1 /* 2 * QEMU RISC-V Board Compatible with SiFive Freedom U SDK 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017 SiFive, Inc. 6 * Copyright (c) 2019 Bin Meng <bmeng.cn@gmail.com> 7 * 8 * Provides a board compatible with the SiFive Freedom U SDK: 9 * 10 * 0) UART 11 * 1) CLINT (Core Level Interruptor) 12 * 2) PLIC (Platform Level Interrupt Controller) 13 * 3) PRCI (Power, Reset, Clock, Interrupt) 14 * 4) OTP (One-Time Programmable) memory with stored serial number 15 * 5) GEM (Gigabit Ethernet Controller) and management block 16 * 17 * This board currently generates devicetree dynamically that indicates at least 18 * two harts and up to five harts. 19 * 20 * This program is free software; you can redistribute it and/or modify it 21 * under the terms and conditions of the GNU General Public License, 22 * version 2 or later, as published by the Free Software Foundation. 23 * 24 * This program is distributed in the hope it will be useful, but WITHOUT 25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 27 * more details. 28 * 29 * You should have received a copy of the GNU General Public License along with 30 * this program. If not, see <http://www.gnu.org/licenses/>. 31 */ 32 33 #include "qemu/osdep.h" 34 #include "qemu/log.h" 35 #include "qemu/error-report.h" 36 #include "qapi/error.h" 37 #include "hw/boards.h" 38 #include "hw/loader.h" 39 #include "hw/sysbus.h" 40 #include "hw/char/serial.h" 41 #include "hw/cpu/cluster.h" 42 #include "hw/misc/unimp.h" 43 #include "target/riscv/cpu.h" 44 #include "hw/riscv/riscv_hart.h" 45 #include "hw/riscv/sifive_plic.h" 46 #include "hw/riscv/sifive_clint.h" 47 #include "hw/riscv/sifive_uart.h" 48 #include "hw/riscv/sifive_u.h" 49 #include "hw/riscv/boot.h" 50 #include "chardev/char.h" 51 #include "net/eth.h" 52 #include "sysemu/arch_init.h" 53 #include "sysemu/device_tree.h" 54 #include "sysemu/sysemu.h" 55 #include "exec/address-spaces.h" 56 57 #include <libfdt.h> 58 59 #define BIOS_FILENAME "opensbi-riscv64-sifive_u-fw_jump.bin" 60 61 static const struct MemmapEntry { 62 hwaddr base; 63 hwaddr size; 64 } sifive_u_memmap[] = { 65 [SIFIVE_U_DEBUG] = { 0x0, 0x100 }, 66 [SIFIVE_U_MROM] = { 0x1000, 0x11000 }, 67 [SIFIVE_U_CLINT] = { 0x2000000, 0x10000 }, 68 [SIFIVE_U_L2LIM] = { 0x8000000, 0x2000000 }, 69 [SIFIVE_U_PLIC] = { 0xc000000, 0x4000000 }, 70 [SIFIVE_U_PRCI] = { 0x10000000, 0x1000 }, 71 [SIFIVE_U_UART0] = { 0x10010000, 0x1000 }, 72 [SIFIVE_U_UART1] = { 0x10011000, 0x1000 }, 73 [SIFIVE_U_OTP] = { 0x10070000, 0x1000 }, 74 [SIFIVE_U_FLASH0] = { 0x20000000, 0x10000000 }, 75 [SIFIVE_U_DRAM] = { 0x80000000, 0x0 }, 76 [SIFIVE_U_GEM] = { 0x10090000, 0x2000 }, 77 [SIFIVE_U_GEM_MGMT] = { 0x100a0000, 0x1000 }, 78 }; 79 80 #define OTP_SERIAL 1 81 #define GEM_REVISION 0x10070109 82 83 static void create_fdt(SiFiveUState *s, const struct MemmapEntry *memmap, 84 uint64_t mem_size, const char *cmdline) 85 { 86 MachineState *ms = MACHINE(qdev_get_machine()); 87 void *fdt; 88 int cpu; 89 uint32_t *cells; 90 char *nodename; 91 char ethclk_names[] = "pclk\0hclk"; 92 uint32_t plic_phandle, prci_phandle, phandle = 1; 93 uint32_t hfclk_phandle, rtcclk_phandle, phy_phandle; 94 95 fdt = s->fdt = create_device_tree(&s->fdt_size); 96 if (!fdt) { 97 error_report("create_device_tree() failed"); 98 exit(1); 99 } 100 101 qemu_fdt_setprop_string(fdt, "/", "model", "SiFive HiFive Unleashed A00"); 102 qemu_fdt_setprop_string(fdt, "/", "compatible", 103 "sifive,hifive-unleashed-a00"); 104 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); 105 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); 106 107 qemu_fdt_add_subnode(fdt, "/soc"); 108 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 109 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 110 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); 111 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); 112 113 hfclk_phandle = phandle++; 114 nodename = g_strdup_printf("/hfclk"); 115 qemu_fdt_add_subnode(fdt, nodename); 116 qemu_fdt_setprop_cell(fdt, nodename, "phandle", hfclk_phandle); 117 qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "hfclk"); 118 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 119 SIFIVE_U_HFCLK_FREQ); 120 qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock"); 121 qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0); 122 g_free(nodename); 123 124 rtcclk_phandle = phandle++; 125 nodename = g_strdup_printf("/rtcclk"); 126 qemu_fdt_add_subnode(fdt, nodename); 127 qemu_fdt_setprop_cell(fdt, nodename, "phandle", rtcclk_phandle); 128 qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "rtcclk"); 129 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 130 SIFIVE_U_RTCCLK_FREQ); 131 qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock"); 132 qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0); 133 g_free(nodename); 134 135 nodename = g_strdup_printf("/memory@%lx", 136 (long)memmap[SIFIVE_U_DRAM].base); 137 qemu_fdt_add_subnode(fdt, nodename); 138 qemu_fdt_setprop_cells(fdt, nodename, "reg", 139 memmap[SIFIVE_U_DRAM].base >> 32, memmap[SIFIVE_U_DRAM].base, 140 mem_size >> 32, mem_size); 141 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); 142 g_free(nodename); 143 144 qemu_fdt_add_subnode(fdt, "/cpus"); 145 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 146 SIFIVE_CLINT_TIMEBASE_FREQ); 147 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 148 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 149 150 for (cpu = ms->smp.cpus - 1; cpu >= 0; cpu--) { 151 int cpu_phandle = phandle++; 152 nodename = g_strdup_printf("/cpus/cpu@%d", cpu); 153 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 154 char *isa; 155 qemu_fdt_add_subnode(fdt, nodename); 156 /* cpu 0 is the management hart that does not have mmu */ 157 if (cpu != 0) { 158 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); 159 isa = riscv_isa_string(&s->soc.u_cpus.harts[cpu - 1]); 160 } else { 161 isa = riscv_isa_string(&s->soc.e_cpus.harts[0]); 162 } 163 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); 164 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); 165 qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); 166 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); 167 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); 168 qemu_fdt_add_subnode(fdt, intc); 169 qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle); 170 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); 171 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); 172 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); 173 g_free(isa); 174 g_free(intc); 175 g_free(nodename); 176 } 177 178 cells = g_new0(uint32_t, ms->smp.cpus * 4); 179 for (cpu = 0; cpu < ms->smp.cpus; cpu++) { 180 nodename = 181 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 182 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); 183 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 184 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); 185 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); 186 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); 187 g_free(nodename); 188 } 189 nodename = g_strdup_printf("/soc/clint@%lx", 190 (long)memmap[SIFIVE_U_CLINT].base); 191 qemu_fdt_add_subnode(fdt, nodename); 192 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); 193 qemu_fdt_setprop_cells(fdt, nodename, "reg", 194 0x0, memmap[SIFIVE_U_CLINT].base, 195 0x0, memmap[SIFIVE_U_CLINT].size); 196 qemu_fdt_setprop(fdt, nodename, "interrupts-extended", 197 cells, ms->smp.cpus * sizeof(uint32_t) * 4); 198 g_free(cells); 199 g_free(nodename); 200 201 prci_phandle = phandle++; 202 nodename = g_strdup_printf("/soc/clock-controller@%lx", 203 (long)memmap[SIFIVE_U_PRCI].base); 204 qemu_fdt_add_subnode(fdt, nodename); 205 qemu_fdt_setprop_cell(fdt, nodename, "phandle", prci_phandle); 206 qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x1); 207 qemu_fdt_setprop_cells(fdt, nodename, "clocks", 208 hfclk_phandle, rtcclk_phandle); 209 qemu_fdt_setprop_cells(fdt, nodename, "reg", 210 0x0, memmap[SIFIVE_U_PRCI].base, 211 0x0, memmap[SIFIVE_U_PRCI].size); 212 qemu_fdt_setprop_string(fdt, nodename, "compatible", 213 "sifive,fu540-c000-prci"); 214 g_free(nodename); 215 216 plic_phandle = phandle++; 217 cells = g_new0(uint32_t, ms->smp.cpus * 4 - 2); 218 for (cpu = 0; cpu < ms->smp.cpus; cpu++) { 219 nodename = 220 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); 221 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); 222 /* cpu 0 is the management hart that does not have S-mode */ 223 if (cpu == 0) { 224 cells[0] = cpu_to_be32(intc_phandle); 225 cells[1] = cpu_to_be32(IRQ_M_EXT); 226 } else { 227 cells[cpu * 4 - 2] = cpu_to_be32(intc_phandle); 228 cells[cpu * 4 - 1] = cpu_to_be32(IRQ_M_EXT); 229 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); 230 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_S_EXT); 231 } 232 g_free(nodename); 233 } 234 nodename = g_strdup_printf("/soc/interrupt-controller@%lx", 235 (long)memmap[SIFIVE_U_PLIC].base); 236 qemu_fdt_add_subnode(fdt, nodename); 237 qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1); 238 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0"); 239 qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); 240 qemu_fdt_setprop(fdt, nodename, "interrupts-extended", 241 cells, (ms->smp.cpus * 4 - 2) * sizeof(uint32_t)); 242 qemu_fdt_setprop_cells(fdt, nodename, "reg", 243 0x0, memmap[SIFIVE_U_PLIC].base, 244 0x0, memmap[SIFIVE_U_PLIC].size); 245 qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", 0x35); 246 qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle); 247 plic_phandle = qemu_fdt_get_phandle(fdt, nodename); 248 g_free(cells); 249 g_free(nodename); 250 251 phy_phandle = phandle++; 252 nodename = g_strdup_printf("/soc/ethernet@%lx", 253 (long)memmap[SIFIVE_U_GEM].base); 254 qemu_fdt_add_subnode(fdt, nodename); 255 qemu_fdt_setprop_string(fdt, nodename, "compatible", 256 "sifive,fu540-c000-gem"); 257 qemu_fdt_setprop_cells(fdt, nodename, "reg", 258 0x0, memmap[SIFIVE_U_GEM].base, 259 0x0, memmap[SIFIVE_U_GEM].size, 260 0x0, memmap[SIFIVE_U_GEM_MGMT].base, 261 0x0, memmap[SIFIVE_U_GEM_MGMT].size); 262 qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control"); 263 qemu_fdt_setprop_string(fdt, nodename, "phy-mode", "gmii"); 264 qemu_fdt_setprop_cell(fdt, nodename, "phy-handle", phy_phandle); 265 qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); 266 qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_GEM_IRQ); 267 qemu_fdt_setprop_cells(fdt, nodename, "clocks", 268 prci_phandle, PRCI_CLK_GEMGXLPLL, prci_phandle, PRCI_CLK_GEMGXLPLL); 269 qemu_fdt_setprop(fdt, nodename, "clock-names", ethclk_names, 270 sizeof(ethclk_names)); 271 qemu_fdt_setprop(fdt, nodename, "local-mac-address", 272 s->soc.gem.conf.macaddr.a, ETH_ALEN); 273 qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 1); 274 qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0); 275 276 qemu_fdt_add_subnode(fdt, "/aliases"); 277 qemu_fdt_setprop_string(fdt, "/aliases", "ethernet0", nodename); 278 279 g_free(nodename); 280 281 nodename = g_strdup_printf("/soc/ethernet@%lx/ethernet-phy@0", 282 (long)memmap[SIFIVE_U_GEM].base); 283 qemu_fdt_add_subnode(fdt, nodename); 284 qemu_fdt_setprop_cell(fdt, nodename, "phandle", phy_phandle); 285 qemu_fdt_setprop_cell(fdt, nodename, "reg", 0x0); 286 g_free(nodename); 287 288 nodename = g_strdup_printf("/soc/serial@%lx", 289 (long)memmap[SIFIVE_U_UART0].base); 290 qemu_fdt_add_subnode(fdt, nodename); 291 qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,uart0"); 292 qemu_fdt_setprop_cells(fdt, nodename, "reg", 293 0x0, memmap[SIFIVE_U_UART0].base, 294 0x0, memmap[SIFIVE_U_UART0].size); 295 qemu_fdt_setprop_cells(fdt, nodename, "clocks", 296 prci_phandle, PRCI_CLK_TLCLK); 297 qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); 298 qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_UART0_IRQ); 299 300 qemu_fdt_add_subnode(fdt, "/chosen"); 301 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename); 302 if (cmdline) { 303 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 304 } 305 306 qemu_fdt_setprop_string(fdt, "/aliases", "serial0", nodename); 307 308 g_free(nodename); 309 } 310 311 static void riscv_sifive_u_init(MachineState *machine) 312 { 313 const struct MemmapEntry *memmap = sifive_u_memmap; 314 SiFiveUState *s = RISCV_U_MACHINE(machine); 315 MemoryRegion *system_memory = get_system_memory(); 316 MemoryRegion *main_mem = g_new(MemoryRegion, 1); 317 MemoryRegion *flash0 = g_new(MemoryRegion, 1); 318 target_ulong start_addr = memmap[SIFIVE_U_DRAM].base; 319 int i; 320 321 /* Initialize SoC */ 322 object_initialize_child(OBJECT(machine), "soc", &s->soc, 323 sizeof(s->soc), TYPE_RISCV_U_SOC, 324 &error_abort, NULL); 325 object_property_set_bool(OBJECT(&s->soc), true, "realized", 326 &error_abort); 327 328 /* register RAM */ 329 memory_region_init_ram(main_mem, NULL, "riscv.sifive.u.ram", 330 machine->ram_size, &error_fatal); 331 memory_region_add_subregion(system_memory, memmap[SIFIVE_U_DRAM].base, 332 main_mem); 333 334 /* register QSPI0 Flash */ 335 memory_region_init_ram(flash0, NULL, "riscv.sifive.u.flash0", 336 memmap[SIFIVE_U_FLASH0].size, &error_fatal); 337 memory_region_add_subregion(system_memory, memmap[SIFIVE_U_FLASH0].base, 338 flash0); 339 340 /* create device tree */ 341 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); 342 343 riscv_find_and_load_firmware(machine, BIOS_FILENAME, 344 memmap[SIFIVE_U_DRAM].base); 345 346 if (machine->kernel_filename) { 347 uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename, 348 NULL); 349 350 if (machine->initrd_filename) { 351 hwaddr start; 352 hwaddr end = riscv_load_initrd(machine->initrd_filename, 353 machine->ram_size, kernel_entry, 354 &start); 355 qemu_fdt_setprop_cell(s->fdt, "/chosen", 356 "linux,initrd-start", start); 357 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end", 358 end); 359 } 360 } 361 362 if (s->start_in_flash) { 363 start_addr = memmap[SIFIVE_U_FLASH0].base; 364 } 365 366 /* reset vector */ 367 uint32_t reset_vec[8] = { 368 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 369 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */ 370 0xf1402573, /* csrr a0, mhartid */ 371 #if defined(TARGET_RISCV32) 372 0x0182a283, /* lw t0, 24(t0) */ 373 #elif defined(TARGET_RISCV64) 374 0x0182b283, /* ld t0, 24(t0) */ 375 #endif 376 0x00028067, /* jr t0 */ 377 0x00000000, 378 start_addr, /* start: .dword */ 379 0x00000000, 380 /* dtb: */ 381 }; 382 383 /* copy in the reset vector in little_endian byte order */ 384 for (i = 0; i < sizeof(reset_vec) >> 2; i++) { 385 reset_vec[i] = cpu_to_le32(reset_vec[i]); 386 } 387 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), 388 memmap[SIFIVE_U_MROM].base, &address_space_memory); 389 390 /* copy in the device tree */ 391 if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) > 392 memmap[SIFIVE_U_MROM].size - sizeof(reset_vec)) { 393 error_report("not enough space to store device-tree"); 394 exit(1); 395 } 396 qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt)); 397 rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt), 398 memmap[SIFIVE_U_MROM].base + sizeof(reset_vec), 399 &address_space_memory); 400 } 401 402 static void riscv_sifive_u_soc_init(Object *obj) 403 { 404 MachineState *ms = MACHINE(qdev_get_machine()); 405 SiFiveUSoCState *s = RISCV_U_SOC(obj); 406 407 object_initialize_child(obj, "e-cluster", &s->e_cluster, 408 sizeof(s->e_cluster), TYPE_CPU_CLUSTER, 409 &error_abort, NULL); 410 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); 411 412 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", 413 &s->e_cpus, sizeof(s->e_cpus), 414 TYPE_RISCV_HART_ARRAY, &error_abort, 415 NULL); 416 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); 417 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); 418 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", SIFIVE_E_CPU); 419 420 object_initialize_child(obj, "u-cluster", &s->u_cluster, 421 sizeof(s->u_cluster), TYPE_CPU_CLUSTER, 422 &error_abort, NULL); 423 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); 424 425 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", 426 &s->u_cpus, sizeof(s->u_cpus), 427 TYPE_RISCV_HART_ARRAY, &error_abort, 428 NULL); 429 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); 430 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); 431 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", SIFIVE_U_CPU); 432 433 sysbus_init_child_obj(obj, "prci", &s->prci, sizeof(s->prci), 434 TYPE_SIFIVE_U_PRCI); 435 sysbus_init_child_obj(obj, "otp", &s->otp, sizeof(s->otp), 436 TYPE_SIFIVE_U_OTP); 437 qdev_prop_set_uint32(DEVICE(&s->otp), "serial", OTP_SERIAL); 438 sysbus_init_child_obj(obj, "gem", &s->gem, sizeof(s->gem), 439 TYPE_CADENCE_GEM); 440 } 441 442 static bool sifive_u_get_start_in_flash(Object *obj, Error **errp) 443 { 444 SiFiveUState *s = RISCV_U_MACHINE(obj); 445 446 return s->start_in_flash; 447 } 448 449 static void sifive_u_set_start_in_flash(Object *obj, bool value, Error **errp) 450 { 451 SiFiveUState *s = RISCV_U_MACHINE(obj); 452 453 s->start_in_flash = value; 454 } 455 456 static void riscv_sifive_u_machine_instance_init(Object *obj) 457 { 458 SiFiveUState *s = RISCV_U_MACHINE(obj); 459 460 s->start_in_flash = false; 461 object_property_add_bool(obj, "start-in-flash", sifive_u_get_start_in_flash, 462 sifive_u_set_start_in_flash, NULL); 463 object_property_set_description(obj, "start-in-flash", 464 "Set on to tell QEMU's ROM to jump to " \ 465 "flash. Otherwise QEMU will jump to DRAM", 466 NULL); 467 } 468 469 static void riscv_sifive_u_soc_realize(DeviceState *dev, Error **errp) 470 { 471 MachineState *ms = MACHINE(qdev_get_machine()); 472 SiFiveUSoCState *s = RISCV_U_SOC(dev); 473 const struct MemmapEntry *memmap = sifive_u_memmap; 474 MemoryRegion *system_memory = get_system_memory(); 475 MemoryRegion *mask_rom = g_new(MemoryRegion, 1); 476 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); 477 qemu_irq plic_gpios[SIFIVE_U_PLIC_NUM_SOURCES]; 478 char *plic_hart_config; 479 size_t plic_hart_config_len; 480 int i; 481 Error *err = NULL; 482 NICInfo *nd = &nd_table[0]; 483 484 object_property_set_bool(OBJECT(&s->e_cpus), true, "realized", 485 &error_abort); 486 object_property_set_bool(OBJECT(&s->u_cpus), true, "realized", 487 &error_abort); 488 /* 489 * The cluster must be realized after the RISC-V hart array container, 490 * as the container's CPU object is only created on realize, and the 491 * CPU must exist and have been parented into the cluster before the 492 * cluster is realized. 493 */ 494 object_property_set_bool(OBJECT(&s->e_cluster), true, "realized", 495 &error_abort); 496 object_property_set_bool(OBJECT(&s->u_cluster), true, "realized", 497 &error_abort); 498 499 /* boot rom */ 500 memory_region_init_rom(mask_rom, NULL, "riscv.sifive.u.mrom", 501 memmap[SIFIVE_U_MROM].size, &error_fatal); 502 memory_region_add_subregion(system_memory, memmap[SIFIVE_U_MROM].base, 503 mask_rom); 504 505 /* 506 * Add L2-LIM at reset size. 507 * This should be reduced in size as the L2 Cache Controller WayEnable 508 * register is incremented. Unfortunately I don't see a nice (or any) way 509 * to handle reducing or blocking out the L2 LIM while still allowing it 510 * be re returned to all enabled after a reset. For the time being, just 511 * leave it enabled all the time. This won't break anything, but will be 512 * too generous to misbehaving guests. 513 */ 514 memory_region_init_ram(l2lim_mem, NULL, "riscv.sifive.u.l2lim", 515 memmap[SIFIVE_U_L2LIM].size, &error_fatal); 516 memory_region_add_subregion(system_memory, memmap[SIFIVE_U_L2LIM].base, 517 l2lim_mem); 518 519 /* create PLIC hart topology configuration string */ 520 plic_hart_config_len = (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1) * 521 ms->smp.cpus; 522 plic_hart_config = g_malloc0(plic_hart_config_len); 523 for (i = 0; i < ms->smp.cpus; i++) { 524 if (i != 0) { 525 strncat(plic_hart_config, "," SIFIVE_U_PLIC_HART_CONFIG, 526 plic_hart_config_len); 527 } else { 528 strncat(plic_hart_config, "M", plic_hart_config_len); 529 } 530 plic_hart_config_len -= (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1); 531 } 532 533 /* MMIO */ 534 s->plic = sifive_plic_create(memmap[SIFIVE_U_PLIC].base, 535 plic_hart_config, 536 SIFIVE_U_PLIC_NUM_SOURCES, 537 SIFIVE_U_PLIC_NUM_PRIORITIES, 538 SIFIVE_U_PLIC_PRIORITY_BASE, 539 SIFIVE_U_PLIC_PENDING_BASE, 540 SIFIVE_U_PLIC_ENABLE_BASE, 541 SIFIVE_U_PLIC_ENABLE_STRIDE, 542 SIFIVE_U_PLIC_CONTEXT_BASE, 543 SIFIVE_U_PLIC_CONTEXT_STRIDE, 544 memmap[SIFIVE_U_PLIC].size); 545 g_free(plic_hart_config); 546 sifive_uart_create(system_memory, memmap[SIFIVE_U_UART0].base, 547 serial_hd(0), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART0_IRQ)); 548 sifive_uart_create(system_memory, memmap[SIFIVE_U_UART1].base, 549 serial_hd(1), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART1_IRQ)); 550 sifive_clint_create(memmap[SIFIVE_U_CLINT].base, 551 memmap[SIFIVE_U_CLINT].size, ms->smp.cpus, 552 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, false); 553 554 object_property_set_bool(OBJECT(&s->prci), true, "realized", &err); 555 sysbus_mmio_map(SYS_BUS_DEVICE(&s->prci), 0, memmap[SIFIVE_U_PRCI].base); 556 557 object_property_set_bool(OBJECT(&s->otp), true, "realized", &err); 558 sysbus_mmio_map(SYS_BUS_DEVICE(&s->otp), 0, memmap[SIFIVE_U_OTP].base); 559 560 for (i = 0; i < SIFIVE_U_PLIC_NUM_SOURCES; i++) { 561 plic_gpios[i] = qdev_get_gpio_in(DEVICE(s->plic), i); 562 } 563 564 if (nd->used) { 565 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 566 qdev_set_nic_properties(DEVICE(&s->gem), nd); 567 } 568 object_property_set_int(OBJECT(&s->gem), GEM_REVISION, "revision", 569 &error_abort); 570 object_property_set_bool(OBJECT(&s->gem), true, "realized", &err); 571 if (err) { 572 error_propagate(errp, err); 573 return; 574 } 575 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem), 0, memmap[SIFIVE_U_GEM].base); 576 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem), 0, 577 plic_gpios[SIFIVE_U_GEM_IRQ]); 578 579 create_unimplemented_device("riscv.sifive.u.gem-mgmt", 580 memmap[SIFIVE_U_GEM_MGMT].base, memmap[SIFIVE_U_GEM_MGMT].size); 581 } 582 583 static void riscv_sifive_u_soc_class_init(ObjectClass *oc, void *data) 584 { 585 DeviceClass *dc = DEVICE_CLASS(oc); 586 587 dc->realize = riscv_sifive_u_soc_realize; 588 /* Reason: Uses serial_hds in realize function, thus can't be used twice */ 589 dc->user_creatable = false; 590 } 591 592 static const TypeInfo riscv_sifive_u_soc_type_info = { 593 .name = TYPE_RISCV_U_SOC, 594 .parent = TYPE_DEVICE, 595 .instance_size = sizeof(SiFiveUSoCState), 596 .instance_init = riscv_sifive_u_soc_init, 597 .class_init = riscv_sifive_u_soc_class_init, 598 }; 599 600 static void riscv_sifive_u_soc_register_types(void) 601 { 602 type_register_static(&riscv_sifive_u_soc_type_info); 603 } 604 605 type_init(riscv_sifive_u_soc_register_types) 606 607 static void riscv_sifive_u_machine_class_init(ObjectClass *oc, void *data) 608 { 609 MachineClass *mc = MACHINE_CLASS(oc); 610 611 mc->desc = "RISC-V Board compatible with SiFive U SDK"; 612 mc->init = riscv_sifive_u_init; 613 mc->max_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + SIFIVE_U_COMPUTE_CPU_COUNT; 614 mc->min_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + 1; 615 mc->default_cpus = mc->min_cpus; 616 } 617 618 static const TypeInfo riscv_sifive_u_machine_typeinfo = { 619 .name = MACHINE_TYPE_NAME("sifive_u"), 620 .parent = TYPE_MACHINE, 621 .class_init = riscv_sifive_u_machine_class_init, 622 .instance_init = riscv_sifive_u_machine_instance_init, 623 .instance_size = sizeof(SiFiveUState), 624 }; 625 626 static void riscv_sifive_u_machine_init_register_types(void) 627 { 628 type_register_static(&riscv_sifive_u_machine_typeinfo); 629 } 630 631 type_init(riscv_sifive_u_machine_init_register_types) 632