xref: /openbmc/qemu/hw/riscv/sifive_u.c (revision f3635813)
1 /*
2  * QEMU RISC-V Board Compatible with SiFive Freedom U SDK
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017 SiFive, Inc.
6  * Copyright (c) 2019 Bin Meng <bmeng.cn@gmail.com>
7  *
8  * Provides a board compatible with the SiFive Freedom U SDK:
9  *
10  * 0) UART
11  * 1) CLINT (Core Level Interruptor)
12  * 2) PLIC (Platform Level Interrupt Controller)
13  * 3) PRCI (Power, Reset, Clock, Interrupt)
14  * 4) OTP (One-Time Programmable) memory with stored serial number
15  * 5) GEM (Gigabit Ethernet Controller) and management block
16  *
17  * This board currently generates devicetree dynamically that indicates at least
18  * two harts and up to five harts.
19  *
20  * This program is free software; you can redistribute it and/or modify it
21  * under the terms and conditions of the GNU General Public License,
22  * version 2 or later, as published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope it will be useful, but WITHOUT
25  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
27  * more details.
28  *
29  * You should have received a copy of the GNU General Public License along with
30  * this program.  If not, see <http://www.gnu.org/licenses/>.
31  */
32 
33 #include "qemu/osdep.h"
34 #include "qemu/log.h"
35 #include "qemu/error-report.h"
36 #include "qapi/error.h"
37 #include "hw/boards.h"
38 #include "hw/loader.h"
39 #include "hw/sysbus.h"
40 #include "hw/char/serial.h"
41 #include "hw/cpu/cluster.h"
42 #include "hw/misc/unimp.h"
43 #include "target/riscv/cpu.h"
44 #include "hw/riscv/riscv_hart.h"
45 #include "hw/riscv/sifive_plic.h"
46 #include "hw/riscv/sifive_clint.h"
47 #include "hw/riscv/sifive_uart.h"
48 #include "hw/riscv/sifive_u.h"
49 #include "hw/riscv/boot.h"
50 #include "chardev/char.h"
51 #include "net/eth.h"
52 #include "sysemu/arch_init.h"
53 #include "sysemu/device_tree.h"
54 #include "sysemu/sysemu.h"
55 #include "exec/address-spaces.h"
56 
57 #include <libfdt.h>
58 
59 #define BIOS_FILENAME "opensbi-riscv64-sifive_u-fw_jump.bin"
60 
61 static const struct MemmapEntry {
62     hwaddr base;
63     hwaddr size;
64 } sifive_u_memmap[] = {
65     [SIFIVE_U_DEBUG] =    {        0x0,      0x100 },
66     [SIFIVE_U_MROM] =     {     0x1000,    0x11000 },
67     [SIFIVE_U_CLINT] =    {  0x2000000,    0x10000 },
68     [SIFIVE_U_L2LIM] =    {  0x8000000,  0x2000000 },
69     [SIFIVE_U_PLIC] =     {  0xc000000,  0x4000000 },
70     [SIFIVE_U_PRCI] =     { 0x10000000,     0x1000 },
71     [SIFIVE_U_UART0] =    { 0x10010000,     0x1000 },
72     [SIFIVE_U_UART1] =    { 0x10011000,     0x1000 },
73     [SIFIVE_U_OTP] =      { 0x10070000,     0x1000 },
74     [SIFIVE_U_FLASH0] =   { 0x20000000, 0x10000000 },
75     [SIFIVE_U_DRAM] =     { 0x80000000,        0x0 },
76     [SIFIVE_U_GEM] =      { 0x10090000,     0x2000 },
77     [SIFIVE_U_GEM_MGMT] = { 0x100a0000,     0x1000 },
78 };
79 
80 #define OTP_SERIAL          1
81 #define GEM_REVISION        0x10070109
82 
83 static void create_fdt(SiFiveUState *s, const struct MemmapEntry *memmap,
84     uint64_t mem_size, const char *cmdline)
85 {
86     MachineState *ms = MACHINE(qdev_get_machine());
87     void *fdt;
88     int cpu;
89     uint32_t *cells;
90     char *nodename;
91     char ethclk_names[] = "pclk\0hclk";
92     uint32_t plic_phandle, prci_phandle, phandle = 1;
93     uint32_t hfclk_phandle, rtcclk_phandle, phy_phandle;
94 
95     fdt = s->fdt = create_device_tree(&s->fdt_size);
96     if (!fdt) {
97         error_report("create_device_tree() failed");
98         exit(1);
99     }
100 
101     qemu_fdt_setprop_string(fdt, "/", "model", "SiFive HiFive Unleashed A00");
102     qemu_fdt_setprop_string(fdt, "/", "compatible",
103                             "sifive,hifive-unleashed-a00");
104     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
105     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
106 
107     qemu_fdt_add_subnode(fdt, "/soc");
108     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
109     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
110     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
111     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
112 
113     hfclk_phandle = phandle++;
114     nodename = g_strdup_printf("/hfclk");
115     qemu_fdt_add_subnode(fdt, nodename);
116     qemu_fdt_setprop_cell(fdt, nodename, "phandle", hfclk_phandle);
117     qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "hfclk");
118     qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
119         SIFIVE_U_HFCLK_FREQ);
120     qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
121     qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
122     g_free(nodename);
123 
124     rtcclk_phandle = phandle++;
125     nodename = g_strdup_printf("/rtcclk");
126     qemu_fdt_add_subnode(fdt, nodename);
127     qemu_fdt_setprop_cell(fdt, nodename, "phandle", rtcclk_phandle);
128     qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "rtcclk");
129     qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
130         SIFIVE_U_RTCCLK_FREQ);
131     qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
132     qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
133     g_free(nodename);
134 
135     nodename = g_strdup_printf("/memory@%lx",
136         (long)memmap[SIFIVE_U_DRAM].base);
137     qemu_fdt_add_subnode(fdt, nodename);
138     qemu_fdt_setprop_cells(fdt, nodename, "reg",
139         memmap[SIFIVE_U_DRAM].base >> 32, memmap[SIFIVE_U_DRAM].base,
140         mem_size >> 32, mem_size);
141     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
142     g_free(nodename);
143 
144     qemu_fdt_add_subnode(fdt, "/cpus");
145     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
146         SIFIVE_CLINT_TIMEBASE_FREQ);
147     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
148     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
149 
150     for (cpu = ms->smp.cpus - 1; cpu >= 0; cpu--) {
151         int cpu_phandle = phandle++;
152         nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
153         char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
154         char *isa;
155         qemu_fdt_add_subnode(fdt, nodename);
156         /* cpu 0 is the management hart that does not have mmu */
157         if (cpu != 0) {
158             qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
159             isa = riscv_isa_string(&s->soc.u_cpus.harts[cpu - 1]);
160         } else {
161             isa = riscv_isa_string(&s->soc.e_cpus.harts[0]);
162         }
163         qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
164         qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
165         qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
166         qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
167         qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
168         qemu_fdt_add_subnode(fdt, intc);
169         qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
170         qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
171         qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
172         qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
173         g_free(isa);
174         g_free(intc);
175         g_free(nodename);
176     }
177 
178     cells =  g_new0(uint32_t, ms->smp.cpus * 4);
179     for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
180         nodename =
181             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
182         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
183         cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
184         cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
185         cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
186         cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
187         g_free(nodename);
188     }
189     nodename = g_strdup_printf("/soc/clint@%lx",
190         (long)memmap[SIFIVE_U_CLINT].base);
191     qemu_fdt_add_subnode(fdt, nodename);
192     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
193     qemu_fdt_setprop_cells(fdt, nodename, "reg",
194         0x0, memmap[SIFIVE_U_CLINT].base,
195         0x0, memmap[SIFIVE_U_CLINT].size);
196     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
197         cells, ms->smp.cpus * sizeof(uint32_t) * 4);
198     g_free(cells);
199     g_free(nodename);
200 
201     prci_phandle = phandle++;
202     nodename = g_strdup_printf("/soc/clock-controller@%lx",
203         (long)memmap[SIFIVE_U_PRCI].base);
204     qemu_fdt_add_subnode(fdt, nodename);
205     qemu_fdt_setprop_cell(fdt, nodename, "phandle", prci_phandle);
206     qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x1);
207     qemu_fdt_setprop_cells(fdt, nodename, "clocks",
208         hfclk_phandle, rtcclk_phandle);
209     qemu_fdt_setprop_cells(fdt, nodename, "reg",
210         0x0, memmap[SIFIVE_U_PRCI].base,
211         0x0, memmap[SIFIVE_U_PRCI].size);
212     qemu_fdt_setprop_string(fdt, nodename, "compatible",
213         "sifive,fu540-c000-prci");
214     g_free(nodename);
215 
216     plic_phandle = phandle++;
217     cells =  g_new0(uint32_t, ms->smp.cpus * 4 - 2);
218     for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
219         nodename =
220             g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
221         uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
222         /* cpu 0 is the management hart that does not have S-mode */
223         if (cpu == 0) {
224             cells[0] = cpu_to_be32(intc_phandle);
225             cells[1] = cpu_to_be32(IRQ_M_EXT);
226         } else {
227             cells[cpu * 4 - 2] = cpu_to_be32(intc_phandle);
228             cells[cpu * 4 - 1] = cpu_to_be32(IRQ_M_EXT);
229             cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
230             cells[cpu * 4 + 1] = cpu_to_be32(IRQ_S_EXT);
231         }
232         g_free(nodename);
233     }
234     nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
235         (long)memmap[SIFIVE_U_PLIC].base);
236     qemu_fdt_add_subnode(fdt, nodename);
237     qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
238     qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
239     qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
240     qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
241         cells, (ms->smp.cpus * 4 - 2) * sizeof(uint32_t));
242     qemu_fdt_setprop_cells(fdt, nodename, "reg",
243         0x0, memmap[SIFIVE_U_PLIC].base,
244         0x0, memmap[SIFIVE_U_PLIC].size);
245     qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", 0x35);
246     qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle);
247     plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
248     g_free(cells);
249     g_free(nodename);
250 
251     phy_phandle = phandle++;
252     nodename = g_strdup_printf("/soc/ethernet@%lx",
253         (long)memmap[SIFIVE_U_GEM].base);
254     qemu_fdt_add_subnode(fdt, nodename);
255     qemu_fdt_setprop_string(fdt, nodename, "compatible",
256         "sifive,fu540-c000-gem");
257     qemu_fdt_setprop_cells(fdt, nodename, "reg",
258         0x0, memmap[SIFIVE_U_GEM].base,
259         0x0, memmap[SIFIVE_U_GEM].size,
260         0x0, memmap[SIFIVE_U_GEM_MGMT].base,
261         0x0, memmap[SIFIVE_U_GEM_MGMT].size);
262     qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
263     qemu_fdt_setprop_string(fdt, nodename, "phy-mode", "gmii");
264     qemu_fdt_setprop_cell(fdt, nodename, "phy-handle", phy_phandle);
265     qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
266     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_GEM_IRQ);
267     qemu_fdt_setprop_cells(fdt, nodename, "clocks",
268         prci_phandle, PRCI_CLK_GEMGXLPLL, prci_phandle, PRCI_CLK_GEMGXLPLL);
269     qemu_fdt_setprop(fdt, nodename, "clock-names", ethclk_names,
270         sizeof(ethclk_names));
271     qemu_fdt_setprop(fdt, nodename, "local-mac-address",
272         s->soc.gem.conf.macaddr.a, ETH_ALEN);
273     qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 1);
274     qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0);
275 
276     qemu_fdt_add_subnode(fdt, "/aliases");
277     qemu_fdt_setprop_string(fdt, "/aliases", "ethernet0", nodename);
278 
279     g_free(nodename);
280 
281     nodename = g_strdup_printf("/soc/ethernet@%lx/ethernet-phy@0",
282         (long)memmap[SIFIVE_U_GEM].base);
283     qemu_fdt_add_subnode(fdt, nodename);
284     qemu_fdt_setprop_cell(fdt, nodename, "phandle", phy_phandle);
285     qemu_fdt_setprop_cell(fdt, nodename, "reg", 0x0);
286     g_free(nodename);
287 
288     nodename = g_strdup_printf("/soc/serial@%lx",
289         (long)memmap[SIFIVE_U_UART0].base);
290     qemu_fdt_add_subnode(fdt, nodename);
291     qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,uart0");
292     qemu_fdt_setprop_cells(fdt, nodename, "reg",
293         0x0, memmap[SIFIVE_U_UART0].base,
294         0x0, memmap[SIFIVE_U_UART0].size);
295     qemu_fdt_setprop_cells(fdt, nodename, "clocks",
296         prci_phandle, PRCI_CLK_TLCLK);
297     qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
298     qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_UART0_IRQ);
299 
300     qemu_fdt_add_subnode(fdt, "/chosen");
301     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
302     if (cmdline) {
303         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
304     }
305 
306     qemu_fdt_setprop_string(fdt, "/aliases", "serial0", nodename);
307 
308     g_free(nodename);
309 }
310 
311 static void riscv_sifive_u_init(MachineState *machine)
312 {
313     const struct MemmapEntry *memmap = sifive_u_memmap;
314     SiFiveUState *s = RISCV_U_MACHINE(machine);
315     MemoryRegion *system_memory = get_system_memory();
316     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
317     MemoryRegion *flash0 = g_new(MemoryRegion, 1);
318     target_ulong start_addr = memmap[SIFIVE_U_DRAM].base;
319     int i;
320 
321     /* Initialize SoC */
322     object_initialize_child(OBJECT(machine), "soc", &s->soc,
323                             sizeof(s->soc), TYPE_RISCV_U_SOC,
324                             &error_abort, NULL);
325     object_property_set_bool(OBJECT(&s->soc), true, "realized",
326                             &error_abort);
327 
328     /* register RAM */
329     memory_region_init_ram(main_mem, NULL, "riscv.sifive.u.ram",
330                            machine->ram_size, &error_fatal);
331     memory_region_add_subregion(system_memory, memmap[SIFIVE_U_DRAM].base,
332                                 main_mem);
333 
334     /* register QSPI0 Flash */
335     memory_region_init_ram(flash0, NULL, "riscv.sifive.u.flash0",
336                            memmap[SIFIVE_U_FLASH0].size, &error_fatal);
337     memory_region_add_subregion(system_memory, memmap[SIFIVE_U_FLASH0].base,
338                                 flash0);
339 
340     /* create device tree */
341     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
342 
343     riscv_find_and_load_firmware(machine, BIOS_FILENAME,
344                                  memmap[SIFIVE_U_DRAM].base);
345 
346     if (machine->kernel_filename) {
347         uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
348                                                   NULL);
349 
350         if (machine->initrd_filename) {
351             hwaddr start;
352             hwaddr end = riscv_load_initrd(machine->initrd_filename,
353                                            machine->ram_size, kernel_entry,
354                                            &start);
355             qemu_fdt_setprop_cell(s->fdt, "/chosen",
356                                   "linux,initrd-start", start);
357             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
358                                   end);
359         }
360     }
361 
362     if (s->start_in_flash) {
363         start_addr = memmap[SIFIVE_U_FLASH0].base;
364     }
365 
366     /* reset vector */
367     uint32_t reset_vec[8] = {
368         0x00000297,                    /* 1:  auipc  t0, %pcrel_hi(dtb) */
369         0x02028593,                    /*     addi   a1, t0, %pcrel_lo(1b) */
370         0xf1402573,                    /*     csrr   a0, mhartid  */
371 #if defined(TARGET_RISCV32)
372         0x0182a283,                    /*     lw     t0, 24(t0) */
373 #elif defined(TARGET_RISCV64)
374         0x0182b283,                    /*     ld     t0, 24(t0) */
375 #endif
376         0x00028067,                    /*     jr     t0 */
377         0x00000000,
378         start_addr,                    /* start: .dword */
379         0x00000000,
380                                        /* dtb: */
381     };
382 
383     /* copy in the reset vector in little_endian byte order */
384     for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
385         reset_vec[i] = cpu_to_le32(reset_vec[i]);
386     }
387     rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
388                           memmap[SIFIVE_U_MROM].base, &address_space_memory);
389 
390     /* copy in the device tree */
391     if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
392             memmap[SIFIVE_U_MROM].size - sizeof(reset_vec)) {
393         error_report("not enough space to store device-tree");
394         exit(1);
395     }
396     qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
397     rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
398                           memmap[SIFIVE_U_MROM].base + sizeof(reset_vec),
399                           &address_space_memory);
400 }
401 
402 static void riscv_sifive_u_soc_init(Object *obj)
403 {
404     MachineState *ms = MACHINE(qdev_get_machine());
405     SiFiveUSoCState *s = RISCV_U_SOC(obj);
406 
407     object_initialize_child(obj, "e-cluster", &s->e_cluster,
408                             sizeof(s->e_cluster), TYPE_CPU_CLUSTER,
409                             &error_abort, NULL);
410     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
411 
412     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus",
413                             &s->e_cpus, sizeof(s->e_cpus),
414                             TYPE_RISCV_HART_ARRAY, &error_abort,
415                             NULL);
416     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
417     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
418     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", SIFIVE_E_CPU);
419 
420     object_initialize_child(obj, "u-cluster", &s->u_cluster,
421                             sizeof(s->u_cluster), TYPE_CPU_CLUSTER,
422                             &error_abort, NULL);
423     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
424 
425     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus",
426                             &s->u_cpus, sizeof(s->u_cpus),
427                             TYPE_RISCV_HART_ARRAY, &error_abort,
428                             NULL);
429     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
430     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
431     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", SIFIVE_U_CPU);
432 
433     sysbus_init_child_obj(obj, "prci", &s->prci, sizeof(s->prci),
434                           TYPE_SIFIVE_U_PRCI);
435     sysbus_init_child_obj(obj, "otp", &s->otp, sizeof(s->otp),
436                           TYPE_SIFIVE_U_OTP);
437     qdev_prop_set_uint32(DEVICE(&s->otp), "serial", OTP_SERIAL);
438     sysbus_init_child_obj(obj, "gem", &s->gem, sizeof(s->gem),
439                           TYPE_CADENCE_GEM);
440 }
441 
442 static bool sifive_u_get_start_in_flash(Object *obj, Error **errp)
443 {
444     SiFiveUState *s = RISCV_U_MACHINE(obj);
445 
446     return s->start_in_flash;
447 }
448 
449 static void sifive_u_set_start_in_flash(Object *obj, bool value, Error **errp)
450 {
451     SiFiveUState *s = RISCV_U_MACHINE(obj);
452 
453     s->start_in_flash = value;
454 }
455 
456 static void riscv_sifive_u_machine_instance_init(Object *obj)
457 {
458     SiFiveUState *s = RISCV_U_MACHINE(obj);
459 
460     s->start_in_flash = false;
461     object_property_add_bool(obj, "start-in-flash", sifive_u_get_start_in_flash,
462                              sifive_u_set_start_in_flash, NULL);
463     object_property_set_description(obj, "start-in-flash",
464                                     "Set on to tell QEMU's ROM to jump to " \
465                                     "flash. Otherwise QEMU will jump to DRAM",
466                                     NULL);
467 }
468 
469 static void riscv_sifive_u_soc_realize(DeviceState *dev, Error **errp)
470 {
471     MachineState *ms = MACHINE(qdev_get_machine());
472     SiFiveUSoCState *s = RISCV_U_SOC(dev);
473     const struct MemmapEntry *memmap = sifive_u_memmap;
474     MemoryRegion *system_memory = get_system_memory();
475     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
476     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
477     qemu_irq plic_gpios[SIFIVE_U_PLIC_NUM_SOURCES];
478     char *plic_hart_config;
479     size_t plic_hart_config_len;
480     int i;
481     Error *err = NULL;
482     NICInfo *nd = &nd_table[0];
483 
484     object_property_set_bool(OBJECT(&s->e_cpus), true, "realized",
485                              &error_abort);
486     object_property_set_bool(OBJECT(&s->u_cpus), true, "realized",
487                              &error_abort);
488     /*
489      * The cluster must be realized after the RISC-V hart array container,
490      * as the container's CPU object is only created on realize, and the
491      * CPU must exist and have been parented into the cluster before the
492      * cluster is realized.
493      */
494     object_property_set_bool(OBJECT(&s->e_cluster), true, "realized",
495                              &error_abort);
496     object_property_set_bool(OBJECT(&s->u_cluster), true, "realized",
497                              &error_abort);
498 
499     /* boot rom */
500     memory_region_init_rom(mask_rom, NULL, "riscv.sifive.u.mrom",
501                            memmap[SIFIVE_U_MROM].size, &error_fatal);
502     memory_region_add_subregion(system_memory, memmap[SIFIVE_U_MROM].base,
503                                 mask_rom);
504 
505     /*
506      * Add L2-LIM at reset size.
507      * This should be reduced in size as the L2 Cache Controller WayEnable
508      * register is incremented. Unfortunately I don't see a nice (or any) way
509      * to handle reducing or blocking out the L2 LIM while still allowing it
510      * be re returned to all enabled after a reset. For the time being, just
511      * leave it enabled all the time. This won't break anything, but will be
512      * too generous to misbehaving guests.
513      */
514     memory_region_init_ram(l2lim_mem, NULL, "riscv.sifive.u.l2lim",
515                            memmap[SIFIVE_U_L2LIM].size, &error_fatal);
516     memory_region_add_subregion(system_memory, memmap[SIFIVE_U_L2LIM].base,
517                                 l2lim_mem);
518 
519     /* create PLIC hart topology configuration string */
520     plic_hart_config_len = (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1) *
521                            ms->smp.cpus;
522     plic_hart_config = g_malloc0(plic_hart_config_len);
523     for (i = 0; i < ms->smp.cpus; i++) {
524         if (i != 0) {
525             strncat(plic_hart_config, "," SIFIVE_U_PLIC_HART_CONFIG,
526                     plic_hart_config_len);
527         } else {
528             strncat(plic_hart_config, "M", plic_hart_config_len);
529         }
530         plic_hart_config_len -= (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1);
531     }
532 
533     /* MMIO */
534     s->plic = sifive_plic_create(memmap[SIFIVE_U_PLIC].base,
535         plic_hart_config,
536         SIFIVE_U_PLIC_NUM_SOURCES,
537         SIFIVE_U_PLIC_NUM_PRIORITIES,
538         SIFIVE_U_PLIC_PRIORITY_BASE,
539         SIFIVE_U_PLIC_PENDING_BASE,
540         SIFIVE_U_PLIC_ENABLE_BASE,
541         SIFIVE_U_PLIC_ENABLE_STRIDE,
542         SIFIVE_U_PLIC_CONTEXT_BASE,
543         SIFIVE_U_PLIC_CONTEXT_STRIDE,
544         memmap[SIFIVE_U_PLIC].size);
545     sifive_uart_create(system_memory, memmap[SIFIVE_U_UART0].base,
546         serial_hd(0), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART0_IRQ));
547     sifive_uart_create(system_memory, memmap[SIFIVE_U_UART1].base,
548         serial_hd(1), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART1_IRQ));
549     sifive_clint_create(memmap[SIFIVE_U_CLINT].base,
550         memmap[SIFIVE_U_CLINT].size, ms->smp.cpus,
551         SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
552 
553     object_property_set_bool(OBJECT(&s->prci), true, "realized", &err);
554     sysbus_mmio_map(SYS_BUS_DEVICE(&s->prci), 0, memmap[SIFIVE_U_PRCI].base);
555 
556     object_property_set_bool(OBJECT(&s->otp), true, "realized", &err);
557     sysbus_mmio_map(SYS_BUS_DEVICE(&s->otp), 0, memmap[SIFIVE_U_OTP].base);
558 
559     for (i = 0; i < SIFIVE_U_PLIC_NUM_SOURCES; i++) {
560         plic_gpios[i] = qdev_get_gpio_in(DEVICE(s->plic), i);
561     }
562 
563     if (nd->used) {
564         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
565         qdev_set_nic_properties(DEVICE(&s->gem), nd);
566     }
567     object_property_set_int(OBJECT(&s->gem), GEM_REVISION, "revision",
568                             &error_abort);
569     object_property_set_bool(OBJECT(&s->gem), true, "realized", &err);
570     if (err) {
571         error_propagate(errp, err);
572         return;
573     }
574     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem), 0, memmap[SIFIVE_U_GEM].base);
575     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem), 0,
576                        plic_gpios[SIFIVE_U_GEM_IRQ]);
577 
578     create_unimplemented_device("riscv.sifive.u.gem-mgmt",
579         memmap[SIFIVE_U_GEM_MGMT].base, memmap[SIFIVE_U_GEM_MGMT].size);
580 }
581 
582 static void riscv_sifive_u_soc_class_init(ObjectClass *oc, void *data)
583 {
584     DeviceClass *dc = DEVICE_CLASS(oc);
585 
586     dc->realize = riscv_sifive_u_soc_realize;
587     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
588     dc->user_creatable = false;
589 }
590 
591 static const TypeInfo riscv_sifive_u_soc_type_info = {
592     .name = TYPE_RISCV_U_SOC,
593     .parent = TYPE_DEVICE,
594     .instance_size = sizeof(SiFiveUSoCState),
595     .instance_init = riscv_sifive_u_soc_init,
596     .class_init = riscv_sifive_u_soc_class_init,
597 };
598 
599 static void riscv_sifive_u_soc_register_types(void)
600 {
601     type_register_static(&riscv_sifive_u_soc_type_info);
602 }
603 
604 type_init(riscv_sifive_u_soc_register_types)
605 
606 static void riscv_sifive_u_machine_class_init(ObjectClass *oc, void *data)
607 {
608     MachineClass *mc = MACHINE_CLASS(oc);
609 
610     mc->desc = "RISC-V Board compatible with SiFive U SDK";
611     mc->init = riscv_sifive_u_init;
612     mc->max_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + SIFIVE_U_COMPUTE_CPU_COUNT;
613     mc->min_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + 1;
614     mc->default_cpus = mc->min_cpus;
615 }
616 
617 static const TypeInfo riscv_sifive_u_machine_typeinfo = {
618     .name       = MACHINE_TYPE_NAME("sifive_u"),
619     .parent     = TYPE_MACHINE,
620     .class_init = riscv_sifive_u_machine_class_init,
621     .instance_init = riscv_sifive_u_machine_instance_init,
622     .instance_size = sizeof(SiFiveUState),
623 };
624 
625 static void riscv_sifive_u_machine_init_register_types(void)
626 {
627     type_register_static(&riscv_sifive_u_machine_typeinfo);
628 }
629 
630 type_init(riscv_sifive_u_machine_init_register_types)
631