1 /* 2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit 3 * 4 * Copyright (c) 2020 Wind River Systems, Inc. 5 * 6 * Author: 7 * Bin Meng <bin.meng@windriver.com> 8 * 9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit 10 * 11 * 0) CLINT (Core Level Interruptor) 12 * 1) PLIC (Platform Level Interrupt Controller) 13 * 2) eNVM (Embedded Non-Volatile Memory) 14 * 3) MMUARTs (Multi-Mode UART) 15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it 16 * 5) SiFive Platform DMA (Direct Memory Access Controller) 17 * 6) GEM (Gigabit Ethernet MAC Controller) 18 * 7) DMC (DDR Memory Controller) 19 * 8) IOSCB modules 20 * 21 * This board currently generates devicetree dynamically that indicates at least 22 * two harts and up to five harts. 23 * 24 * This program is free software; you can redistribute it and/or modify it 25 * under the terms and conditions of the GNU General Public License, 26 * version 2 or later, as published by the Free Software Foundation. 27 * 28 * This program is distributed in the hope it will be useful, but WITHOUT 29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 31 * more details. 32 * 33 * You should have received a copy of the GNU General Public License along with 34 * this program. If not, see <http://www.gnu.org/licenses/>. 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/error-report.h" 39 #include "qemu/units.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "hw/sysbus.h" 45 #include "chardev/char.h" 46 #include "hw/cpu/cluster.h" 47 #include "target/riscv/cpu.h" 48 #include "hw/misc/unimp.h" 49 #include "hw/riscv/boot.h" 50 #include "hw/riscv/riscv_hart.h" 51 #include "hw/riscv/microchip_pfsoc.h" 52 #include "hw/intc/riscv_aclint.h" 53 #include "hw/intc/sifive_plic.h" 54 #include "sysemu/device_tree.h" 55 #include "sysemu/sysemu.h" 56 57 /* 58 * The BIOS image used by this machine is called Hart Software Services (HSS). 59 * See https://github.com/polarfire-soc/hart-software-services 60 */ 61 #define BIOS_FILENAME "hss.bin" 62 #define RESET_VECTOR 0x20220000 63 64 /* CLINT timebase frequency */ 65 #define CLINT_TIMEBASE_FREQ 1000000 66 67 /* GEM version */ 68 #define GEM_REVISION 0x0107010c 69 70 /* 71 * The complete description of the whole PolarFire SoC memory map is scattered 72 * in different documents. There are several places to look at for memory maps: 73 * 74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA 75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from 76 * https://www.microsemi.com/document-portal/doc_download/ 77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide, 78 * describes the whole picture of the PolarFire SoC memory map. 79 * 80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from 81 * https://www.microsemi.com/document-portal/doc_download/ 82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts: 83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm 84 * describes the complete integrated peripherals memory map 85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm 86 * describes the complete IOSCB modules memory maps 87 */ 88 static const MemMapEntry microchip_pfsoc_memmap[] = { 89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 }, 90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 }, 91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 }, 92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 }, 93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 }, 94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 }, 95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 }, 96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 }, 97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 }, 98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 }, 99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 }, 100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 }, 101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 }, 102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 }, 103 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 }, 104 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 }, 105 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 }, 106 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 }, 107 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 }, 108 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 }, 109 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 }, 110 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 }, 111 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 }, 112 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 }, 113 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 }, 114 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 }, 115 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 }, 116 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 }, 117 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 }, 118 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 }, 119 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 }, 120 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 }, 121 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 }, 122 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 }, 123 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 }, 124 [MICROCHIP_PFSOC_EMMC_SD_MUX] = { 0x4f000000, 0x4 }, 125 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 }, 126 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 }, 127 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 }, 128 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 }, 129 }; 130 131 static void microchip_pfsoc_soc_instance_init(Object *obj) 132 { 133 MachineState *ms = MACHINE(qdev_get_machine()); 134 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj); 135 136 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER); 137 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); 138 139 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus, 140 TYPE_RISCV_HART_ARRAY); 141 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); 142 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); 143 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", 144 TYPE_RISCV_CPU_SIFIVE_E51); 145 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR); 146 147 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER); 148 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); 149 150 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus, 151 TYPE_RISCV_HART_ARRAY); 152 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); 153 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); 154 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", 155 TYPE_RISCV_CPU_SIFIVE_U54); 156 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR); 157 158 object_initialize_child(obj, "dma-controller", &s->dma, 159 TYPE_SIFIVE_PDMA); 160 161 object_initialize_child(obj, "sysreg", &s->sysreg, 162 TYPE_MCHP_PFSOC_SYSREG); 163 164 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy, 165 TYPE_MCHP_PFSOC_DDR_SGMII_PHY); 166 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg, 167 TYPE_MCHP_PFSOC_DDR_CFG); 168 169 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM); 170 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM); 171 172 object_initialize_child(obj, "sd-controller", &s->sdhci, 173 TYPE_CADENCE_SDHCI); 174 175 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB); 176 } 177 178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp) 179 { 180 MachineState *ms = MACHINE(qdev_get_machine()); 181 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev); 182 const MemMapEntry *memmap = microchip_pfsoc_memmap; 183 MemoryRegion *system_memory = get_system_memory(); 184 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1); 185 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1); 186 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); 187 MemoryRegion *envm_data = g_new(MemoryRegion, 1); 188 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1); 189 char *plic_hart_config; 190 size_t plic_hart_config_len; 191 NICInfo *nd; 192 int i; 193 194 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort); 195 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort); 196 /* 197 * The cluster must be realized after the RISC-V hart array container, 198 * as the container's CPU object is only created on realize, and the 199 * CPU must exist and have been parented into the cluster before the 200 * cluster is realized. 201 */ 202 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort); 203 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort); 204 205 /* Reserved Memory at address 0 */ 206 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem", 207 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal); 208 memory_region_add_subregion(system_memory, 209 memmap[MICROCHIP_PFSOC_RSVD0].base, 210 rsvd0_mem); 211 212 /* E51 DTIM */ 213 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem", 214 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal); 215 memory_region_add_subregion(system_memory, 216 memmap[MICROCHIP_PFSOC_E51_DTIM].base, 217 e51_dtim_mem); 218 219 /* Bus Error Units */ 220 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem", 221 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base, 222 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size); 223 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem", 224 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base, 225 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size); 226 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem", 227 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base, 228 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size); 229 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem", 230 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base, 231 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size); 232 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem", 233 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base, 234 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size); 235 236 /* CLINT */ 237 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base, 238 0, ms->smp.cpus, false); 239 riscv_aclint_mtimer_create( 240 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE, 241 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus, 242 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME, 243 CLINT_TIMEBASE_FREQ, false); 244 245 /* L2 cache controller */ 246 create_unimplemented_device("microchip.pfsoc.l2cc", 247 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size); 248 249 /* 250 * Add L2-LIM at reset size. 251 * This should be reduced in size as the L2 Cache Controller WayEnable 252 * register is incremented. Unfortunately I don't see a nice (or any) way 253 * to handle reducing or blocking out the L2 LIM while still allowing it 254 * be re returned to all enabled after a reset. For the time being, just 255 * leave it enabled all the time. This won't break anything, but will be 256 * too generous to misbehaving guests. 257 */ 258 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim", 259 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal); 260 memory_region_add_subregion(system_memory, 261 memmap[MICROCHIP_PFSOC_L2LIM].base, 262 l2lim_mem); 263 264 /* create PLIC hart topology configuration string */ 265 plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) * 266 ms->smp.cpus; 267 plic_hart_config = g_malloc0(plic_hart_config_len); 268 for (i = 0; i < ms->smp.cpus; i++) { 269 if (i != 0) { 270 strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG, 271 plic_hart_config_len); 272 } else { 273 strncat(plic_hart_config, "M", plic_hart_config_len); 274 } 275 plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1); 276 } 277 278 /* PLIC */ 279 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base, 280 plic_hart_config, ms->smp.cpus, 0, 281 MICROCHIP_PFSOC_PLIC_NUM_SOURCES, 282 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES, 283 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE, 284 MICROCHIP_PFSOC_PLIC_PENDING_BASE, 285 MICROCHIP_PFSOC_PLIC_ENABLE_BASE, 286 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE, 287 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE, 288 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE, 289 memmap[MICROCHIP_PFSOC_PLIC].size); 290 g_free(plic_hart_config); 291 292 /* DMA */ 293 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp); 294 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0, 295 memmap[MICROCHIP_PFSOC_DMA].base); 296 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) { 297 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i, 298 qdev_get_gpio_in(DEVICE(s->plic), 299 MICROCHIP_PFSOC_DMA_IRQ0 + i)); 300 } 301 302 /* SYSREG */ 303 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp); 304 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0, 305 memmap[MICROCHIP_PFSOC_SYSREG].base); 306 307 /* MPUCFG */ 308 create_unimplemented_device("microchip.pfsoc.mpucfg", 309 memmap[MICROCHIP_PFSOC_MPUCFG].base, 310 memmap[MICROCHIP_PFSOC_MPUCFG].size); 311 312 /* DDR SGMII PHY */ 313 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp); 314 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0, 315 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base); 316 317 /* DDR CFG */ 318 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp); 319 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0, 320 memmap[MICROCHIP_PFSOC_DDR_CFG].base); 321 322 /* SDHCI */ 323 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp); 324 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0, 325 memmap[MICROCHIP_PFSOC_EMMC_SD].base); 326 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0, 327 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ)); 328 329 /* MMUARTs */ 330 s->serial0 = mchp_pfsoc_mmuart_create(system_memory, 331 memmap[MICROCHIP_PFSOC_MMUART0].base, 332 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ), 333 serial_hd(0)); 334 s->serial1 = mchp_pfsoc_mmuart_create(system_memory, 335 memmap[MICROCHIP_PFSOC_MMUART1].base, 336 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ), 337 serial_hd(1)); 338 s->serial2 = mchp_pfsoc_mmuart_create(system_memory, 339 memmap[MICROCHIP_PFSOC_MMUART2].base, 340 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ), 341 serial_hd(2)); 342 s->serial3 = mchp_pfsoc_mmuart_create(system_memory, 343 memmap[MICROCHIP_PFSOC_MMUART3].base, 344 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ), 345 serial_hd(3)); 346 s->serial4 = mchp_pfsoc_mmuart_create(system_memory, 347 memmap[MICROCHIP_PFSOC_MMUART4].base, 348 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ), 349 serial_hd(4)); 350 351 /* SPI */ 352 create_unimplemented_device("microchip.pfsoc.spi0", 353 memmap[MICROCHIP_PFSOC_SPI0].base, 354 memmap[MICROCHIP_PFSOC_SPI0].size); 355 create_unimplemented_device("microchip.pfsoc.spi1", 356 memmap[MICROCHIP_PFSOC_SPI1].base, 357 memmap[MICROCHIP_PFSOC_SPI1].size); 358 359 /* I2C1 */ 360 create_unimplemented_device("microchip.pfsoc.i2c1", 361 memmap[MICROCHIP_PFSOC_I2C1].base, 362 memmap[MICROCHIP_PFSOC_I2C1].size); 363 364 /* GEMs */ 365 366 nd = &nd_table[0]; 367 if (nd->used) { 368 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 369 qdev_set_nic_properties(DEVICE(&s->gem0), nd); 370 } 371 nd = &nd_table[1]; 372 if (nd->used) { 373 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 374 qdev_set_nic_properties(DEVICE(&s->gem1), nd); 375 } 376 377 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp); 378 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp); 379 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp); 380 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0, 381 memmap[MICROCHIP_PFSOC_GEM0].base); 382 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0, 383 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ)); 384 385 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp); 386 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp); 387 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp); 388 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0, 389 memmap[MICROCHIP_PFSOC_GEM1].base); 390 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0, 391 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ)); 392 393 /* GPIOs */ 394 create_unimplemented_device("microchip.pfsoc.gpio0", 395 memmap[MICROCHIP_PFSOC_GPIO0].base, 396 memmap[MICROCHIP_PFSOC_GPIO0].size); 397 create_unimplemented_device("microchip.pfsoc.gpio1", 398 memmap[MICROCHIP_PFSOC_GPIO1].base, 399 memmap[MICROCHIP_PFSOC_GPIO1].size); 400 create_unimplemented_device("microchip.pfsoc.gpio2", 401 memmap[MICROCHIP_PFSOC_GPIO2].base, 402 memmap[MICROCHIP_PFSOC_GPIO2].size); 403 404 /* eNVM */ 405 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data", 406 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 407 &error_fatal); 408 memory_region_add_subregion(system_memory, 409 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 410 envm_data); 411 412 /* IOSCB */ 413 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp); 414 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0, 415 memmap[MICROCHIP_PFSOC_IOSCB].base); 416 417 /* eMMC/SD mux */ 418 create_unimplemented_device("microchip.pfsoc.emmc_sd_mux", 419 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base, 420 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size); 421 422 /* QSPI Flash */ 423 memory_region_init_rom(qspi_xip_mem, OBJECT(dev), 424 "microchip.pfsoc.qspi_xip", 425 memmap[MICROCHIP_PFSOC_QSPI_XIP].size, 426 &error_fatal); 427 memory_region_add_subregion(system_memory, 428 memmap[MICROCHIP_PFSOC_QSPI_XIP].base, 429 qspi_xip_mem); 430 } 431 432 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data) 433 { 434 DeviceClass *dc = DEVICE_CLASS(oc); 435 436 dc->realize = microchip_pfsoc_soc_realize; 437 /* Reason: Uses serial_hds in realize function, thus can't be used twice */ 438 dc->user_creatable = false; 439 } 440 441 static const TypeInfo microchip_pfsoc_soc_type_info = { 442 .name = TYPE_MICROCHIP_PFSOC, 443 .parent = TYPE_DEVICE, 444 .instance_size = sizeof(MicrochipPFSoCState), 445 .instance_init = microchip_pfsoc_soc_instance_init, 446 .class_init = microchip_pfsoc_soc_class_init, 447 }; 448 449 static void microchip_pfsoc_soc_register_types(void) 450 { 451 type_register_static(µchip_pfsoc_soc_type_info); 452 } 453 454 type_init(microchip_pfsoc_soc_register_types) 455 456 static void microchip_icicle_kit_machine_init(MachineState *machine) 457 { 458 MachineClass *mc = MACHINE_GET_CLASS(machine); 459 const MemMapEntry *memmap = microchip_pfsoc_memmap; 460 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine); 461 MemoryRegion *system_memory = get_system_memory(); 462 MemoryRegion *mem_low = g_new(MemoryRegion, 1); 463 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1); 464 MemoryRegion *mem_high = g_new(MemoryRegion, 1); 465 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1); 466 uint64_t mem_high_size; 467 hwaddr firmware_load_addr; 468 const char *firmware_name; 469 bool kernel_as_payload = false; 470 target_ulong firmware_end_addr, kernel_start_addr; 471 uint64_t kernel_entry; 472 uint32_t fdt_load_addr; 473 DriveInfo *dinfo = drive_get_next(IF_SD); 474 475 /* Sanity check on RAM size */ 476 if (machine->ram_size < mc->default_ram_size) { 477 char *sz = size_to_str(mc->default_ram_size); 478 error_report("Invalid RAM size, should be bigger than %s", sz); 479 g_free(sz); 480 exit(EXIT_FAILURE); 481 } 482 483 /* Initialize SoC */ 484 object_initialize_child(OBJECT(machine), "soc", &s->soc, 485 TYPE_MICROCHIP_PFSOC); 486 qdev_realize(DEVICE(&s->soc), NULL, &error_abort); 487 488 /* Register RAM */ 489 memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low", 490 memmap[MICROCHIP_PFSOC_DRAM_LO].size, 491 &error_fatal); 492 memory_region_init_alias(mem_low_alias, NULL, 493 "microchip.icicle.kit.ram_low.alias", 494 mem_low, 0, 495 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size); 496 memory_region_add_subregion(system_memory, 497 memmap[MICROCHIP_PFSOC_DRAM_LO].base, 498 mem_low); 499 memory_region_add_subregion(system_memory, 500 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base, 501 mem_low_alias); 502 503 mem_high_size = machine->ram_size - 1 * GiB; 504 505 memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high", 506 mem_high_size, &error_fatal); 507 memory_region_init_alias(mem_high_alias, NULL, 508 "microchip.icicle.kit.ram_high.alias", 509 mem_high, 0, mem_high_size); 510 memory_region_add_subregion(system_memory, 511 memmap[MICROCHIP_PFSOC_DRAM_HI].base, 512 mem_high); 513 memory_region_add_subregion(system_memory, 514 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base, 515 mem_high_alias); 516 517 /* Attach an SD card */ 518 if (dinfo) { 519 CadenceSDHCIState *sdhci = &(s->soc.sdhci); 520 DeviceState *card = qdev_new(TYPE_SD_CARD); 521 522 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo), 523 &error_fatal); 524 qdev_realize_and_unref(card, sdhci->bus, &error_fatal); 525 } 526 527 /* 528 * We follow the following table to select which payload we execute. 529 * 530 * -bios | -kernel | payload 531 * -------+------------+-------- 532 * N | N | HSS 533 * Y | don't care | HSS 534 * N | Y | kernel 535 * 536 * This ensures backwards compatibility with how we used to expose -bios 537 * to users but allows them to run through direct kernel booting as well. 538 * 539 * When -kernel is used for direct boot, -dtb must be present to provide 540 * a valid device tree for the board, as we don't generate device tree. 541 */ 542 543 if (machine->kernel_filename && machine->dtb) { 544 int fdt_size; 545 machine->fdt = load_device_tree(machine->dtb, &fdt_size); 546 if (!machine->fdt) { 547 error_report("load_device_tree() failed"); 548 exit(1); 549 } 550 551 firmware_name = RISCV64_BIOS_BIN; 552 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base; 553 kernel_as_payload = true; 554 } 555 556 if (!kernel_as_payload) { 557 firmware_name = BIOS_FILENAME; 558 firmware_load_addr = RESET_VECTOR; 559 } 560 561 /* Load the firmware */ 562 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name, 563 firmware_load_addr, NULL); 564 565 if (kernel_as_payload) { 566 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus, 567 firmware_end_addr); 568 569 kernel_entry = riscv_load_kernel(machine->kernel_filename, 570 kernel_start_addr, NULL); 571 572 if (machine->initrd_filename) { 573 hwaddr start; 574 hwaddr end = riscv_load_initrd(machine->initrd_filename, 575 machine->ram_size, kernel_entry, 576 &start); 577 qemu_fdt_setprop_cell(machine->fdt, "/chosen", 578 "linux,initrd-start", start); 579 qemu_fdt_setprop_cell(machine->fdt, "/chosen", 580 "linux,initrd-end", end); 581 } 582 583 if (machine->kernel_cmdline) { 584 qemu_fdt_setprop_string(machine->fdt, "/chosen", 585 "bootargs", machine->kernel_cmdline); 586 } 587 588 /* Compute the fdt load address in dram */ 589 fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base, 590 machine->ram_size, machine->fdt); 591 /* Load the reset vector */ 592 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr, 593 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 594 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 595 kernel_entry, fdt_load_addr, machine->fdt); 596 } 597 } 598 599 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data) 600 { 601 MachineClass *mc = MACHINE_CLASS(oc); 602 603 mc->desc = "Microchip PolarFire SoC Icicle Kit"; 604 mc->init = microchip_icicle_kit_machine_init; 605 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 606 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT; 607 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1; 608 mc->default_cpus = mc->min_cpus; 609 610 /* 611 * Map 513 MiB high memory, the mimimum required high memory size, because 612 * HSS will do memory test against the high memory address range regardless 613 * of physical memory installed. 614 * 615 * See memory_tests() in mss_ddr.c in the HSS source code. 616 */ 617 mc->default_ram_size = 1537 * MiB; 618 } 619 620 static const TypeInfo microchip_icicle_kit_machine_typeinfo = { 621 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"), 622 .parent = TYPE_MACHINE, 623 .class_init = microchip_icicle_kit_machine_class_init, 624 .instance_size = sizeof(MicrochipIcicleKitState), 625 }; 626 627 static void microchip_icicle_kit_machine_init_register_types(void) 628 { 629 type_register_static(µchip_icicle_kit_machine_typeinfo); 630 } 631 632 type_init(microchip_icicle_kit_machine_init_register_types) 633