xref: /openbmc/qemu/hw/riscv/microchip_pfsoc.c (revision efee71c8)
1 /*
2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10  *
11  * 0) CLINT (Core Level Interruptor)
12  * 1) PLIC (Platform Level Interrupt Controller)
13  * 2) eNVM (Embedded Non-Volatile Memory)
14  * 3) MMUARTs (Multi-Mode UART)
15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
17  * 6) GEM (Gigabit Ethernet MAC Controller)
18  * 7) DMC (DDR Memory Controller)
19  * 8) IOSCB modules
20  *
21  * This board currently generates devicetree dynamically that indicates at least
22  * two harts and up to five harts.
23  *
24  * This program is free software; you can redistribute it and/or modify it
25  * under the terms and conditions of the GNU General Public License,
26  * version 2 or later, as published by the Free Software Foundation.
27  *
28  * This program is distributed in the hope it will be useful, but WITHOUT
29  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
31  * more details.
32  *
33  * You should have received a copy of the GNU General Public License along with
34  * this program.  If not, see <http://www.gnu.org/licenses/>.
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56 
57 /*
58  * The BIOS image used by this machine is called Hart Software Services (HSS).
59  * See https://github.com/polarfire-soc/hart-software-services
60  */
61 #define BIOS_FILENAME   "hss.bin"
62 #define RESET_VECTOR    0x20220000
63 
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66 
67 /* GEM version */
68 #define GEM_REVISION    0x0107010c
69 
70 /*
71  * The complete description of the whole PolarFire SoC memory map is scattered
72  * in different documents. There are several places to look at for memory maps:
73  *
74  * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75  *   Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76  *   https://www.microsemi.com/document-portal/doc_download/
77  *   1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78  *   describes the whole picture of the PolarFire SoC memory map.
79  *
80  * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81  *   https://www.microsemi.com/document-portal/doc_download/
82  *   1244581-polarfire-soc-register-map, contains the following 2 major parts:
83  *   - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84  *     describes the complete integrated peripherals memory map
85  *   - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86  *     describes the complete IOSCB modules memory maps
87  */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89     [MICROCHIP_PFSOC_RSVD0] =           {        0x0,      0x100 },
90     [MICROCHIP_PFSOC_DEBUG] =           {      0x100,      0xf00 },
91     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,     0x2000 },
92     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,     0x1000 },
93     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,     0x1000 },
94     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,     0x1000 },
95     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,     0x1000 },
96     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,     0x1000 },
97     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,    0x10000 },
98     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,     0x1000 },
99     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,   0x100000 },
100     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,  0x2000000 },
101     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,  0x4000000 },
102     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,     0x1000 },
103     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,     0x2000 },
104     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,     0x1000 },
105     [MICROCHIP_PFSOC_DDR_SGMII_PHY] =   { 0x20007000,     0x1000 },
106     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,     0x1000 },
107     [MICROCHIP_PFSOC_DDR_CFG] =         { 0x20080000,    0x40000 },
108     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,     0x1000 },
109     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,     0x1000 },
110     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,     0x1000 },
111     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,     0x1000 },
112     [MICROCHIP_PFSOC_SPI0] =            { 0x20108000,     0x1000 },
113     [MICROCHIP_PFSOC_SPI1] =            { 0x20109000,     0x1000 },
114     [MICROCHIP_PFSOC_I2C1] =            { 0x2010b000,     0x1000 },
115     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,     0x2000 },
116     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,     0x2000 },
117     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,     0x1000 },
118     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,     0x1000 },
119     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,     0x1000 },
120     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,     0x1000 },
121     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,    0x20000 },
122     [MICROCHIP_PFSOC_QSPI_XIP] =        { 0x21000000,  0x1000000 },
123     [MICROCHIP_PFSOC_IOSCB] =           { 0x30000000, 0x10000000 },
124     [MICROCHIP_PFSOC_EMMC_SD_MUX] =     { 0x4f000000,        0x4 },
125     [MICROCHIP_PFSOC_DRAM_LO] =         { 0x80000000, 0x40000000 },
126     [MICROCHIP_PFSOC_DRAM_LO_ALIAS] =   { 0xc0000000, 0x40000000 },
127     [MICROCHIP_PFSOC_DRAM_HI] =       { 0x1000000000,        0x0 },
128     [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000,        0x0 },
129 };
130 
131 static void microchip_pfsoc_soc_instance_init(Object *obj)
132 {
133     MachineState *ms = MACHINE(qdev_get_machine());
134     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
135 
136     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
137     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
138 
139     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
140                             TYPE_RISCV_HART_ARRAY);
141     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
142     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
143     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
144                          TYPE_RISCV_CPU_SIFIVE_E51);
145     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
146 
147     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
148     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
149 
150     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
151                             TYPE_RISCV_HART_ARRAY);
152     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
153     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
154     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
155                          TYPE_RISCV_CPU_SIFIVE_U54);
156     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
157 
158     object_initialize_child(obj, "dma-controller", &s->dma,
159                             TYPE_SIFIVE_PDMA);
160 
161     object_initialize_child(obj, "sysreg", &s->sysreg,
162                             TYPE_MCHP_PFSOC_SYSREG);
163 
164     object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
165                             TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
166     object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
167                             TYPE_MCHP_PFSOC_DDR_CFG);
168 
169     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
170     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
171 
172     object_initialize_child(obj, "sd-controller", &s->sdhci,
173                             TYPE_CADENCE_SDHCI);
174 
175     object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
176 }
177 
178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
179 {
180     MachineState *ms = MACHINE(qdev_get_machine());
181     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
182     const MemMapEntry *memmap = microchip_pfsoc_memmap;
183     MemoryRegion *system_memory = get_system_memory();
184     MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
185     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
186     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
187     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
188     MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
189     char *plic_hart_config;
190     size_t plic_hart_config_len;
191     NICInfo *nd;
192     int i;
193 
194     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
195     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
196     /*
197      * The cluster must be realized after the RISC-V hart array container,
198      * as the container's CPU object is only created on realize, and the
199      * CPU must exist and have been parented into the cluster before the
200      * cluster is realized.
201      */
202     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
203     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
204 
205     /* Reserved Memory at address 0 */
206     memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
207                            memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
208     memory_region_add_subregion(system_memory,
209                                 memmap[MICROCHIP_PFSOC_RSVD0].base,
210                                 rsvd0_mem);
211 
212     /* E51 DTIM */
213     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
214                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
215     memory_region_add_subregion(system_memory,
216                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
217                                 e51_dtim_mem);
218 
219     /* Bus Error Units */
220     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
221         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
222         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
223     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
224         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
225         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
226     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
227         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
228         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
229     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
230         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
231         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
232     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
233         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
234         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
235 
236     /* CLINT */
237     riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
238         0, ms->smp.cpus, false);
239     riscv_aclint_mtimer_create(
240         memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
241         RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
242         RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
243         CLINT_TIMEBASE_FREQ, false);
244 
245     /* L2 cache controller */
246     create_unimplemented_device("microchip.pfsoc.l2cc",
247         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
248 
249     /*
250      * Add L2-LIM at reset size.
251      * This should be reduced in size as the L2 Cache Controller WayEnable
252      * register is incremented. Unfortunately I don't see a nice (or any) way
253      * to handle reducing or blocking out the L2 LIM while still allowing it
254      * be re returned to all enabled after a reset. For the time being, just
255      * leave it enabled all the time. This won't break anything, but will be
256      * too generous to misbehaving guests.
257      */
258     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
259                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
260     memory_region_add_subregion(system_memory,
261                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
262                                 l2lim_mem);
263 
264     /* create PLIC hart topology configuration string */
265     plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
266                            ms->smp.cpus;
267     plic_hart_config = g_malloc0(plic_hart_config_len);
268     for (i = 0; i < ms->smp.cpus; i++) {
269         if (i != 0) {
270             strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
271                     plic_hart_config_len);
272         } else {
273             strncat(plic_hart_config, "M", plic_hart_config_len);
274         }
275         plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
276     }
277 
278     /* PLIC */
279     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
280         plic_hart_config, ms->smp.cpus, 0,
281         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
282         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
283         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
284         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
285         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
286         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
287         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
288         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
289         memmap[MICROCHIP_PFSOC_PLIC].size);
290     g_free(plic_hart_config);
291 
292     /* DMA */
293     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
294     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
295                     memmap[MICROCHIP_PFSOC_DMA].base);
296     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
297         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
298                            qdev_get_gpio_in(DEVICE(s->plic),
299                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
300     }
301 
302     /* SYSREG */
303     sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
304     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
305                     memmap[MICROCHIP_PFSOC_SYSREG].base);
306 
307     /* MPUCFG */
308     create_unimplemented_device("microchip.pfsoc.mpucfg",
309         memmap[MICROCHIP_PFSOC_MPUCFG].base,
310         memmap[MICROCHIP_PFSOC_MPUCFG].size);
311 
312     /* DDR SGMII PHY */
313     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
314     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
315                     memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
316 
317     /* DDR CFG */
318     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
319     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
320                     memmap[MICROCHIP_PFSOC_DDR_CFG].base);
321 
322     /* SDHCI */
323     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
324     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
325                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
326     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
327         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
328 
329     /* MMUARTs */
330     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
331         memmap[MICROCHIP_PFSOC_MMUART0].base,
332         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
333         serial_hd(0));
334     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
335         memmap[MICROCHIP_PFSOC_MMUART1].base,
336         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
337         serial_hd(1));
338     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
339         memmap[MICROCHIP_PFSOC_MMUART2].base,
340         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
341         serial_hd(2));
342     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
343         memmap[MICROCHIP_PFSOC_MMUART3].base,
344         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
345         serial_hd(3));
346     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
347         memmap[MICROCHIP_PFSOC_MMUART4].base,
348         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
349         serial_hd(4));
350 
351     /* SPI */
352     create_unimplemented_device("microchip.pfsoc.spi0",
353         memmap[MICROCHIP_PFSOC_SPI0].base,
354         memmap[MICROCHIP_PFSOC_SPI0].size);
355     create_unimplemented_device("microchip.pfsoc.spi1",
356         memmap[MICROCHIP_PFSOC_SPI1].base,
357         memmap[MICROCHIP_PFSOC_SPI1].size);
358 
359     /* I2C1 */
360     create_unimplemented_device("microchip.pfsoc.i2c1",
361         memmap[MICROCHIP_PFSOC_I2C1].base,
362         memmap[MICROCHIP_PFSOC_I2C1].size);
363 
364     /* GEMs */
365 
366     nd = &nd_table[0];
367     if (nd->used) {
368         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
369         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
370     }
371     nd = &nd_table[1];
372     if (nd->used) {
373         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
374         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
375     }
376 
377     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
378     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
379     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
380     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
381                     memmap[MICROCHIP_PFSOC_GEM0].base);
382     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
383         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
384 
385     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
386     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
387     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
388     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
389                     memmap[MICROCHIP_PFSOC_GEM1].base);
390     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
391         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
392 
393     /* GPIOs */
394     create_unimplemented_device("microchip.pfsoc.gpio0",
395         memmap[MICROCHIP_PFSOC_GPIO0].base,
396         memmap[MICROCHIP_PFSOC_GPIO0].size);
397     create_unimplemented_device("microchip.pfsoc.gpio1",
398         memmap[MICROCHIP_PFSOC_GPIO1].base,
399         memmap[MICROCHIP_PFSOC_GPIO1].size);
400     create_unimplemented_device("microchip.pfsoc.gpio2",
401         memmap[MICROCHIP_PFSOC_GPIO2].base,
402         memmap[MICROCHIP_PFSOC_GPIO2].size);
403 
404     /* eNVM */
405     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
406                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
407                            &error_fatal);
408     memory_region_add_subregion(system_memory,
409                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
410                                 envm_data);
411 
412     /* IOSCB */
413     sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
414     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
415                     memmap[MICROCHIP_PFSOC_IOSCB].base);
416 
417     /* eMMC/SD mux */
418     create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
419         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
420         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
421 
422     /* QSPI Flash */
423     memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
424                            "microchip.pfsoc.qspi_xip",
425                            memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
426                            &error_fatal);
427     memory_region_add_subregion(system_memory,
428                                 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
429                                 qspi_xip_mem);
430 }
431 
432 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
433 {
434     DeviceClass *dc = DEVICE_CLASS(oc);
435 
436     dc->realize = microchip_pfsoc_soc_realize;
437     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
438     dc->user_creatable = false;
439 }
440 
441 static const TypeInfo microchip_pfsoc_soc_type_info = {
442     .name = TYPE_MICROCHIP_PFSOC,
443     .parent = TYPE_DEVICE,
444     .instance_size = sizeof(MicrochipPFSoCState),
445     .instance_init = microchip_pfsoc_soc_instance_init,
446     .class_init = microchip_pfsoc_soc_class_init,
447 };
448 
449 static void microchip_pfsoc_soc_register_types(void)
450 {
451     type_register_static(&microchip_pfsoc_soc_type_info);
452 }
453 
454 type_init(microchip_pfsoc_soc_register_types)
455 
456 static void microchip_icicle_kit_machine_init(MachineState *machine)
457 {
458     MachineClass *mc = MACHINE_GET_CLASS(machine);
459     const MemMapEntry *memmap = microchip_pfsoc_memmap;
460     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
461     MemoryRegion *system_memory = get_system_memory();
462     MemoryRegion *mem_low = g_new(MemoryRegion, 1);
463     MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
464     MemoryRegion *mem_high = g_new(MemoryRegion, 1);
465     MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
466     uint64_t mem_high_size;
467     hwaddr firmware_load_addr;
468     const char *firmware_name;
469     bool kernel_as_payload = false;
470     target_ulong firmware_end_addr, kernel_start_addr;
471     uint64_t kernel_entry;
472     uint32_t fdt_load_addr;
473     DriveInfo *dinfo = drive_get_next(IF_SD);
474 
475     /* Sanity check on RAM size */
476     if (machine->ram_size < mc->default_ram_size) {
477         char *sz = size_to_str(mc->default_ram_size);
478         error_report("Invalid RAM size, should be bigger than %s", sz);
479         g_free(sz);
480         exit(EXIT_FAILURE);
481     }
482 
483     /* Initialize SoC */
484     object_initialize_child(OBJECT(machine), "soc", &s->soc,
485                             TYPE_MICROCHIP_PFSOC);
486     qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
487 
488     /* Register RAM */
489     memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
490                            memmap[MICROCHIP_PFSOC_DRAM_LO].size,
491                            &error_fatal);
492     memory_region_init_alias(mem_low_alias, NULL,
493                              "microchip.icicle.kit.ram_low.alias",
494                              mem_low, 0,
495                              memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
496     memory_region_add_subregion(system_memory,
497                                 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
498                                 mem_low);
499     memory_region_add_subregion(system_memory,
500                                 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
501                                 mem_low_alias);
502 
503     mem_high_size = machine->ram_size - 1 * GiB;
504 
505     memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
506                            mem_high_size, &error_fatal);
507     memory_region_init_alias(mem_high_alias, NULL,
508                              "microchip.icicle.kit.ram_high.alias",
509                              mem_high, 0, mem_high_size);
510     memory_region_add_subregion(system_memory,
511                                 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
512                                 mem_high);
513     memory_region_add_subregion(system_memory,
514                                 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
515                                 mem_high_alias);
516 
517     /* Attach an SD card */
518     if (dinfo) {
519         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
520         DeviceState *card = qdev_new(TYPE_SD_CARD);
521 
522         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
523                                 &error_fatal);
524         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
525     }
526 
527     /*
528      * We follow the following table to select which payload we execute.
529      *
530      *  -bios |    -kernel | payload
531      * -------+------------+--------
532      *      N |          N | HSS
533      *      Y | don't care | HSS
534      *      N |          Y | kernel
535      *
536      * This ensures backwards compatibility with how we used to expose -bios
537      * to users but allows them to run through direct kernel booting as well.
538      *
539      * When -kernel is used for direct boot, -dtb must be present to provide
540      * a valid device tree for the board, as we don't generate device tree.
541      */
542 
543     if (machine->kernel_filename && machine->dtb) {
544         int fdt_size;
545         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
546         if (!machine->fdt) {
547             error_report("load_device_tree() failed");
548             exit(1);
549         }
550 
551         firmware_name = RISCV64_BIOS_BIN;
552         firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
553         kernel_as_payload = true;
554     }
555 
556     if (!kernel_as_payload) {
557         firmware_name = BIOS_FILENAME;
558         firmware_load_addr = RESET_VECTOR;
559     }
560 
561     /* Load the firmware */
562     firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
563                                                      firmware_load_addr, NULL);
564 
565     if (kernel_as_payload) {
566         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
567                                                          firmware_end_addr);
568 
569         kernel_entry = riscv_load_kernel(machine->kernel_filename,
570                                          kernel_start_addr, NULL);
571 
572         if (machine->initrd_filename) {
573             hwaddr start;
574             hwaddr end = riscv_load_initrd(machine->initrd_filename,
575                                            machine->ram_size, kernel_entry,
576                                            &start);
577             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
578                                   "linux,initrd-start", start);
579             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
580                                   "linux,initrd-end", end);
581         }
582 
583         if (machine->kernel_cmdline) {
584             qemu_fdt_setprop_string(machine->fdt, "/chosen",
585                                     "bootargs", machine->kernel_cmdline);
586         }
587 
588         /* Compute the fdt load address in dram */
589         fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
590                                        machine->ram_size, machine->fdt);
591         /* Load the reset vector */
592         riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
593                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
594                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
595                                   kernel_entry, fdt_load_addr, machine->fdt);
596     }
597 }
598 
599 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
600 {
601     MachineClass *mc = MACHINE_CLASS(oc);
602 
603     mc->desc = "Microchip PolarFire SoC Icicle Kit";
604     mc->init = microchip_icicle_kit_machine_init;
605     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
606                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
607     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
608     mc->default_cpus = mc->min_cpus;
609 
610     /*
611      * Map 513 MiB high memory, the mimimum required high memory size, because
612      * HSS will do memory test against the high memory address range regardless
613      * of physical memory installed.
614      *
615      * See memory_tests() in mss_ddr.c in the HSS source code.
616      */
617     mc->default_ram_size = 1537 * MiB;
618 }
619 
620 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
621     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
622     .parent     = TYPE_MACHINE,
623     .class_init = microchip_icicle_kit_machine_class_init,
624     .instance_size = sizeof(MicrochipIcicleKitState),
625 };
626 
627 static void microchip_icicle_kit_machine_init_register_types(void)
628 {
629     type_register_static(&microchip_icicle_kit_machine_typeinfo);
630 }
631 
632 type_init(microchip_icicle_kit_machine_init_register_types)
633