1 /* 2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit 3 * 4 * Copyright (c) 2020 Wind River Systems, Inc. 5 * 6 * Author: 7 * Bin Meng <bin.meng@windriver.com> 8 * 9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit 10 * 11 * 0) CLINT (Core Level Interruptor) 12 * 1) PLIC (Platform Level Interrupt Controller) 13 * 2) eNVM (Embedded Non-Volatile Memory) 14 * 3) MMUARTs (Multi-Mode UART) 15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it 16 * 5) SiFive Platform DMA (Direct Memory Access Controller) 17 * 6) GEM (Gigabit Ethernet MAC Controller) 18 * 7) DMC (DDR Memory Controller) 19 * 8) IOSCB modules 20 * 21 * This board currently generates devicetree dynamically that indicates at least 22 * two harts and up to five harts. 23 * 24 * This program is free software; you can redistribute it and/or modify it 25 * under the terms and conditions of the GNU General Public License, 26 * version 2 or later, as published by the Free Software Foundation. 27 * 28 * This program is distributed in the hope it will be useful, but WITHOUT 29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 31 * more details. 32 * 33 * You should have received a copy of the GNU General Public License along with 34 * this program. If not, see <http://www.gnu.org/licenses/>. 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/error-report.h" 39 #include "qemu/units.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "hw/sysbus.h" 45 #include "chardev/char.h" 46 #include "hw/cpu/cluster.h" 47 #include "target/riscv/cpu.h" 48 #include "hw/misc/unimp.h" 49 #include "hw/riscv/boot.h" 50 #include "hw/riscv/riscv_hart.h" 51 #include "hw/riscv/microchip_pfsoc.h" 52 #include "hw/intc/riscv_aclint.h" 53 #include "hw/intc/sifive_plic.h" 54 #include "sysemu/device_tree.h" 55 #include "sysemu/sysemu.h" 56 57 /* 58 * The BIOS image used by this machine is called Hart Software Services (HSS). 59 * See https://github.com/polarfire-soc/hart-software-services 60 */ 61 #define BIOS_FILENAME "hss.bin" 62 #define RESET_VECTOR 0x20220000 63 64 /* CLINT timebase frequency */ 65 #define CLINT_TIMEBASE_FREQ 1000000 66 67 /* GEM version */ 68 #define GEM_REVISION 0x0107010c 69 70 /* 71 * The complete description of the whole PolarFire SoC memory map is scattered 72 * in different documents. There are several places to look at for memory maps: 73 * 74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA 75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from 76 * https://www.microsemi.com/document-portal/doc_download/ 77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide, 78 * describes the whole picture of the PolarFire SoC memory map. 79 * 80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from 81 * https://www.microsemi.com/document-portal/doc_download/ 82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts: 83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm 84 * describes the complete integrated peripherals memory map 85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm 86 * describes the complete IOSCB modules memory maps 87 */ 88 static const MemMapEntry microchip_pfsoc_memmap[] = { 89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 }, 90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 }, 91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 }, 92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 }, 93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 }, 94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 }, 95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 }, 96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 }, 97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 }, 98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 }, 99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 }, 100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 }, 101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 }, 102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 }, 103 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 }, 104 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 }, 105 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 }, 106 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 }, 107 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 }, 108 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 }, 109 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 }, 110 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 }, 111 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 }, 112 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 }, 113 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 }, 114 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 }, 115 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 }, 116 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 }, 117 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 }, 118 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 }, 119 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 }, 120 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 }, 121 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 }, 122 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 }, 123 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 }, 124 [MICROCHIP_PFSOC_EMMC_SD_MUX] = { 0x4f000000, 0x4 }, 125 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 }, 126 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 }, 127 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 }, 128 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 }, 129 }; 130 131 static void microchip_pfsoc_soc_instance_init(Object *obj) 132 { 133 MachineState *ms = MACHINE(qdev_get_machine()); 134 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj); 135 136 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER); 137 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); 138 139 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus, 140 TYPE_RISCV_HART_ARRAY); 141 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); 142 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); 143 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", 144 TYPE_RISCV_CPU_SIFIVE_E51); 145 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR); 146 147 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER); 148 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); 149 150 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus, 151 TYPE_RISCV_HART_ARRAY); 152 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); 153 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); 154 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", 155 TYPE_RISCV_CPU_SIFIVE_U54); 156 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR); 157 158 object_initialize_child(obj, "dma-controller", &s->dma, 159 TYPE_SIFIVE_PDMA); 160 161 object_initialize_child(obj, "sysreg", &s->sysreg, 162 TYPE_MCHP_PFSOC_SYSREG); 163 164 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy, 165 TYPE_MCHP_PFSOC_DDR_SGMII_PHY); 166 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg, 167 TYPE_MCHP_PFSOC_DDR_CFG); 168 169 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM); 170 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM); 171 172 object_initialize_child(obj, "sd-controller", &s->sdhci, 173 TYPE_CADENCE_SDHCI); 174 175 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB); 176 } 177 178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp) 179 { 180 MachineState *ms = MACHINE(qdev_get_machine()); 181 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev); 182 const MemMapEntry *memmap = microchip_pfsoc_memmap; 183 MemoryRegion *system_memory = get_system_memory(); 184 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1); 185 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1); 186 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); 187 MemoryRegion *envm_data = g_new(MemoryRegion, 1); 188 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1); 189 char *plic_hart_config; 190 NICInfo *nd; 191 int i; 192 193 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort); 194 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort); 195 /* 196 * The cluster must be realized after the RISC-V hart array container, 197 * as the container's CPU object is only created on realize, and the 198 * CPU must exist and have been parented into the cluster before the 199 * cluster is realized. 200 */ 201 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort); 202 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort); 203 204 /* Reserved Memory at address 0 */ 205 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem", 206 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal); 207 memory_region_add_subregion(system_memory, 208 memmap[MICROCHIP_PFSOC_RSVD0].base, 209 rsvd0_mem); 210 211 /* E51 DTIM */ 212 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem", 213 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal); 214 memory_region_add_subregion(system_memory, 215 memmap[MICROCHIP_PFSOC_E51_DTIM].base, 216 e51_dtim_mem); 217 218 /* Bus Error Units */ 219 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem", 220 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base, 221 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size); 222 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem", 223 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base, 224 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size); 225 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem", 226 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base, 227 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size); 228 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem", 229 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base, 230 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size); 231 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem", 232 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base, 233 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size); 234 235 /* CLINT */ 236 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base, 237 0, ms->smp.cpus, false); 238 riscv_aclint_mtimer_create( 239 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE, 240 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus, 241 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME, 242 CLINT_TIMEBASE_FREQ, false); 243 244 /* L2 cache controller */ 245 create_unimplemented_device("microchip.pfsoc.l2cc", 246 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size); 247 248 /* 249 * Add L2-LIM at reset size. 250 * This should be reduced in size as the L2 Cache Controller WayEnable 251 * register is incremented. Unfortunately I don't see a nice (or any) way 252 * to handle reducing or blocking out the L2 LIM while still allowing it 253 * be re returned to all enabled after a reset. For the time being, just 254 * leave it enabled all the time. This won't break anything, but will be 255 * too generous to misbehaving guests. 256 */ 257 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim", 258 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal); 259 memory_region_add_subregion(system_memory, 260 memmap[MICROCHIP_PFSOC_L2LIM].base, 261 l2lim_mem); 262 263 /* create PLIC hart topology configuration string */ 264 plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus); 265 266 /* PLIC */ 267 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base, 268 plic_hart_config, ms->smp.cpus, 0, 269 MICROCHIP_PFSOC_PLIC_NUM_SOURCES, 270 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES, 271 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE, 272 MICROCHIP_PFSOC_PLIC_PENDING_BASE, 273 MICROCHIP_PFSOC_PLIC_ENABLE_BASE, 274 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE, 275 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE, 276 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE, 277 memmap[MICROCHIP_PFSOC_PLIC].size); 278 g_free(plic_hart_config); 279 280 /* DMA */ 281 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp); 282 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0, 283 memmap[MICROCHIP_PFSOC_DMA].base); 284 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) { 285 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i, 286 qdev_get_gpio_in(DEVICE(s->plic), 287 MICROCHIP_PFSOC_DMA_IRQ0 + i)); 288 } 289 290 /* SYSREG */ 291 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp); 292 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0, 293 memmap[MICROCHIP_PFSOC_SYSREG].base); 294 295 /* MPUCFG */ 296 create_unimplemented_device("microchip.pfsoc.mpucfg", 297 memmap[MICROCHIP_PFSOC_MPUCFG].base, 298 memmap[MICROCHIP_PFSOC_MPUCFG].size); 299 300 /* DDR SGMII PHY */ 301 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp); 302 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0, 303 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base); 304 305 /* DDR CFG */ 306 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp); 307 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0, 308 memmap[MICROCHIP_PFSOC_DDR_CFG].base); 309 310 /* SDHCI */ 311 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp); 312 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0, 313 memmap[MICROCHIP_PFSOC_EMMC_SD].base); 314 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0, 315 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ)); 316 317 /* MMUARTs */ 318 s->serial0 = mchp_pfsoc_mmuart_create(system_memory, 319 memmap[MICROCHIP_PFSOC_MMUART0].base, 320 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ), 321 serial_hd(0)); 322 s->serial1 = mchp_pfsoc_mmuart_create(system_memory, 323 memmap[MICROCHIP_PFSOC_MMUART1].base, 324 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ), 325 serial_hd(1)); 326 s->serial2 = mchp_pfsoc_mmuart_create(system_memory, 327 memmap[MICROCHIP_PFSOC_MMUART2].base, 328 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ), 329 serial_hd(2)); 330 s->serial3 = mchp_pfsoc_mmuart_create(system_memory, 331 memmap[MICROCHIP_PFSOC_MMUART3].base, 332 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ), 333 serial_hd(3)); 334 s->serial4 = mchp_pfsoc_mmuart_create(system_memory, 335 memmap[MICROCHIP_PFSOC_MMUART4].base, 336 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ), 337 serial_hd(4)); 338 339 /* SPI */ 340 create_unimplemented_device("microchip.pfsoc.spi0", 341 memmap[MICROCHIP_PFSOC_SPI0].base, 342 memmap[MICROCHIP_PFSOC_SPI0].size); 343 create_unimplemented_device("microchip.pfsoc.spi1", 344 memmap[MICROCHIP_PFSOC_SPI1].base, 345 memmap[MICROCHIP_PFSOC_SPI1].size); 346 347 /* I2C1 */ 348 create_unimplemented_device("microchip.pfsoc.i2c1", 349 memmap[MICROCHIP_PFSOC_I2C1].base, 350 memmap[MICROCHIP_PFSOC_I2C1].size); 351 352 /* GEMs */ 353 354 nd = &nd_table[0]; 355 if (nd->used) { 356 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 357 qdev_set_nic_properties(DEVICE(&s->gem0), nd); 358 } 359 nd = &nd_table[1]; 360 if (nd->used) { 361 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 362 qdev_set_nic_properties(DEVICE(&s->gem1), nd); 363 } 364 365 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp); 366 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp); 367 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp); 368 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0, 369 memmap[MICROCHIP_PFSOC_GEM0].base); 370 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0, 371 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ)); 372 373 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp); 374 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp); 375 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp); 376 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0, 377 memmap[MICROCHIP_PFSOC_GEM1].base); 378 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0, 379 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ)); 380 381 /* GPIOs */ 382 create_unimplemented_device("microchip.pfsoc.gpio0", 383 memmap[MICROCHIP_PFSOC_GPIO0].base, 384 memmap[MICROCHIP_PFSOC_GPIO0].size); 385 create_unimplemented_device("microchip.pfsoc.gpio1", 386 memmap[MICROCHIP_PFSOC_GPIO1].base, 387 memmap[MICROCHIP_PFSOC_GPIO1].size); 388 create_unimplemented_device("microchip.pfsoc.gpio2", 389 memmap[MICROCHIP_PFSOC_GPIO2].base, 390 memmap[MICROCHIP_PFSOC_GPIO2].size); 391 392 /* eNVM */ 393 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data", 394 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 395 &error_fatal); 396 memory_region_add_subregion(system_memory, 397 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 398 envm_data); 399 400 /* IOSCB */ 401 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp); 402 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0, 403 memmap[MICROCHIP_PFSOC_IOSCB].base); 404 405 /* eMMC/SD mux */ 406 create_unimplemented_device("microchip.pfsoc.emmc_sd_mux", 407 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base, 408 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size); 409 410 /* QSPI Flash */ 411 memory_region_init_rom(qspi_xip_mem, OBJECT(dev), 412 "microchip.pfsoc.qspi_xip", 413 memmap[MICROCHIP_PFSOC_QSPI_XIP].size, 414 &error_fatal); 415 memory_region_add_subregion(system_memory, 416 memmap[MICROCHIP_PFSOC_QSPI_XIP].base, 417 qspi_xip_mem); 418 } 419 420 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data) 421 { 422 DeviceClass *dc = DEVICE_CLASS(oc); 423 424 dc->realize = microchip_pfsoc_soc_realize; 425 /* Reason: Uses serial_hds in realize function, thus can't be used twice */ 426 dc->user_creatable = false; 427 } 428 429 static const TypeInfo microchip_pfsoc_soc_type_info = { 430 .name = TYPE_MICROCHIP_PFSOC, 431 .parent = TYPE_DEVICE, 432 .instance_size = sizeof(MicrochipPFSoCState), 433 .instance_init = microchip_pfsoc_soc_instance_init, 434 .class_init = microchip_pfsoc_soc_class_init, 435 }; 436 437 static void microchip_pfsoc_soc_register_types(void) 438 { 439 type_register_static(µchip_pfsoc_soc_type_info); 440 } 441 442 type_init(microchip_pfsoc_soc_register_types) 443 444 static void microchip_icicle_kit_machine_init(MachineState *machine) 445 { 446 MachineClass *mc = MACHINE_GET_CLASS(machine); 447 const MemMapEntry *memmap = microchip_pfsoc_memmap; 448 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine); 449 MemoryRegion *system_memory = get_system_memory(); 450 MemoryRegion *mem_low = g_new(MemoryRegion, 1); 451 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1); 452 MemoryRegion *mem_high = g_new(MemoryRegion, 1); 453 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1); 454 uint64_t mem_low_size, mem_high_size; 455 hwaddr firmware_load_addr; 456 const char *firmware_name; 457 bool kernel_as_payload = false; 458 target_ulong firmware_end_addr, kernel_start_addr; 459 uint64_t kernel_entry; 460 uint32_t fdt_load_addr; 461 DriveInfo *dinfo = drive_get(IF_SD, 0, 0); 462 463 /* Sanity check on RAM size */ 464 if (machine->ram_size < mc->default_ram_size) { 465 char *sz = size_to_str(mc->default_ram_size); 466 error_report("Invalid RAM size, should be bigger than %s", sz); 467 g_free(sz); 468 exit(EXIT_FAILURE); 469 } 470 471 /* Initialize SoC */ 472 object_initialize_child(OBJECT(machine), "soc", &s->soc, 473 TYPE_MICROCHIP_PFSOC); 474 qdev_realize(DEVICE(&s->soc), NULL, &error_fatal); 475 476 /* Split RAM into low and high regions using aliases to machine->ram */ 477 mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size; 478 mem_high_size = machine->ram_size - mem_low_size; 479 memory_region_init_alias(mem_low, NULL, 480 "microchip.icicle.kit.ram_low", machine->ram, 481 0, mem_low_size); 482 memory_region_init_alias(mem_high, NULL, 483 "microchip.icicle.kit.ram_high", machine->ram, 484 mem_low_size, mem_high_size); 485 486 /* Register RAM */ 487 memory_region_add_subregion(system_memory, 488 memmap[MICROCHIP_PFSOC_DRAM_LO].base, 489 mem_low); 490 memory_region_add_subregion(system_memory, 491 memmap[MICROCHIP_PFSOC_DRAM_HI].base, 492 mem_high); 493 494 /* Create aliases for the low and high RAM regions */ 495 memory_region_init_alias(mem_low_alias, NULL, 496 "microchip.icicle.kit.ram_low.alias", 497 mem_low, 0, mem_low_size); 498 memory_region_add_subregion(system_memory, 499 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base, 500 mem_low_alias); 501 memory_region_init_alias(mem_high_alias, NULL, 502 "microchip.icicle.kit.ram_high.alias", 503 mem_high, 0, mem_high_size); 504 memory_region_add_subregion(system_memory, 505 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base, 506 mem_high_alias); 507 508 /* Attach an SD card */ 509 if (dinfo) { 510 CadenceSDHCIState *sdhci = &(s->soc.sdhci); 511 DeviceState *card = qdev_new(TYPE_SD_CARD); 512 513 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo), 514 &error_fatal); 515 qdev_realize_and_unref(card, sdhci->bus, &error_fatal); 516 } 517 518 /* 519 * We follow the following table to select which payload we execute. 520 * 521 * -bios | -kernel | payload 522 * -------+------------+-------- 523 * N | N | HSS 524 * Y | don't care | HSS 525 * N | Y | kernel 526 * 527 * This ensures backwards compatibility with how we used to expose -bios 528 * to users but allows them to run through direct kernel booting as well. 529 * 530 * When -kernel is used for direct boot, -dtb must be present to provide 531 * a valid device tree for the board, as we don't generate device tree. 532 */ 533 534 if (machine->kernel_filename && machine->dtb) { 535 int fdt_size; 536 machine->fdt = load_device_tree(machine->dtb, &fdt_size); 537 if (!machine->fdt) { 538 error_report("load_device_tree() failed"); 539 exit(1); 540 } 541 542 firmware_name = RISCV64_BIOS_BIN; 543 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base; 544 kernel_as_payload = true; 545 } 546 547 if (!kernel_as_payload) { 548 firmware_name = BIOS_FILENAME; 549 firmware_load_addr = RESET_VECTOR; 550 } 551 552 /* Load the firmware */ 553 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name, 554 firmware_load_addr, NULL); 555 556 if (kernel_as_payload) { 557 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus, 558 firmware_end_addr); 559 560 kernel_entry = riscv_load_kernel(machine->kernel_filename, 561 kernel_start_addr, NULL); 562 563 if (machine->initrd_filename) { 564 hwaddr start; 565 hwaddr end = riscv_load_initrd(machine->initrd_filename, 566 machine->ram_size, kernel_entry, 567 &start); 568 qemu_fdt_setprop_cell(machine->fdt, "/chosen", 569 "linux,initrd-start", start); 570 qemu_fdt_setprop_cell(machine->fdt, "/chosen", 571 "linux,initrd-end", end); 572 } 573 574 if (machine->kernel_cmdline && *machine->kernel_cmdline) { 575 qemu_fdt_setprop_string(machine->fdt, "/chosen", 576 "bootargs", machine->kernel_cmdline); 577 } 578 579 /* Compute the fdt load address in dram */ 580 fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base, 581 machine->ram_size, machine->fdt); 582 /* Load the reset vector */ 583 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr, 584 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 585 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 586 kernel_entry, fdt_load_addr, machine->fdt); 587 } 588 } 589 590 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data) 591 { 592 MachineClass *mc = MACHINE_CLASS(oc); 593 594 mc->desc = "Microchip PolarFire SoC Icicle Kit"; 595 mc->init = microchip_icicle_kit_machine_init; 596 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 597 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT; 598 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1; 599 mc->default_cpus = mc->min_cpus; 600 mc->default_ram_id = "microchip.icicle.kit.ram"; 601 602 /* 603 * Map 513 MiB high memory, the mimimum required high memory size, because 604 * HSS will do memory test against the high memory address range regardless 605 * of physical memory installed. 606 * 607 * See memory_tests() in mss_ddr.c in the HSS source code. 608 */ 609 mc->default_ram_size = 1537 * MiB; 610 } 611 612 static const TypeInfo microchip_icicle_kit_machine_typeinfo = { 613 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"), 614 .parent = TYPE_MACHINE, 615 .class_init = microchip_icicle_kit_machine_class_init, 616 .instance_size = sizeof(MicrochipIcicleKitState), 617 }; 618 619 static void microchip_icicle_kit_machine_init_register_types(void) 620 { 621 type_register_static(µchip_icicle_kit_machine_typeinfo); 622 } 623 624 type_init(microchip_icicle_kit_machine_init_register_types) 625