xref: /openbmc/qemu/hw/riscv/microchip_pfsoc.c (revision d695918f)
1 /*
2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10  *
11  * 0) CLINT (Core Level Interruptor)
12  * 1) PLIC (Platform Level Interrupt Controller)
13  * 2) eNVM (Embedded Non-Volatile Memory)
14  * 3) MMUARTs (Multi-Mode UART)
15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
17  * 6) GEM (Gigabit Ethernet MAC Controller)
18  * 7) DMC (DDR Memory Controller)
19  * 8) IOSCB modules
20  *
21  * This board currently generates devicetree dynamically that indicates at least
22  * two harts and up to five harts.
23  *
24  * This program is free software; you can redistribute it and/or modify it
25  * under the terms and conditions of the GNU General Public License,
26  * version 2 or later, as published by the Free Software Foundation.
27  *
28  * This program is distributed in the hope it will be useful, but WITHOUT
29  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
31  * more details.
32  *
33  * You should have received a copy of the GNU General Public License along with
34  * this program.  If not, see <http://www.gnu.org/licenses/>.
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56 
57 /*
58  * The BIOS image used by this machine is called Hart Software Services (HSS).
59  * See https://github.com/polarfire-soc/hart-software-services
60  */
61 #define BIOS_FILENAME   "hss.bin"
62 #define RESET_VECTOR    0x20220000
63 
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66 
67 /* GEM version */
68 #define GEM_REVISION    0x0107010c
69 
70 /*
71  * The complete description of the whole PolarFire SoC memory map is scattered
72  * in different documents. There are several places to look at for memory maps:
73  *
74  * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75  *   Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76  *   https://www.microsemi.com/document-portal/doc_download/
77  *   1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78  *   describes the whole picture of the PolarFire SoC memory map.
79  *
80  * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81  *   https://www.microsemi.com/document-portal/doc_download/
82  *   1244581-polarfire-soc-register-map, contains the following 2 major parts:
83  *   - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84  *     describes the complete integrated peripherals memory map
85  *   - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86  *     describes the complete IOSCB modules memory maps
87  */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89     [MICROCHIP_PFSOC_RSVD0] =           {        0x0,      0x100 },
90     [MICROCHIP_PFSOC_DEBUG] =           {      0x100,      0xf00 },
91     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,     0x2000 },
92     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,     0x1000 },
93     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,     0x1000 },
94     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,     0x1000 },
95     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,     0x1000 },
96     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,     0x1000 },
97     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,    0x10000 },
98     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,     0x1000 },
99     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,   0x100000 },
100     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,  0x2000000 },
101     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,  0x4000000 },
102     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,     0x1000 },
103     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,     0x2000 },
104     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,     0x1000 },
105     [MICROCHIP_PFSOC_DDR_SGMII_PHY] =   { 0x20007000,     0x1000 },
106     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,     0x1000 },
107     [MICROCHIP_PFSOC_DDR_CFG] =         { 0x20080000,    0x40000 },
108     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,     0x1000 },
109     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,     0x1000 },
110     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,     0x1000 },
111     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,     0x1000 },
112     [MICROCHIP_PFSOC_SPI0] =            { 0x20108000,     0x1000 },
113     [MICROCHIP_PFSOC_SPI1] =            { 0x20109000,     0x1000 },
114     [MICROCHIP_PFSOC_I2C1] =            { 0x2010b000,     0x1000 },
115     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,     0x2000 },
116     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,     0x2000 },
117     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,     0x1000 },
118     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,     0x1000 },
119     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,     0x1000 },
120     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,     0x1000 },
121     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,    0x20000 },
122     [MICROCHIP_PFSOC_QSPI_XIP] =        { 0x21000000,  0x1000000 },
123     [MICROCHIP_PFSOC_IOSCB] =           { 0x30000000, 0x10000000 },
124     [MICROCHIP_PFSOC_EMMC_SD_MUX] =     { 0x4f000000,        0x4 },
125     [MICROCHIP_PFSOC_DRAM_LO] =         { 0x80000000, 0x40000000 },
126     [MICROCHIP_PFSOC_DRAM_LO_ALIAS] =   { 0xc0000000, 0x40000000 },
127     [MICROCHIP_PFSOC_DRAM_HI] =       { 0x1000000000,        0x0 },
128     [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000,        0x0 },
129 };
130 
131 static void microchip_pfsoc_soc_instance_init(Object *obj)
132 {
133     MachineState *ms = MACHINE(qdev_get_machine());
134     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
135 
136     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
137     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
138 
139     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
140                             TYPE_RISCV_HART_ARRAY);
141     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
142     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
143     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
144                          TYPE_RISCV_CPU_SIFIVE_E51);
145     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
146 
147     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
148     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
149 
150     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
151                             TYPE_RISCV_HART_ARRAY);
152     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
153     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
154     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
155                          TYPE_RISCV_CPU_SIFIVE_U54);
156     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
157 
158     object_initialize_child(obj, "dma-controller", &s->dma,
159                             TYPE_SIFIVE_PDMA);
160 
161     object_initialize_child(obj, "sysreg", &s->sysreg,
162                             TYPE_MCHP_PFSOC_SYSREG);
163 
164     object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
165                             TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
166     object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
167                             TYPE_MCHP_PFSOC_DDR_CFG);
168 
169     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
170     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
171 
172     object_initialize_child(obj, "sd-controller", &s->sdhci,
173                             TYPE_CADENCE_SDHCI);
174 
175     object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
176 }
177 
178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
179 {
180     MachineState *ms = MACHINE(qdev_get_machine());
181     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
182     const MemMapEntry *memmap = microchip_pfsoc_memmap;
183     MemoryRegion *system_memory = get_system_memory();
184     MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
185     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
186     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
187     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
188     MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
189     char *plic_hart_config;
190     NICInfo *nd;
191     int i;
192 
193     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
194     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
195     /*
196      * The cluster must be realized after the RISC-V hart array container,
197      * as the container's CPU object is only created on realize, and the
198      * CPU must exist and have been parented into the cluster before the
199      * cluster is realized.
200      */
201     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
202     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
203 
204     /* Reserved Memory at address 0 */
205     memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
206                            memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
207     memory_region_add_subregion(system_memory,
208                                 memmap[MICROCHIP_PFSOC_RSVD0].base,
209                                 rsvd0_mem);
210 
211     /* E51 DTIM */
212     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
213                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
214     memory_region_add_subregion(system_memory,
215                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
216                                 e51_dtim_mem);
217 
218     /* Bus Error Units */
219     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
220         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
221         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
222     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
223         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
224         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
225     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
226         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
227         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
228     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
229         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
230         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
231     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
232         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
233         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
234 
235     /* CLINT */
236     riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
237         0, ms->smp.cpus, false);
238     riscv_aclint_mtimer_create(
239         memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
240         RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
241         RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
242         CLINT_TIMEBASE_FREQ, false);
243 
244     /* L2 cache controller */
245     create_unimplemented_device("microchip.pfsoc.l2cc",
246         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
247 
248     /*
249      * Add L2-LIM at reset size.
250      * This should be reduced in size as the L2 Cache Controller WayEnable
251      * register is incremented. Unfortunately I don't see a nice (or any) way
252      * to handle reducing or blocking out the L2 LIM while still allowing it
253      * be re returned to all enabled after a reset. For the time being, just
254      * leave it enabled all the time. This won't break anything, but will be
255      * too generous to misbehaving guests.
256      */
257     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
258                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
259     memory_region_add_subregion(system_memory,
260                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
261                                 l2lim_mem);
262 
263     /* create PLIC hart topology configuration string */
264     plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
265 
266     /* PLIC */
267     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
268         plic_hart_config, ms->smp.cpus, 0,
269         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
270         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
271         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
272         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
273         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
274         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
275         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
276         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
277         memmap[MICROCHIP_PFSOC_PLIC].size);
278     g_free(plic_hart_config);
279 
280     /* DMA */
281     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
282     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
283                     memmap[MICROCHIP_PFSOC_DMA].base);
284     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
285         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
286                            qdev_get_gpio_in(DEVICE(s->plic),
287                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
288     }
289 
290     /* SYSREG */
291     sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
292     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
293                     memmap[MICROCHIP_PFSOC_SYSREG].base);
294 
295     /* MPUCFG */
296     create_unimplemented_device("microchip.pfsoc.mpucfg",
297         memmap[MICROCHIP_PFSOC_MPUCFG].base,
298         memmap[MICROCHIP_PFSOC_MPUCFG].size);
299 
300     /* DDR SGMII PHY */
301     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
302     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
303                     memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
304 
305     /* DDR CFG */
306     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
307     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
308                     memmap[MICROCHIP_PFSOC_DDR_CFG].base);
309 
310     /* SDHCI */
311     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
312     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
313                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
314     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
315         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
316 
317     /* MMUARTs */
318     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
319         memmap[MICROCHIP_PFSOC_MMUART0].base,
320         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
321         serial_hd(0));
322     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
323         memmap[MICROCHIP_PFSOC_MMUART1].base,
324         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
325         serial_hd(1));
326     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
327         memmap[MICROCHIP_PFSOC_MMUART2].base,
328         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
329         serial_hd(2));
330     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
331         memmap[MICROCHIP_PFSOC_MMUART3].base,
332         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
333         serial_hd(3));
334     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
335         memmap[MICROCHIP_PFSOC_MMUART4].base,
336         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
337         serial_hd(4));
338 
339     /* SPI */
340     create_unimplemented_device("microchip.pfsoc.spi0",
341         memmap[MICROCHIP_PFSOC_SPI0].base,
342         memmap[MICROCHIP_PFSOC_SPI0].size);
343     create_unimplemented_device("microchip.pfsoc.spi1",
344         memmap[MICROCHIP_PFSOC_SPI1].base,
345         memmap[MICROCHIP_PFSOC_SPI1].size);
346 
347     /* I2C1 */
348     create_unimplemented_device("microchip.pfsoc.i2c1",
349         memmap[MICROCHIP_PFSOC_I2C1].base,
350         memmap[MICROCHIP_PFSOC_I2C1].size);
351 
352     /* GEMs */
353 
354     nd = &nd_table[0];
355     if (nd->used) {
356         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
357         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
358     }
359     nd = &nd_table[1];
360     if (nd->used) {
361         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
362         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
363     }
364 
365     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
366     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
367     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
368     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
369                     memmap[MICROCHIP_PFSOC_GEM0].base);
370     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
371         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
372 
373     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
374     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
375     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
376     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
377                     memmap[MICROCHIP_PFSOC_GEM1].base);
378     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
379         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
380 
381     /* GPIOs */
382     create_unimplemented_device("microchip.pfsoc.gpio0",
383         memmap[MICROCHIP_PFSOC_GPIO0].base,
384         memmap[MICROCHIP_PFSOC_GPIO0].size);
385     create_unimplemented_device("microchip.pfsoc.gpio1",
386         memmap[MICROCHIP_PFSOC_GPIO1].base,
387         memmap[MICROCHIP_PFSOC_GPIO1].size);
388     create_unimplemented_device("microchip.pfsoc.gpio2",
389         memmap[MICROCHIP_PFSOC_GPIO2].base,
390         memmap[MICROCHIP_PFSOC_GPIO2].size);
391 
392     /* eNVM */
393     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
394                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
395                            &error_fatal);
396     memory_region_add_subregion(system_memory,
397                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
398                                 envm_data);
399 
400     /* IOSCB */
401     sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
402     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
403                     memmap[MICROCHIP_PFSOC_IOSCB].base);
404 
405     /* eMMC/SD mux */
406     create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
407         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
408         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
409 
410     /* QSPI Flash */
411     memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
412                            "microchip.pfsoc.qspi_xip",
413                            memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
414                            &error_fatal);
415     memory_region_add_subregion(system_memory,
416                                 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
417                                 qspi_xip_mem);
418 }
419 
420 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
421 {
422     DeviceClass *dc = DEVICE_CLASS(oc);
423 
424     dc->realize = microchip_pfsoc_soc_realize;
425     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
426     dc->user_creatable = false;
427 }
428 
429 static const TypeInfo microchip_pfsoc_soc_type_info = {
430     .name = TYPE_MICROCHIP_PFSOC,
431     .parent = TYPE_DEVICE,
432     .instance_size = sizeof(MicrochipPFSoCState),
433     .instance_init = microchip_pfsoc_soc_instance_init,
434     .class_init = microchip_pfsoc_soc_class_init,
435 };
436 
437 static void microchip_pfsoc_soc_register_types(void)
438 {
439     type_register_static(&microchip_pfsoc_soc_type_info);
440 }
441 
442 type_init(microchip_pfsoc_soc_register_types)
443 
444 static void microchip_icicle_kit_machine_init(MachineState *machine)
445 {
446     MachineClass *mc = MACHINE_GET_CLASS(machine);
447     const MemMapEntry *memmap = microchip_pfsoc_memmap;
448     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
449     MemoryRegion *system_memory = get_system_memory();
450     MemoryRegion *mem_low = g_new(MemoryRegion, 1);
451     MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
452     MemoryRegion *mem_high = g_new(MemoryRegion, 1);
453     MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
454     uint64_t mem_low_size, mem_high_size;
455     hwaddr firmware_load_addr;
456     const char *firmware_name;
457     bool kernel_as_payload = false;
458     target_ulong firmware_end_addr, kernel_start_addr;
459     uint64_t kernel_entry;
460     uint32_t fdt_load_addr;
461     DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
462 
463     /* Sanity check on RAM size */
464     if (machine->ram_size < mc->default_ram_size) {
465         char *sz = size_to_str(mc->default_ram_size);
466         error_report("Invalid RAM size, should be bigger than %s", sz);
467         g_free(sz);
468         exit(EXIT_FAILURE);
469     }
470 
471     /* Initialize SoC */
472     object_initialize_child(OBJECT(machine), "soc", &s->soc,
473                             TYPE_MICROCHIP_PFSOC);
474     qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
475 
476     /* Split RAM into low and high regions using aliases to machine->ram */
477     mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
478     mem_high_size = machine->ram_size - mem_low_size;
479     memory_region_init_alias(mem_low, NULL,
480                              "microchip.icicle.kit.ram_low", machine->ram,
481                              0, mem_low_size);
482     memory_region_init_alias(mem_high, NULL,
483                              "microchip.icicle.kit.ram_high", machine->ram,
484                              mem_low_size, mem_high_size);
485 
486     /* Register RAM */
487     memory_region_add_subregion(system_memory,
488                                 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
489                                 mem_low);
490     memory_region_add_subregion(system_memory,
491                                 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
492                                 mem_high);
493 
494     /* Create aliases for the low and high RAM regions */
495     memory_region_init_alias(mem_low_alias, NULL,
496                              "microchip.icicle.kit.ram_low.alias",
497                              mem_low, 0, mem_low_size);
498     memory_region_add_subregion(system_memory,
499                                 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
500                                 mem_low_alias);
501     memory_region_init_alias(mem_high_alias, NULL,
502                              "microchip.icicle.kit.ram_high.alias",
503                              mem_high, 0, mem_high_size);
504     memory_region_add_subregion(system_memory,
505                                 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
506                                 mem_high_alias);
507 
508     /* Attach an SD card */
509     if (dinfo) {
510         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
511         DeviceState *card = qdev_new(TYPE_SD_CARD);
512 
513         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
514                                 &error_fatal);
515         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
516     }
517 
518     /*
519      * We follow the following table to select which payload we execute.
520      *
521      *  -bios |    -kernel | payload
522      * -------+------------+--------
523      *      N |          N | HSS
524      *      Y | don't care | HSS
525      *      N |          Y | kernel
526      *
527      * This ensures backwards compatibility with how we used to expose -bios
528      * to users but allows them to run through direct kernel booting as well.
529      *
530      * When -kernel is used for direct boot, -dtb must be present to provide
531      * a valid device tree for the board, as we don't generate device tree.
532      */
533 
534     if (machine->kernel_filename && machine->dtb) {
535         int fdt_size;
536         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
537         if (!machine->fdt) {
538             error_report("load_device_tree() failed");
539             exit(1);
540         }
541 
542         firmware_name = RISCV64_BIOS_BIN;
543         firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
544         kernel_as_payload = true;
545     }
546 
547     if (!kernel_as_payload) {
548         firmware_name = BIOS_FILENAME;
549         firmware_load_addr = RESET_VECTOR;
550     }
551 
552     /* Load the firmware */
553     firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
554                                                      firmware_load_addr, NULL);
555 
556     if (kernel_as_payload) {
557         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
558                                                          firmware_end_addr);
559 
560         kernel_entry = riscv_load_kernel(machine->kernel_filename,
561                                          kernel_start_addr, NULL);
562 
563         if (machine->initrd_filename) {
564             hwaddr start;
565             hwaddr end = riscv_load_initrd(machine->initrd_filename,
566                                            machine->ram_size, kernel_entry,
567                                            &start);
568             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
569                                   "linux,initrd-start", start);
570             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
571                                   "linux,initrd-end", end);
572         }
573 
574         if (machine->kernel_cmdline && *machine->kernel_cmdline) {
575             qemu_fdt_setprop_string(machine->fdt, "/chosen",
576                                     "bootargs", machine->kernel_cmdline);
577         }
578 
579         /* Compute the fdt load address in dram */
580         fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
581                                        machine->ram_size, machine->fdt);
582         /* Load the reset vector */
583         riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
584                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
585                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
586                                   kernel_entry, fdt_load_addr, machine->fdt);
587     }
588 }
589 
590 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
591 {
592     MachineClass *mc = MACHINE_CLASS(oc);
593 
594     mc->desc = "Microchip PolarFire SoC Icicle Kit";
595     mc->init = microchip_icicle_kit_machine_init;
596     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
597                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
598     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
599     mc->default_cpus = mc->min_cpus;
600     mc->default_ram_id = "microchip.icicle.kit.ram";
601 
602     /*
603      * Map 513 MiB high memory, the mimimum required high memory size, because
604      * HSS will do memory test against the high memory address range regardless
605      * of physical memory installed.
606      *
607      * See memory_tests() in mss_ddr.c in the HSS source code.
608      */
609     mc->default_ram_size = 1537 * MiB;
610 }
611 
612 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
613     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
614     .parent     = TYPE_MACHINE,
615     .class_init = microchip_icicle_kit_machine_class_init,
616     .instance_size = sizeof(MicrochipIcicleKitState),
617 };
618 
619 static void microchip_icicle_kit_machine_init_register_types(void)
620 {
621     type_register_static(&microchip_icicle_kit_machine_typeinfo);
622 }
623 
624 type_init(microchip_icicle_kit_machine_init_register_types)
625