xref: /openbmc/qemu/hw/riscv/microchip_pfsoc.c (revision 587adaca)
1 /*
2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10  *
11  * 0) CLINT (Core Level Interruptor)
12  * 1) PLIC (Platform Level Interrupt Controller)
13  * 2) eNVM (Embedded Non-Volatile Memory)
14  * 3) MMUARTs (Multi-Mode UART)
15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
17  * 6) GEM (Gigabit Ethernet MAC Controller)
18  * 7) DMC (DDR Memory Controller)
19  * 8) IOSCB modules
20  *
21  * This board currently generates devicetree dynamically that indicates at least
22  * two harts and up to five harts.
23  *
24  * This program is free software; you can redistribute it and/or modify it
25  * under the terms and conditions of the GNU General Public License,
26  * version 2 or later, as published by the Free Software Foundation.
27  *
28  * This program is distributed in the hope it will be useful, but WITHOUT
29  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
31  * more details.
32  *
33  * You should have received a copy of the GNU General Public License along with
34  * this program.  If not, see <http://www.gnu.org/licenses/>.
35  */
36 
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/sifive_clint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
56 
57 /*
58  * The BIOS image used by this machine is called Hart Software Services (HSS).
59  * See https://github.com/polarfire-soc/hart-software-services
60  */
61 #define BIOS_FILENAME   "hss.bin"
62 #define RESET_VECTOR    0x20220000
63 
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
66 
67 /* GEM version */
68 #define GEM_REVISION    0x0107010c
69 
70 /*
71  * The complete description of the whole PolarFire SoC memory map is scattered
72  * in different documents. There are several places to look at for memory maps:
73  *
74  * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75  *   Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76  *   https://www.microsemi.com/document-portal/doc_download/
77  *   1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78  *   describes the whole picture of the PolarFire SoC memory map.
79  *
80  * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81  *   https://www.microsemi.com/document-portal/doc_download/
82  *   1244581-polarfire-soc-register-map, contains the following 2 major parts:
83  *   - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84  *     describes the complete integrated peripherals memory map
85  *   - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86  *     describes the complete IOSCB modules memory maps
87  */
88 static const MemMapEntry microchip_pfsoc_memmap[] = {
89     [MICROCHIP_PFSOC_RSVD0] =           {        0x0,      0x100 },
90     [MICROCHIP_PFSOC_DEBUG] =           {      0x100,      0xf00 },
91     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,     0x2000 },
92     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,     0x1000 },
93     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,     0x1000 },
94     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,     0x1000 },
95     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,     0x1000 },
96     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,     0x1000 },
97     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,    0x10000 },
98     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,     0x1000 },
99     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,   0x100000 },
100     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,  0x2000000 },
101     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,  0x4000000 },
102     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,     0x1000 },
103     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,     0x2000 },
104     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,     0x1000 },
105     [MICROCHIP_PFSOC_DDR_SGMII_PHY] =   { 0x20007000,     0x1000 },
106     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,     0x1000 },
107     [MICROCHIP_PFSOC_DDR_CFG] =         { 0x20080000,    0x40000 },
108     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,     0x1000 },
109     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,     0x1000 },
110     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,     0x1000 },
111     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,     0x1000 },
112     [MICROCHIP_PFSOC_SPI0] =            { 0x20108000,     0x1000 },
113     [MICROCHIP_PFSOC_SPI1] =            { 0x20109000,     0x1000 },
114     [MICROCHIP_PFSOC_I2C1] =            { 0x2010b000,     0x1000 },
115     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,     0x2000 },
116     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,     0x2000 },
117     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,     0x1000 },
118     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,     0x1000 },
119     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,     0x1000 },
120     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,     0x1000 },
121     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,    0x20000 },
122     [MICROCHIP_PFSOC_QSPI_XIP] =        { 0x21000000,  0x1000000 },
123     [MICROCHIP_PFSOC_IOSCB] =           { 0x30000000, 0x10000000 },
124     [MICROCHIP_PFSOC_EMMC_SD_MUX] =     { 0x4f000000,        0x4 },
125     [MICROCHIP_PFSOC_DRAM_LO] =         { 0x80000000, 0x40000000 },
126     [MICROCHIP_PFSOC_DRAM_LO_ALIAS] =   { 0xc0000000, 0x40000000 },
127     [MICROCHIP_PFSOC_DRAM_HI] =       { 0x1000000000,        0x0 },
128     [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000,        0x0 },
129 };
130 
131 static void microchip_pfsoc_soc_instance_init(Object *obj)
132 {
133     MachineState *ms = MACHINE(qdev_get_machine());
134     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
135 
136     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
137     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
138 
139     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
140                             TYPE_RISCV_HART_ARRAY);
141     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
142     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
143     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
144                          TYPE_RISCV_CPU_SIFIVE_E51);
145     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
146 
147     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
148     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
149 
150     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
151                             TYPE_RISCV_HART_ARRAY);
152     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
153     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
154     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
155                          TYPE_RISCV_CPU_SIFIVE_U54);
156     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
157 
158     object_initialize_child(obj, "dma-controller", &s->dma,
159                             TYPE_SIFIVE_PDMA);
160 
161     object_initialize_child(obj, "sysreg", &s->sysreg,
162                             TYPE_MCHP_PFSOC_SYSREG);
163 
164     object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
165                             TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
166     object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
167                             TYPE_MCHP_PFSOC_DDR_CFG);
168 
169     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
170     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
171 
172     object_initialize_child(obj, "sd-controller", &s->sdhci,
173                             TYPE_CADENCE_SDHCI);
174 
175     object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
176 }
177 
178 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
179 {
180     MachineState *ms = MACHINE(qdev_get_machine());
181     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
182     const MemMapEntry *memmap = microchip_pfsoc_memmap;
183     MemoryRegion *system_memory = get_system_memory();
184     MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
185     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
186     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
187     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
188     MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
189     char *plic_hart_config;
190     size_t plic_hart_config_len;
191     NICInfo *nd;
192     int i;
193 
194     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
195     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
196     /*
197      * The cluster must be realized after the RISC-V hart array container,
198      * as the container's CPU object is only created on realize, and the
199      * CPU must exist and have been parented into the cluster before the
200      * cluster is realized.
201      */
202     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
203     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
204 
205     /* Reserved Memory at address 0 */
206     memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
207                            memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
208     memory_region_add_subregion(system_memory,
209                                 memmap[MICROCHIP_PFSOC_RSVD0].base,
210                                 rsvd0_mem);
211 
212     /* E51 DTIM */
213     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
214                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
215     memory_region_add_subregion(system_memory,
216                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
217                                 e51_dtim_mem);
218 
219     /* Bus Error Units */
220     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
221         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
222         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
223     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
224         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
225         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
226     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
227         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
228         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
229     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
230         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
231         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
232     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
233         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
234         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
235 
236     /* CLINT */
237     sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
238         memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
239         SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
240         CLINT_TIMEBASE_FREQ, false);
241 
242     /* L2 cache controller */
243     create_unimplemented_device("microchip.pfsoc.l2cc",
244         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
245 
246     /*
247      * Add L2-LIM at reset size.
248      * This should be reduced in size as the L2 Cache Controller WayEnable
249      * register is incremented. Unfortunately I don't see a nice (or any) way
250      * to handle reducing or blocking out the L2 LIM while still allowing it
251      * be re returned to all enabled after a reset. For the time being, just
252      * leave it enabled all the time. This won't break anything, but will be
253      * too generous to misbehaving guests.
254      */
255     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
256                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
257     memory_region_add_subregion(system_memory,
258                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
259                                 l2lim_mem);
260 
261     /* create PLIC hart topology configuration string */
262     plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
263                            ms->smp.cpus;
264     plic_hart_config = g_malloc0(plic_hart_config_len);
265     for (i = 0; i < ms->smp.cpus; i++) {
266         if (i != 0) {
267             strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
268                     plic_hart_config_len);
269         } else {
270             strncat(plic_hart_config, "M", plic_hart_config_len);
271         }
272         plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
273     }
274 
275     /* PLIC */
276     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
277         plic_hart_config, 0,
278         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
279         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
280         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
281         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
282         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
283         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
284         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
285         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
286         memmap[MICROCHIP_PFSOC_PLIC].size);
287     g_free(plic_hart_config);
288 
289     /* DMA */
290     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
291     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
292                     memmap[MICROCHIP_PFSOC_DMA].base);
293     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
294         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
295                            qdev_get_gpio_in(DEVICE(s->plic),
296                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
297     }
298 
299     /* SYSREG */
300     sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
301     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
302                     memmap[MICROCHIP_PFSOC_SYSREG].base);
303 
304     /* MPUCFG */
305     create_unimplemented_device("microchip.pfsoc.mpucfg",
306         memmap[MICROCHIP_PFSOC_MPUCFG].base,
307         memmap[MICROCHIP_PFSOC_MPUCFG].size);
308 
309     /* DDR SGMII PHY */
310     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
311     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
312                     memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
313 
314     /* DDR CFG */
315     sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
316     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
317                     memmap[MICROCHIP_PFSOC_DDR_CFG].base);
318 
319     /* SDHCI */
320     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
321     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
322                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
323     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
324         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
325 
326     /* MMUARTs */
327     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
328         memmap[MICROCHIP_PFSOC_MMUART0].base,
329         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
330         serial_hd(0));
331     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
332         memmap[MICROCHIP_PFSOC_MMUART1].base,
333         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
334         serial_hd(1));
335     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
336         memmap[MICROCHIP_PFSOC_MMUART2].base,
337         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
338         serial_hd(2));
339     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
340         memmap[MICROCHIP_PFSOC_MMUART3].base,
341         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
342         serial_hd(3));
343     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
344         memmap[MICROCHIP_PFSOC_MMUART4].base,
345         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
346         serial_hd(4));
347 
348     /* SPI */
349     create_unimplemented_device("microchip.pfsoc.spi0",
350         memmap[MICROCHIP_PFSOC_SPI0].base,
351         memmap[MICROCHIP_PFSOC_SPI0].size);
352     create_unimplemented_device("microchip.pfsoc.spi1",
353         memmap[MICROCHIP_PFSOC_SPI1].base,
354         memmap[MICROCHIP_PFSOC_SPI1].size);
355 
356     /* I2C1 */
357     create_unimplemented_device("microchip.pfsoc.i2c1",
358         memmap[MICROCHIP_PFSOC_I2C1].base,
359         memmap[MICROCHIP_PFSOC_I2C1].size);
360 
361     /* GEMs */
362 
363     nd = &nd_table[0];
364     if (nd->used) {
365         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
366         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
367     }
368     nd = &nd_table[1];
369     if (nd->used) {
370         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
371         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
372     }
373 
374     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
375     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
376     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
377     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
378                     memmap[MICROCHIP_PFSOC_GEM0].base);
379     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
380         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
381 
382     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
383     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
384     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
385     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
386                     memmap[MICROCHIP_PFSOC_GEM1].base);
387     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
388         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
389 
390     /* GPIOs */
391     create_unimplemented_device("microchip.pfsoc.gpio0",
392         memmap[MICROCHIP_PFSOC_GPIO0].base,
393         memmap[MICROCHIP_PFSOC_GPIO0].size);
394     create_unimplemented_device("microchip.pfsoc.gpio1",
395         memmap[MICROCHIP_PFSOC_GPIO1].base,
396         memmap[MICROCHIP_PFSOC_GPIO1].size);
397     create_unimplemented_device("microchip.pfsoc.gpio2",
398         memmap[MICROCHIP_PFSOC_GPIO2].base,
399         memmap[MICROCHIP_PFSOC_GPIO2].size);
400 
401     /* eNVM */
402     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
403                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
404                            &error_fatal);
405     memory_region_add_subregion(system_memory,
406                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
407                                 envm_data);
408 
409     /* IOSCB */
410     sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
411     sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
412                     memmap[MICROCHIP_PFSOC_IOSCB].base);
413 
414     /* eMMC/SD mux */
415     create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
416         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
417         memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
418 
419     /* QSPI Flash */
420     memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
421                            "microchip.pfsoc.qspi_xip",
422                            memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
423                            &error_fatal);
424     memory_region_add_subregion(system_memory,
425                                 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
426                                 qspi_xip_mem);
427 }
428 
429 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
430 {
431     DeviceClass *dc = DEVICE_CLASS(oc);
432 
433     dc->realize = microchip_pfsoc_soc_realize;
434     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
435     dc->user_creatable = false;
436 }
437 
438 static const TypeInfo microchip_pfsoc_soc_type_info = {
439     .name = TYPE_MICROCHIP_PFSOC,
440     .parent = TYPE_DEVICE,
441     .instance_size = sizeof(MicrochipPFSoCState),
442     .instance_init = microchip_pfsoc_soc_instance_init,
443     .class_init = microchip_pfsoc_soc_class_init,
444 };
445 
446 static void microchip_pfsoc_soc_register_types(void)
447 {
448     type_register_static(&microchip_pfsoc_soc_type_info);
449 }
450 
451 type_init(microchip_pfsoc_soc_register_types)
452 
453 static void microchip_icicle_kit_machine_init(MachineState *machine)
454 {
455     MachineClass *mc = MACHINE_GET_CLASS(machine);
456     const MemMapEntry *memmap = microchip_pfsoc_memmap;
457     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
458     MemoryRegion *system_memory = get_system_memory();
459     MemoryRegion *mem_low = g_new(MemoryRegion, 1);
460     MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
461     MemoryRegion *mem_high = g_new(MemoryRegion, 1);
462     MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
463     uint64_t mem_high_size;
464     hwaddr firmware_load_addr;
465     const char *firmware_name;
466     bool kernel_as_payload = false;
467     target_ulong firmware_end_addr, kernel_start_addr;
468     uint64_t kernel_entry;
469     uint32_t fdt_load_addr;
470     DriveInfo *dinfo = drive_get_next(IF_SD);
471 
472     /* Sanity check on RAM size */
473     if (machine->ram_size < mc->default_ram_size) {
474         char *sz = size_to_str(mc->default_ram_size);
475         error_report("Invalid RAM size, should be bigger than %s", sz);
476         g_free(sz);
477         exit(EXIT_FAILURE);
478     }
479 
480     /* Initialize SoC */
481     object_initialize_child(OBJECT(machine), "soc", &s->soc,
482                             TYPE_MICROCHIP_PFSOC);
483     qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
484 
485     /* Register RAM */
486     memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
487                            memmap[MICROCHIP_PFSOC_DRAM_LO].size,
488                            &error_fatal);
489     memory_region_init_alias(mem_low_alias, NULL,
490                              "microchip.icicle.kit.ram_low.alias",
491                              mem_low, 0,
492                              memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
493     memory_region_add_subregion(system_memory,
494                                 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
495                                 mem_low);
496     memory_region_add_subregion(system_memory,
497                                 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
498                                 mem_low_alias);
499 
500     mem_high_size = machine->ram_size - 1 * GiB;
501 
502     memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
503                            mem_high_size, &error_fatal);
504     memory_region_init_alias(mem_high_alias, NULL,
505                              "microchip.icicle.kit.ram_high.alias",
506                              mem_high, 0, mem_high_size);
507     memory_region_add_subregion(system_memory,
508                                 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
509                                 mem_high);
510     memory_region_add_subregion(system_memory,
511                                 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
512                                 mem_high_alias);
513 
514     /* Attach an SD card */
515     if (dinfo) {
516         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
517         DeviceState *card = qdev_new(TYPE_SD_CARD);
518 
519         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
520                                 &error_fatal);
521         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
522     }
523 
524     /*
525      * We follow the following table to select which payload we execute.
526      *
527      *  -bios |    -kernel | payload
528      * -------+------------+--------
529      *      N |          N | HSS
530      *      Y | don't care | HSS
531      *      N |          Y | kernel
532      *
533      * This ensures backwards compatibility with how we used to expose -bios
534      * to users but allows them to run through direct kernel booting as well.
535      *
536      * When -kernel is used for direct boot, -dtb must be present to provide
537      * a valid device tree for the board, as we don't generate device tree.
538      */
539 
540     if (machine->kernel_filename && machine->dtb) {
541         int fdt_size;
542         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
543         if (!machine->fdt) {
544             error_report("load_device_tree() failed");
545             exit(1);
546         }
547 
548         firmware_name = RISCV64_BIOS_BIN;
549         firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
550         kernel_as_payload = true;
551     }
552 
553     if (!kernel_as_payload) {
554         firmware_name = BIOS_FILENAME;
555         firmware_load_addr = RESET_VECTOR;
556     }
557 
558     /* Load the firmware */
559     firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
560                                                      firmware_load_addr, NULL);
561 
562     if (kernel_as_payload) {
563         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
564                                                          firmware_end_addr);
565 
566         kernel_entry = riscv_load_kernel(machine->kernel_filename,
567                                          kernel_start_addr, NULL);
568 
569         if (machine->initrd_filename) {
570             hwaddr start;
571             hwaddr end = riscv_load_initrd(machine->initrd_filename,
572                                            machine->ram_size, kernel_entry,
573                                            &start);
574             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
575                                   "linux,initrd-start", start);
576             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
577                                   "linux,initrd-end", end);
578         }
579 
580         if (machine->kernel_cmdline) {
581             qemu_fdt_setprop_string(machine->fdt, "/chosen",
582                                     "bootargs", machine->kernel_cmdline);
583         }
584 
585         /* Compute the fdt load address in dram */
586         fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
587                                        machine->ram_size, machine->fdt);
588         /* Load the reset vector */
589         riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
590                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
591                                   memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
592                                   kernel_entry, fdt_load_addr, machine->fdt);
593     }
594 }
595 
596 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
597 {
598     MachineClass *mc = MACHINE_CLASS(oc);
599 
600     mc->desc = "Microchip PolarFire SoC Icicle Kit";
601     mc->init = microchip_icicle_kit_machine_init;
602     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
603                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
604     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
605     mc->default_cpus = mc->min_cpus;
606 
607     /*
608      * Map 513 MiB high memory, the mimimum required high memory size, because
609      * HSS will do memory test against the high memory address range regardless
610      * of physical memory installed.
611      *
612      * See memory_tests() in mss_ddr.c in the HSS source code.
613      */
614     mc->default_ram_size = 1537 * MiB;
615 }
616 
617 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
618     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
619     .parent     = TYPE_MACHINE,
620     .class_init = microchip_icicle_kit_machine_class_init,
621     .instance_size = sizeof(MicrochipIcicleKitState),
622 };
623 
624 static void microchip_icicle_kit_machine_init_register_types(void)
625 {
626     type_register_static(&microchip_icicle_kit_machine_typeinfo);
627 }
628 
629 type_init(microchip_icicle_kit_machine_init_register_types)
630