1 /* 2 * QEMU RISC-V NUMA Helper 3 * 4 * Copyright (c) 2020 Western Digital Corporation or its affiliates. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/units.h" 21 #include "qemu/log.h" 22 #include "qemu/error-report.h" 23 #include "qapi/error.h" 24 #include "hw/boards.h" 25 #include "hw/qdev-properties.h" 26 #include "hw/riscv/numa.h" 27 #include "sysemu/device_tree.h" 28 29 static bool numa_enabled(const MachineState *ms) 30 { 31 return (ms->numa_state && ms->numa_state->num_nodes) ? true : false; 32 } 33 34 int riscv_socket_count(const MachineState *ms) 35 { 36 return (numa_enabled(ms)) ? ms->numa_state->num_nodes : 1; 37 } 38 39 int riscv_socket_first_hartid(const MachineState *ms, int socket_id) 40 { 41 int i, first_hartid = ms->smp.cpus; 42 43 if (!numa_enabled(ms)) { 44 return (!socket_id) ? 0 : -1; 45 } 46 47 for (i = 0; i < ms->smp.cpus; i++) { 48 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { 49 continue; 50 } 51 if (i < first_hartid) { 52 first_hartid = i; 53 } 54 } 55 56 return (first_hartid < ms->smp.cpus) ? first_hartid : -1; 57 } 58 59 int riscv_socket_last_hartid(const MachineState *ms, int socket_id) 60 { 61 int i, last_hartid = -1; 62 63 if (!numa_enabled(ms)) { 64 return (!socket_id) ? ms->smp.cpus - 1 : -1; 65 } 66 67 for (i = 0; i < ms->smp.cpus; i++) { 68 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { 69 continue; 70 } 71 if (i > last_hartid) { 72 last_hartid = i; 73 } 74 } 75 76 return (last_hartid < ms->smp.cpus) ? last_hartid : -1; 77 } 78 79 int riscv_socket_hart_count(const MachineState *ms, int socket_id) 80 { 81 int first_hartid, last_hartid; 82 83 if (!numa_enabled(ms)) { 84 return (!socket_id) ? ms->smp.cpus : -1; 85 } 86 87 first_hartid = riscv_socket_first_hartid(ms, socket_id); 88 if (first_hartid < 0) { 89 return -1; 90 } 91 92 last_hartid = riscv_socket_last_hartid(ms, socket_id); 93 if (last_hartid < 0) { 94 return -1; 95 } 96 97 if (first_hartid > last_hartid) { 98 return -1; 99 } 100 101 return last_hartid - first_hartid + 1; 102 } 103 104 bool riscv_socket_check_hartids(const MachineState *ms, int socket_id) 105 { 106 int i, first_hartid, last_hartid; 107 108 if (!numa_enabled(ms)) { 109 return (!socket_id) ? true : false; 110 } 111 112 first_hartid = riscv_socket_first_hartid(ms, socket_id); 113 if (first_hartid < 0) { 114 return false; 115 } 116 117 last_hartid = riscv_socket_last_hartid(ms, socket_id); 118 if (last_hartid < 0) { 119 return false; 120 } 121 122 for (i = first_hartid; i <= last_hartid; i++) { 123 if (ms->possible_cpus->cpus[i].props.node_id != socket_id) { 124 return false; 125 } 126 } 127 128 return true; 129 } 130 131 uint64_t riscv_socket_mem_offset(const MachineState *ms, int socket_id) 132 { 133 int i; 134 uint64_t mem_offset = 0; 135 136 if (!numa_enabled(ms)) { 137 return 0; 138 } 139 140 for (i = 0; i < ms->numa_state->num_nodes; i++) { 141 if (i == socket_id) { 142 break; 143 } 144 mem_offset += ms->numa_state->nodes[i].node_mem; 145 } 146 147 return (i == socket_id) ? mem_offset : 0; 148 } 149 150 uint64_t riscv_socket_mem_size(const MachineState *ms, int socket_id) 151 { 152 if (!numa_enabled(ms)) { 153 return (!socket_id) ? ms->ram_size : 0; 154 } 155 156 return (socket_id < ms->numa_state->num_nodes) ? 157 ms->numa_state->nodes[socket_id].node_mem : 0; 158 } 159 160 void riscv_socket_fdt_write_id(const MachineState *ms, void *fdt, 161 const char *node_name, int socket_id) 162 { 163 if (numa_enabled(ms)) { 164 qemu_fdt_setprop_cell(fdt, node_name, "numa-node-id", socket_id); 165 } 166 } 167 168 void riscv_socket_fdt_write_distance_matrix(const MachineState *ms, void *fdt) 169 { 170 int i, j, idx; 171 uint32_t *dist_matrix, dist_matrix_size; 172 173 if (numa_enabled(ms) && ms->numa_state->have_numa_distance) { 174 dist_matrix_size = riscv_socket_count(ms) * riscv_socket_count(ms); 175 dist_matrix_size *= (3 * sizeof(uint32_t)); 176 dist_matrix = g_malloc0(dist_matrix_size); 177 178 for (i = 0; i < riscv_socket_count(ms); i++) { 179 for (j = 0; j < riscv_socket_count(ms); j++) { 180 idx = (i * riscv_socket_count(ms) + j) * 3; 181 dist_matrix[idx + 0] = cpu_to_be32(i); 182 dist_matrix[idx + 1] = cpu_to_be32(j); 183 dist_matrix[idx + 2] = 184 cpu_to_be32(ms->numa_state->nodes[i].distance[j]); 185 } 186 } 187 188 qemu_fdt_add_subnode(fdt, "/distance-map"); 189 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", 190 "numa-distance-map-v1"); 191 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", 192 dist_matrix, dist_matrix_size); 193 g_free(dist_matrix); 194 } 195 } 196 197 CpuInstanceProperties 198 riscv_numa_cpu_index_to_props(MachineState *ms, unsigned cpu_index) 199 { 200 MachineClass *mc = MACHINE_GET_CLASS(ms); 201 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); 202 203 assert(cpu_index < possible_cpus->len); 204 return possible_cpus->cpus[cpu_index].props; 205 } 206 207 int64_t riscv_numa_get_default_cpu_node_id(const MachineState *ms, int idx) 208 { 209 int64_t nidx = 0; 210 211 if (ms->numa_state->num_nodes) { 212 nidx = idx / (ms->smp.cpus / ms->numa_state->num_nodes); 213 if (ms->numa_state->num_nodes <= nidx) { 214 nidx = ms->numa_state->num_nodes - 1; 215 } 216 } 217 218 return nidx; 219 } 220 221 const CPUArchIdList *riscv_numa_possible_cpu_arch_ids(MachineState *ms) 222 { 223 int n; 224 unsigned int max_cpus = ms->smp.max_cpus; 225 226 if (ms->possible_cpus) { 227 assert(ms->possible_cpus->len == max_cpus); 228 return ms->possible_cpus; 229 } 230 231 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 232 sizeof(CPUArchId) * max_cpus); 233 ms->possible_cpus->len = max_cpus; 234 for (n = 0; n < ms->possible_cpus->len; n++) { 235 ms->possible_cpus->cpus[n].type = ms->cpu_type; 236 ms->possible_cpus->cpus[n].arch_id = n; 237 ms->possible_cpus->cpus[n].props.has_core_id = true; 238 ms->possible_cpus->cpus[n].props.core_id = n; 239 } 240 241 return ms->possible_cpus; 242 } 243