1 /*
2 * QEMU RISC-V Spike Board
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This provides a RISC-V Board with the following devices:
8 *
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2 or later, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/loader.h"
30 #include "hw/sysbus.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/spike.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/char/riscv_htif.h"
37 #include "hw/intc/riscv_aclint.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41
42 #include <libfdt.h>
43
44 static const MemMapEntry spike_memmap[] = {
45 [SPIKE_MROM] = { 0x1000, 0xf000 },
46 [SPIKE_HTIF] = { 0x1000000, 0x1000 },
47 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
48 [SPIKE_DRAM] = { 0x80000000, 0x0 },
49 };
50
create_fdt(SpikeState * s,const MemMapEntry * memmap,bool is_32_bit,bool htif_custom_base)51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52 bool is_32_bit, bool htif_custom_base)
53 {
54 void *fdt;
55 int fdt_size;
56 uint64_t addr, size;
57 unsigned long clint_addr;
58 int cpu, socket;
59 MachineState *ms = MACHINE(s);
60 uint32_t *clint_cells;
61 uint32_t cpu_phandle, intc_phandle, phandle = 1;
62 char *mem_name, *clint_name, *clust_name;
63 char *core_name, *cpu_name, *intc_name;
64 static const char * const clint_compat[2] = {
65 "sifive,clint0", "riscv,clint0"
66 };
67
68 fdt = ms->fdt = create_device_tree(&fdt_size);
69 if (!fdt) {
70 error_report("create_device_tree() failed");
71 exit(1);
72 }
73
74 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
75 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
76 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
77 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
78
79 qemu_fdt_add_subnode(fdt, "/htif");
80 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
81 if (htif_custom_base) {
82 qemu_fdt_setprop_cells(fdt, "/htif", "reg",
83 0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
84 }
85
86 qemu_fdt_add_subnode(fdt, "/soc");
87 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
88 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
89 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
90 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
91
92 qemu_fdt_add_subnode(fdt, "/cpus");
93 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
94 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
95 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
96 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
97 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
98
99 for (socket = (riscv_socket_count(ms) - 1); socket >= 0; socket--) {
100 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
101 qemu_fdt_add_subnode(fdt, clust_name);
102
103 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
104
105 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
106 cpu_phandle = phandle++;
107
108 cpu_name = g_strdup_printf("/cpus/cpu@%d",
109 s->soc[socket].hartid_base + cpu);
110 qemu_fdt_add_subnode(fdt, cpu_name);
111 if (is_32_bit) {
112 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
113 } else {
114 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
115 }
116 riscv_isa_write_fdt(&s->soc[socket].harts[cpu], fdt, cpu_name);
117 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
118 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
119 qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
120 s->soc[socket].hartid_base + cpu);
121 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
122 riscv_socket_fdt_write_id(ms, cpu_name, socket);
123 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
124
125 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
126 qemu_fdt_add_subnode(fdt, intc_name);
127 intc_phandle = phandle++;
128 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
129 qemu_fdt_setprop_string(fdt, intc_name, "compatible",
130 "riscv,cpu-intc");
131 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
132 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
133
134 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
135 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
136 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
137 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
138
139 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
140 qemu_fdt_add_subnode(fdt, core_name);
141 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
142
143 g_free(core_name);
144 g_free(intc_name);
145 g_free(cpu_name);
146 }
147
148 addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(ms, socket);
149 size = riscv_socket_mem_size(ms, socket);
150 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
151 qemu_fdt_add_subnode(fdt, mem_name);
152 qemu_fdt_setprop_cells(fdt, mem_name, "reg",
153 addr >> 32, addr, size >> 32, size);
154 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
155 riscv_socket_fdt_write_id(ms, mem_name, socket);
156 g_free(mem_name);
157
158 clint_addr = memmap[SPIKE_CLINT].base +
159 (memmap[SPIKE_CLINT].size * socket);
160 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
161 qemu_fdt_add_subnode(fdt, clint_name);
162 qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
163 (char **)&clint_compat, ARRAY_SIZE(clint_compat));
164 qemu_fdt_setprop_cells(fdt, clint_name, "reg",
165 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
166 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
167 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
168 riscv_socket_fdt_write_id(ms, clint_name, socket);
169
170 g_free(clint_name);
171 g_free(clint_cells);
172 g_free(clust_name);
173 }
174
175 riscv_socket_fdt_write_distance_matrix(ms);
176
177 qemu_fdt_add_subnode(fdt, "/chosen");
178 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
179 }
180
spike_test_elf_image(char * filename)181 static bool spike_test_elf_image(char *filename)
182 {
183 Error *err = NULL;
184
185 load_elf_hdr(filename, NULL, NULL, &err);
186 if (err) {
187 error_free(err);
188 return false;
189 } else {
190 return true;
191 }
192 }
193
spike_board_init(MachineState * machine)194 static void spike_board_init(MachineState *machine)
195 {
196 const MemMapEntry *memmap = spike_memmap;
197 SpikeState *s = SPIKE_MACHINE(machine);
198 MemoryRegion *system_memory = get_system_memory();
199 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
200 target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
201 target_ulong kernel_start_addr;
202 char *firmware_name;
203 uint32_t fdt_load_addr;
204 uint64_t kernel_entry;
205 char *soc_name;
206 int i, base_hartid, hart_count;
207 bool htif_custom_base = false;
208
209 /* Check socket count limit */
210 if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
211 error_report("number of sockets/nodes should be less than %d",
212 SPIKE_SOCKETS_MAX);
213 exit(1);
214 }
215
216 /* Initialize sockets */
217 for (i = 0; i < riscv_socket_count(machine); i++) {
218 if (!riscv_socket_check_hartids(machine, i)) {
219 error_report("discontinuous hartids in socket%d", i);
220 exit(1);
221 }
222
223 base_hartid = riscv_socket_first_hartid(machine, i);
224 if (base_hartid < 0) {
225 error_report("can't find hartid base for socket%d", i);
226 exit(1);
227 }
228
229 hart_count = riscv_socket_hart_count(machine, i);
230 if (hart_count < 0) {
231 error_report("can't find hart count for socket%d", i);
232 exit(1);
233 }
234
235 soc_name = g_strdup_printf("soc%d", i);
236 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
237 TYPE_RISCV_HART_ARRAY);
238 g_free(soc_name);
239 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
240 machine->cpu_type, &error_abort);
241 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
242 base_hartid, &error_abort);
243 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
244 hart_count, &error_abort);
245 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
246
247 /* Core Local Interruptor (timer and IPI) for each socket */
248 riscv_aclint_swi_create(
249 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
250 base_hartid, hart_count, false);
251 riscv_aclint_mtimer_create(
252 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
253 RISCV_ACLINT_SWI_SIZE,
254 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
255 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
256 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
257 }
258
259 /* register system main memory (actual RAM) */
260 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
261 machine->ram);
262
263 /* boot rom */
264 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
265 memmap[SPIKE_MROM].size, &error_fatal);
266 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
267 mask_rom);
268
269 /* Find firmware */
270 firmware_name = riscv_find_firmware(machine->firmware,
271 riscv_default_firmware_name(&s->soc[0]));
272
273 /*
274 * Test the given firmware or kernel file to see if it is an ELF image.
275 * If it is an ELF, we assume it contains the symbols required for
276 * the HTIF console, otherwise we fall back to use the custom base
277 * passed from device tree for the HTIF console.
278 */
279 if (!firmware_name && !machine->kernel_filename) {
280 htif_custom_base = true;
281 } else {
282 if (firmware_name) {
283 htif_custom_base = !spike_test_elf_image(firmware_name);
284 }
285 if (!htif_custom_base && machine->kernel_filename) {
286 htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
287 }
288 }
289
290 /* Load firmware */
291 if (firmware_name) {
292 firmware_end_addr = riscv_load_firmware(firmware_name,
293 memmap[SPIKE_DRAM].base,
294 htif_symbol_callback);
295 g_free(firmware_name);
296 }
297
298 /* Create device tree */
299 create_fdt(s, memmap, riscv_is_32bit(&s->soc[0]), htif_custom_base);
300
301 /* Load kernel */
302 if (machine->kernel_filename) {
303 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
304 firmware_end_addr);
305
306 kernel_entry = riscv_load_kernel(machine, &s->soc[0],
307 kernel_start_addr,
308 true, htif_symbol_callback);
309 } else {
310 /*
311 * If dynamic firmware is used, it doesn't know where is the next mode
312 * if kernel argument is not set.
313 */
314 kernel_entry = 0;
315 }
316
317 fdt_load_addr = riscv_compute_fdt_addr(memmap[SPIKE_DRAM].base,
318 memmap[SPIKE_DRAM].size,
319 machine);
320 riscv_load_fdt(fdt_load_addr, machine->fdt);
321
322 /* load the reset vector */
323 riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
324 memmap[SPIKE_MROM].base,
325 memmap[SPIKE_MROM].size, kernel_entry,
326 fdt_load_addr);
327
328 /* initialize HTIF using symbols found in load_kernel */
329 htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
330 htif_custom_base);
331 }
332
spike_set_signature(Object * obj,const char * val,Error ** errp)333 static void spike_set_signature(Object *obj, const char *val, Error **errp)
334 {
335 sig_file = g_strdup(val);
336 }
337
spike_machine_instance_init(Object * obj)338 static void spike_machine_instance_init(Object *obj)
339 {
340 }
341
spike_machine_class_init(ObjectClass * oc,void * data)342 static void spike_machine_class_init(ObjectClass *oc, void *data)
343 {
344 MachineClass *mc = MACHINE_CLASS(oc);
345
346 mc->desc = "RISC-V Spike board";
347 mc->init = spike_board_init;
348 mc->max_cpus = SPIKE_CPUS_MAX;
349 mc->is_default = true;
350 mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
351 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
352 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
353 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
354 mc->numa_mem_supported = true;
355 /* platform instead of architectural choice */
356 mc->cpu_cluster_has_numa_boundary = true;
357 mc->default_ram_id = "riscv.spike.ram";
358 object_class_property_add_str(oc, "signature", NULL, spike_set_signature);
359 object_class_property_set_description(oc, "signature",
360 "File to write ACT test signature");
361 object_class_property_add_uint8_ptr(oc, "signature-granularity",
362 &line_size, OBJ_PROP_FLAG_WRITE);
363 object_class_property_set_description(oc, "signature-granularity",
364 "Size of each line in ACT signature "
365 "file");
366 }
367
368 static const TypeInfo spike_machine_typeinfo = {
369 .name = MACHINE_TYPE_NAME("spike"),
370 .parent = TYPE_MACHINE,
371 .class_init = spike_machine_class_init,
372 .instance_init = spike_machine_instance_init,
373 .instance_size = sizeof(SpikeState),
374 };
375
spike_machine_init_register_types(void)376 static void spike_machine_init_register_types(void)
377 {
378 type_register_static(&spike_machine_typeinfo);
379 }
380
381 type_init(spike_machine_init_register_types)
382