xref: /openbmc/qemu/hw/riscv/spike.c (revision 0038e9a2)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2 or later, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/loader.h"
30 #include "hw/sysbus.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/spike.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/char/riscv_htif.h"
37 #include "hw/intc/riscv_aclint.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 
42 #include <libfdt.h>
43 
44 static const MemMapEntry spike_memmap[] = {
45     [SPIKE_MROM] =     {     0x1000,     0xf000 },
46     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
47     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
48     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
49 };
50 
51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
53 {
54     void *fdt;
55     uint64_t addr, size;
56     unsigned long clint_addr;
57     int cpu, socket;
58     MachineState *mc = MACHINE(s);
59     uint32_t *clint_cells;
60     uint32_t cpu_phandle, intc_phandle, phandle = 1;
61     char *name, *mem_name, *clint_name, *clust_name;
62     char *core_name, *cpu_name, *intc_name;
63     static const char * const clint_compat[2] = {
64         "sifive,clint0", "riscv,clint0"
65     };
66 
67     fdt = s->fdt = create_device_tree(&s->fdt_size);
68     if (!fdt) {
69         error_report("create_device_tree() failed");
70         exit(1);
71     }
72 
73     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
74     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
75     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
76     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
77 
78     qemu_fdt_add_subnode(fdt, "/htif");
79     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
80     if (!htif_uses_elf_symbols()) {
81         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
82             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
83     }
84 
85     qemu_fdt_add_subnode(fdt, "/soc");
86     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
87     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
88     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
89     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
90 
91     qemu_fdt_add_subnode(fdt, "/cpus");
92     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
93         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
94     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
95     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
96     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
97 
98     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
99         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
100         qemu_fdt_add_subnode(fdt, clust_name);
101 
102         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
103 
104         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
105             cpu_phandle = phandle++;
106 
107             cpu_name = g_strdup_printf("/cpus/cpu@%d",
108                 s->soc[socket].hartid_base + cpu);
109             qemu_fdt_add_subnode(fdt, cpu_name);
110             if (is_32_bit) {
111                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
112             } else {
113                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
114             }
115             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
116             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
117             g_free(name);
118             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
119             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
120             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
121                 s->soc[socket].hartid_base + cpu);
122             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
123             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
124             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
125 
126             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
127             qemu_fdt_add_subnode(fdt, intc_name);
128             intc_phandle = phandle++;
129             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
130             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
131                 "riscv,cpu-intc");
132             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
133             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
134 
135             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
136             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
137             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
138             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
139 
140             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
141             qemu_fdt_add_subnode(fdt, core_name);
142             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
143 
144             g_free(core_name);
145             g_free(intc_name);
146             g_free(cpu_name);
147         }
148 
149         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
150         size = riscv_socket_mem_size(mc, socket);
151         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
152         qemu_fdt_add_subnode(fdt, mem_name);
153         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
154             addr >> 32, addr, size >> 32, size);
155         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
156         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
157         g_free(mem_name);
158 
159         clint_addr = memmap[SPIKE_CLINT].base +
160             (memmap[SPIKE_CLINT].size * socket);
161         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
162         qemu_fdt_add_subnode(fdt, clint_name);
163         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
164             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
165         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
166             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
167         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
168             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
169         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
170 
171         g_free(clint_name);
172         g_free(clint_cells);
173         g_free(clust_name);
174     }
175 
176     riscv_socket_fdt_write_distance_matrix(mc, fdt);
177 
178     qemu_fdt_add_subnode(fdt, "/chosen");
179     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
180 
181     if (cmdline && *cmdline) {
182         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
183     }
184 }
185 
186 static void spike_board_init(MachineState *machine)
187 {
188     const MemMapEntry *memmap = spike_memmap;
189     SpikeState *s = SPIKE_MACHINE(machine);
190     MemoryRegion *system_memory = get_system_memory();
191     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
192     target_ulong firmware_end_addr, kernel_start_addr;
193     uint32_t fdt_load_addr;
194     uint64_t kernel_entry;
195     char *soc_name;
196     int i, base_hartid, hart_count;
197 
198     /* Check socket count limit */
199     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
200         error_report("number of sockets/nodes should be less than %d",
201             SPIKE_SOCKETS_MAX);
202         exit(1);
203     }
204 
205     /* Initialize sockets */
206     for (i = 0; i < riscv_socket_count(machine); i++) {
207         if (!riscv_socket_check_hartids(machine, i)) {
208             error_report("discontinuous hartids in socket%d", i);
209             exit(1);
210         }
211 
212         base_hartid = riscv_socket_first_hartid(machine, i);
213         if (base_hartid < 0) {
214             error_report("can't find hartid base for socket%d", i);
215             exit(1);
216         }
217 
218         hart_count = riscv_socket_hart_count(machine, i);
219         if (hart_count < 0) {
220             error_report("can't find hart count for socket%d", i);
221             exit(1);
222         }
223 
224         soc_name = g_strdup_printf("soc%d", i);
225         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
226                                 TYPE_RISCV_HART_ARRAY);
227         g_free(soc_name);
228         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
229                                 machine->cpu_type, &error_abort);
230         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
231                                 base_hartid, &error_abort);
232         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
233                                 hart_count, &error_abort);
234         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
235 
236         /* Core Local Interruptor (timer and IPI) for each socket */
237         riscv_aclint_swi_create(
238             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
239             base_hartid, hart_count, false);
240         riscv_aclint_mtimer_create(
241             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
242                 RISCV_ACLINT_SWI_SIZE,
243             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
244             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
245             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
246     }
247 
248     /* register system main memory (actual RAM) */
249     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
250         machine->ram);
251 
252     /* boot rom */
253     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
254                            memmap[SPIKE_MROM].size, &error_fatal);
255     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
256                                 mask_rom);
257 
258     /*
259      * Not like other RISC-V machines that use plain binary bios images,
260      * keeping ELF files here was intentional because BIN files don't work
261      * for the Spike machine as HTIF emulation depends on ELF parsing.
262      */
263     if (riscv_is_32bit(&s->soc[0])) {
264         firmware_end_addr = riscv_find_and_load_firmware(machine,
265                                     RISCV32_BIOS_BIN, memmap[SPIKE_DRAM].base,
266                                     htif_symbol_callback);
267     } else {
268         firmware_end_addr = riscv_find_and_load_firmware(machine,
269                                     RISCV64_BIOS_BIN, memmap[SPIKE_DRAM].base,
270                                     htif_symbol_callback);
271     }
272 
273     /* Load kernel */
274     if (machine->kernel_filename) {
275         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
276                                                          firmware_end_addr);
277 
278         kernel_entry = riscv_load_kernel(machine->kernel_filename,
279                                          kernel_start_addr,
280                                          htif_symbol_callback);
281     } else {
282        /*
283         * If dynamic firmware is used, it doesn't know where is the next mode
284         * if kernel argument is not set.
285         */
286         kernel_entry = 0;
287     }
288 
289     /* Create device tree */
290     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
291                riscv_is_32bit(&s->soc[0]));
292 
293     /* Load initrd */
294     if (machine->kernel_filename && machine->initrd_filename) {
295         hwaddr start;
296         hwaddr end = riscv_load_initrd(machine->initrd_filename,
297                                        machine->ram_size, kernel_entry,
298                                        &start);
299         qemu_fdt_setprop_cell(s->fdt, "/chosen",
300                               "linux,initrd-start", start);
301         qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
302                               end);
303     }
304 
305     /* Compute the fdt load address in dram */
306     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
307                                    machine->ram_size, s->fdt);
308 
309     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
310     machine->fdt = s->fdt;
311 
312     /* load the reset vector */
313     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
314                               memmap[SPIKE_MROM].base,
315                               memmap[SPIKE_MROM].size, kernel_entry,
316                               fdt_load_addr);
317 
318     /* initialize HTIF using symbols found in load_kernel */
319     htif_mm_init(system_memory, mask_rom,
320                  &s->soc[0].harts[0].env, serial_hd(0),
321                  memmap[SPIKE_HTIF].base);
322 }
323 
324 static void spike_machine_instance_init(Object *obj)
325 {
326 }
327 
328 static void spike_machine_class_init(ObjectClass *oc, void *data)
329 {
330     MachineClass *mc = MACHINE_CLASS(oc);
331 
332     mc->desc = "RISC-V Spike board";
333     mc->init = spike_board_init;
334     mc->max_cpus = SPIKE_CPUS_MAX;
335     mc->is_default = true;
336     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
337     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
338     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
339     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
340     mc->numa_mem_supported = true;
341     mc->default_ram_id = "riscv.spike.ram";
342 }
343 
344 static const TypeInfo spike_machine_typeinfo = {
345     .name       = MACHINE_TYPE_NAME("spike"),
346     .parent     = TYPE_MACHINE,
347     .class_init = spike_machine_class_init,
348     .instance_init = spike_machine_instance_init,
349     .instance_size = sizeof(SpikeState),
350 };
351 
352 static void spike_machine_init_register_types(void)
353 {
354     type_register_static(&spike_machine_typeinfo);
355 }
356 
357 type_init(spike_machine_init_register_types)
358