPIKE_V1_10_0_CPU;
266 }
267 
268 DEFINE_MACHINE("spike", spike_machine_init)
269