1 /* 2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit 3 * 4 * Copyright (c) 2020 Wind River Systems, Inc. 5 * 6 * Author: 7 * Bin Meng <bin.meng@windriver.com> 8 * 9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit 10 * 11 * 0) CLINT (Core Level Interruptor) 12 * 1) PLIC (Platform Level Interrupt Controller) 13 * 2) eNVM (Embedded Non-Volatile Memory) 14 * 3) MMUARTs (Multi-Mode UART) 15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it 16 * 5) SiFive Platform DMA (Direct Memory Access Controller) 17 * 6) GEM (Gigabit Ethernet MAC Controller) 18 * 7) DMC (DDR Memory Controller) 19 * 8) IOSCB modules 20 * 21 * This board currently generates devicetree dynamically that indicates at least 22 * two harts and up to five harts. 23 * 24 * This program is free software; you can redistribute it and/or modify it 25 * under the terms and conditions of the GNU General Public License, 26 * version 2 or later, as published by the Free Software Foundation. 27 * 28 * This program is distributed in the hope it will be useful, but WITHOUT 29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 31 * more details. 32 * 33 * You should have received a copy of the GNU General Public License along with 34 * this program. If not, see <http://www.gnu.org/licenses/>. 35 */ 36 37 #include "qemu/osdep.h" 38 #include "qemu/error-report.h" 39 #include "qemu/units.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/boards.h" 43 #include "hw/loader.h" 44 #include "hw/sysbus.h" 45 #include "chardev/char.h" 46 #include "hw/cpu/cluster.h" 47 #include "target/riscv/cpu.h" 48 #include "hw/misc/unimp.h" 49 #include "hw/riscv/boot.h" 50 #include "hw/riscv/riscv_hart.h" 51 #include "hw/riscv/microchip_pfsoc.h" 52 #include "hw/intc/riscv_aclint.h" 53 #include "hw/intc/sifive_plic.h" 54 #include "sysemu/device_tree.h" 55 #include "sysemu/sysemu.h" 56 57 /* 58 * The BIOS image used by this machine is called Hart Software Services (HSS). 59 * See https://github.com/polarfire-soc/hart-software-services 60 */ 61 #define BIOS_FILENAME "hss.bin" 62 #define RESET_VECTOR 0x20220000 63 64 /* CLINT timebase frequency */ 65 #define CLINT_TIMEBASE_FREQ 1000000 66 67 /* GEM version */ 68 #define GEM_REVISION 0x0107010c 69 70 /* 71 * The complete description of the whole PolarFire SoC memory map is scattered 72 * in different documents. There are several places to look at for memory maps: 73 * 74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA 75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from 76 * https://www.microsemi.com/document-portal/doc_download/ 77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide, 78 * describes the whole picture of the PolarFire SoC memory map. 79 * 80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from 81 * https://www.microsemi.com/document-portal/doc_download/ 82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts: 83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm 84 * describes the complete integrated peripherals memory map 85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm 86 * describes the complete IOSCB modules memory maps 87 */ 88 static const MemMapEntry microchip_pfsoc_memmap[] = { 89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 }, 90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 }, 91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 }, 92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 }, 93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 }, 94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 }, 95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 }, 96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 }, 97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 }, 98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 }, 99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 }, 100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 }, 101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 }, 102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 }, 103 [MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 }, 104 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 }, 105 [MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 }, 106 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 }, 107 [MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 }, 108 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 }, 109 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 }, 110 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 }, 111 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 }, 112 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 }, 113 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 }, 114 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 }, 115 [MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 }, 116 [MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 }, 117 [MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 }, 118 [MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 }, 119 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 }, 120 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 }, 121 [MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 }, 122 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 }, 123 [MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 }, 124 [MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 }, 125 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 }, 126 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 }, 127 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 }, 128 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 }, 129 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 }, 130 [MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 }, 131 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 }, 132 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 }, 133 [MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 }, 134 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 }, 135 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 }, 136 [MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 }, 137 [MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 }, 138 [MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 }, 139 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 }, 140 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 }, 141 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 }, 142 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 }, 143 144 }; 145 146 static void microchip_pfsoc_soc_instance_init(Object *obj) 147 { 148 MachineState *ms = MACHINE(qdev_get_machine()); 149 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj); 150 151 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER); 152 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); 153 154 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus, 155 TYPE_RISCV_HART_ARRAY); 156 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); 157 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); 158 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", 159 TYPE_RISCV_CPU_SIFIVE_E51); 160 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR); 161 162 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER); 163 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); 164 165 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus, 166 TYPE_RISCV_HART_ARRAY); 167 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); 168 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); 169 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", 170 TYPE_RISCV_CPU_SIFIVE_U54); 171 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR); 172 173 object_initialize_child(obj, "dma-controller", &s->dma, 174 TYPE_SIFIVE_PDMA); 175 176 object_initialize_child(obj, "sysreg", &s->sysreg, 177 TYPE_MCHP_PFSOC_SYSREG); 178 179 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy, 180 TYPE_MCHP_PFSOC_DDR_SGMII_PHY); 181 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg, 182 TYPE_MCHP_PFSOC_DDR_CFG); 183 184 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM); 185 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM); 186 187 object_initialize_child(obj, "sd-controller", &s->sdhci, 188 TYPE_CADENCE_SDHCI); 189 190 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB); 191 } 192 193 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp) 194 { 195 MachineState *ms = MACHINE(qdev_get_machine()); 196 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev); 197 const MemMapEntry *memmap = microchip_pfsoc_memmap; 198 MemoryRegion *system_memory = get_system_memory(); 199 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1); 200 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1); 201 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); 202 MemoryRegion *envm_data = g_new(MemoryRegion, 1); 203 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1); 204 char *plic_hart_config; 205 NICInfo *nd; 206 int i; 207 208 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort); 209 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort); 210 /* 211 * The cluster must be realized after the RISC-V hart array container, 212 * as the container's CPU object is only created on realize, and the 213 * CPU must exist and have been parented into the cluster before the 214 * cluster is realized. 215 */ 216 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort); 217 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort); 218 219 /* Reserved Memory at address 0 */ 220 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem", 221 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal); 222 memory_region_add_subregion(system_memory, 223 memmap[MICROCHIP_PFSOC_RSVD0].base, 224 rsvd0_mem); 225 226 /* E51 DTIM */ 227 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem", 228 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal); 229 memory_region_add_subregion(system_memory, 230 memmap[MICROCHIP_PFSOC_E51_DTIM].base, 231 e51_dtim_mem); 232 233 /* Bus Error Units */ 234 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem", 235 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base, 236 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size); 237 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem", 238 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base, 239 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size); 240 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem", 241 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base, 242 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size); 243 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem", 244 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base, 245 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size); 246 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem", 247 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base, 248 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size); 249 250 /* CLINT */ 251 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base, 252 0, ms->smp.cpus, false); 253 riscv_aclint_mtimer_create( 254 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE, 255 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus, 256 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME, 257 CLINT_TIMEBASE_FREQ, false); 258 259 /* L2 cache controller */ 260 create_unimplemented_device("microchip.pfsoc.l2cc", 261 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size); 262 263 /* 264 * Add L2-LIM at reset size. 265 * This should be reduced in size as the L2 Cache Controller WayEnable 266 * register is incremented. Unfortunately I don't see a nice (or any) way 267 * to handle reducing or blocking out the L2 LIM while still allowing it 268 * be re returned to all enabled after a reset. For the time being, just 269 * leave it enabled all the time. This won't break anything, but will be 270 * too generous to misbehaving guests. 271 */ 272 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim", 273 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal); 274 memory_region_add_subregion(system_memory, 275 memmap[MICROCHIP_PFSOC_L2LIM].base, 276 l2lim_mem); 277 278 /* create PLIC hart topology configuration string */ 279 plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus); 280 281 /* PLIC */ 282 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base, 283 plic_hart_config, ms->smp.cpus, 0, 284 MICROCHIP_PFSOC_PLIC_NUM_SOURCES, 285 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES, 286 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE, 287 MICROCHIP_PFSOC_PLIC_PENDING_BASE, 288 MICROCHIP_PFSOC_PLIC_ENABLE_BASE, 289 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE, 290 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE, 291 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE, 292 memmap[MICROCHIP_PFSOC_PLIC].size); 293 g_free(plic_hart_config); 294 295 /* DMA */ 296 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp); 297 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0, 298 memmap[MICROCHIP_PFSOC_DMA].base); 299 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) { 300 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i, 301 qdev_get_gpio_in(DEVICE(s->plic), 302 MICROCHIP_PFSOC_DMA_IRQ0 + i)); 303 } 304 305 /* SYSREG */ 306 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp); 307 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0, 308 memmap[MICROCHIP_PFSOC_SYSREG].base); 309 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0, 310 qdev_get_gpio_in(DEVICE(s->plic), 311 MICROCHIP_PFSOC_MAILBOX_IRQ)); 312 313 /* AXISW */ 314 create_unimplemented_device("microchip.pfsoc.axisw", 315 memmap[MICROCHIP_PFSOC_AXISW].base, 316 memmap[MICROCHIP_PFSOC_AXISW].size); 317 318 /* MPUCFG */ 319 create_unimplemented_device("microchip.pfsoc.mpucfg", 320 memmap[MICROCHIP_PFSOC_MPUCFG].base, 321 memmap[MICROCHIP_PFSOC_MPUCFG].size); 322 323 /* FMETER */ 324 create_unimplemented_device("microchip.pfsoc.fmeter", 325 memmap[MICROCHIP_PFSOC_FMETER].base, 326 memmap[MICROCHIP_PFSOC_FMETER].size); 327 328 /* DDR SGMII PHY */ 329 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp); 330 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0, 331 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base); 332 333 /* DDR CFG */ 334 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp); 335 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0, 336 memmap[MICROCHIP_PFSOC_DDR_CFG].base); 337 338 /* SDHCI */ 339 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp); 340 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0, 341 memmap[MICROCHIP_PFSOC_EMMC_SD].base); 342 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0, 343 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ)); 344 345 /* MMUARTs */ 346 s->serial0 = mchp_pfsoc_mmuart_create(system_memory, 347 memmap[MICROCHIP_PFSOC_MMUART0].base, 348 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ), 349 serial_hd(0)); 350 s->serial1 = mchp_pfsoc_mmuart_create(system_memory, 351 memmap[MICROCHIP_PFSOC_MMUART1].base, 352 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ), 353 serial_hd(1)); 354 s->serial2 = mchp_pfsoc_mmuart_create(system_memory, 355 memmap[MICROCHIP_PFSOC_MMUART2].base, 356 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ), 357 serial_hd(2)); 358 s->serial3 = mchp_pfsoc_mmuart_create(system_memory, 359 memmap[MICROCHIP_PFSOC_MMUART3].base, 360 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ), 361 serial_hd(3)); 362 s->serial4 = mchp_pfsoc_mmuart_create(system_memory, 363 memmap[MICROCHIP_PFSOC_MMUART4].base, 364 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ), 365 serial_hd(4)); 366 367 /* Watchdogs */ 368 create_unimplemented_device("microchip.pfsoc.watchdog0", 369 memmap[MICROCHIP_PFSOC_WDOG0].base, 370 memmap[MICROCHIP_PFSOC_WDOG0].size); 371 create_unimplemented_device("microchip.pfsoc.watchdog1", 372 memmap[MICROCHIP_PFSOC_WDOG1].base, 373 memmap[MICROCHIP_PFSOC_WDOG1].size); 374 create_unimplemented_device("microchip.pfsoc.watchdog2", 375 memmap[MICROCHIP_PFSOC_WDOG2].base, 376 memmap[MICROCHIP_PFSOC_WDOG2].size); 377 create_unimplemented_device("microchip.pfsoc.watchdog3", 378 memmap[MICROCHIP_PFSOC_WDOG3].base, 379 memmap[MICROCHIP_PFSOC_WDOG3].size); 380 create_unimplemented_device("microchip.pfsoc.watchdog4", 381 memmap[MICROCHIP_PFSOC_WDOG4].base, 382 memmap[MICROCHIP_PFSOC_WDOG4].size); 383 384 /* SPI */ 385 create_unimplemented_device("microchip.pfsoc.spi0", 386 memmap[MICROCHIP_PFSOC_SPI0].base, 387 memmap[MICROCHIP_PFSOC_SPI0].size); 388 create_unimplemented_device("microchip.pfsoc.spi1", 389 memmap[MICROCHIP_PFSOC_SPI1].base, 390 memmap[MICROCHIP_PFSOC_SPI1].size); 391 392 /* I2C */ 393 create_unimplemented_device("microchip.pfsoc.i2c0", 394 memmap[MICROCHIP_PFSOC_I2C0].base, 395 memmap[MICROCHIP_PFSOC_I2C0].size); 396 create_unimplemented_device("microchip.pfsoc.i2c1", 397 memmap[MICROCHIP_PFSOC_I2C1].base, 398 memmap[MICROCHIP_PFSOC_I2C1].size); 399 400 /* CAN */ 401 create_unimplemented_device("microchip.pfsoc.can0", 402 memmap[MICROCHIP_PFSOC_CAN0].base, 403 memmap[MICROCHIP_PFSOC_CAN0].size); 404 create_unimplemented_device("microchip.pfsoc.can1", 405 memmap[MICROCHIP_PFSOC_CAN1].base, 406 memmap[MICROCHIP_PFSOC_CAN1].size); 407 408 /* USB */ 409 create_unimplemented_device("microchip.pfsoc.usb", 410 memmap[MICROCHIP_PFSOC_USB].base, 411 memmap[MICROCHIP_PFSOC_USB].size); 412 413 /* GEMs */ 414 415 nd = &nd_table[0]; 416 if (nd->used) { 417 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 418 qdev_set_nic_properties(DEVICE(&s->gem0), nd); 419 } 420 nd = &nd_table[1]; 421 if (nd->used) { 422 qemu_check_nic_model(nd, TYPE_CADENCE_GEM); 423 qdev_set_nic_properties(DEVICE(&s->gem1), nd); 424 } 425 426 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp); 427 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp); 428 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp); 429 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0, 430 memmap[MICROCHIP_PFSOC_GEM0].base); 431 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0, 432 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ)); 433 434 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp); 435 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp); 436 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp); 437 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0, 438 memmap[MICROCHIP_PFSOC_GEM1].base); 439 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0, 440 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ)); 441 442 /* GPIOs */ 443 create_unimplemented_device("microchip.pfsoc.gpio0", 444 memmap[MICROCHIP_PFSOC_GPIO0].base, 445 memmap[MICROCHIP_PFSOC_GPIO0].size); 446 create_unimplemented_device("microchip.pfsoc.gpio1", 447 memmap[MICROCHIP_PFSOC_GPIO1].base, 448 memmap[MICROCHIP_PFSOC_GPIO1].size); 449 create_unimplemented_device("microchip.pfsoc.gpio2", 450 memmap[MICROCHIP_PFSOC_GPIO2].base, 451 memmap[MICROCHIP_PFSOC_GPIO2].size); 452 453 /* eNVM */ 454 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data", 455 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 456 &error_fatal); 457 memory_region_add_subregion(system_memory, 458 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 459 envm_data); 460 461 /* IOSCB */ 462 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp); 463 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0, 464 memmap[MICROCHIP_PFSOC_IOSCB].base); 465 sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0, 466 qdev_get_gpio_in(DEVICE(s->plic), 467 MICROCHIP_PFSOC_MAILBOX_IRQ)); 468 469 /* FPGA Fabric */ 470 create_unimplemented_device("microchip.pfsoc.fabricfic3", 471 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base, 472 memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size); 473 /* FPGA Fabric */ 474 create_unimplemented_device("microchip.pfsoc.fabricfic0", 475 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base, 476 memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size); 477 /* FPGA Fabric */ 478 create_unimplemented_device("microchip.pfsoc.fabricfic1", 479 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base, 480 memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size); 481 482 /* QSPI Flash */ 483 memory_region_init_rom(qspi_xip_mem, OBJECT(dev), 484 "microchip.pfsoc.qspi_xip", 485 memmap[MICROCHIP_PFSOC_QSPI_XIP].size, 486 &error_fatal); 487 memory_region_add_subregion(system_memory, 488 memmap[MICROCHIP_PFSOC_QSPI_XIP].base, 489 qspi_xip_mem); 490 } 491 492 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data) 493 { 494 DeviceClass *dc = DEVICE_CLASS(oc); 495 496 dc->realize = microchip_pfsoc_soc_realize; 497 /* Reason: Uses serial_hds in realize function, thus can't be used twice */ 498 dc->user_creatable = false; 499 } 500 501 static const TypeInfo microchip_pfsoc_soc_type_info = { 502 .name = TYPE_MICROCHIP_PFSOC, 503 .parent = TYPE_DEVICE, 504 .instance_size = sizeof(MicrochipPFSoCState), 505 .instance_init = microchip_pfsoc_soc_instance_init, 506 .class_init = microchip_pfsoc_soc_class_init, 507 }; 508 509 static void microchip_pfsoc_soc_register_types(void) 510 { 511 type_register_static(µchip_pfsoc_soc_type_info); 512 } 513 514 type_init(microchip_pfsoc_soc_register_types) 515 516 static void microchip_icicle_kit_machine_init(MachineState *machine) 517 { 518 MachineClass *mc = MACHINE_GET_CLASS(machine); 519 const MemMapEntry *memmap = microchip_pfsoc_memmap; 520 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine); 521 MemoryRegion *system_memory = get_system_memory(); 522 MemoryRegion *mem_low = g_new(MemoryRegion, 1); 523 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1); 524 MemoryRegion *mem_high = g_new(MemoryRegion, 1); 525 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1); 526 uint64_t mem_low_size, mem_high_size; 527 hwaddr firmware_load_addr; 528 const char *firmware_name; 529 bool kernel_as_payload = false; 530 target_ulong firmware_end_addr, kernel_start_addr; 531 uint64_t kernel_entry; 532 uint32_t fdt_load_addr; 533 DriveInfo *dinfo = drive_get(IF_SD, 0, 0); 534 535 /* Sanity check on RAM size */ 536 if (machine->ram_size < mc->default_ram_size) { 537 char *sz = size_to_str(mc->default_ram_size); 538 error_report("Invalid RAM size, should be bigger than %s", sz); 539 g_free(sz); 540 exit(EXIT_FAILURE); 541 } 542 543 /* Initialize SoC */ 544 object_initialize_child(OBJECT(machine), "soc", &s->soc, 545 TYPE_MICROCHIP_PFSOC); 546 qdev_realize(DEVICE(&s->soc), NULL, &error_fatal); 547 548 /* Split RAM into low and high regions using aliases to machine->ram */ 549 mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size; 550 mem_high_size = machine->ram_size - mem_low_size; 551 memory_region_init_alias(mem_low, NULL, 552 "microchip.icicle.kit.ram_low", machine->ram, 553 0, mem_low_size); 554 memory_region_init_alias(mem_high, NULL, 555 "microchip.icicle.kit.ram_high", machine->ram, 556 mem_low_size, mem_high_size); 557 558 /* Register RAM */ 559 memory_region_add_subregion(system_memory, 560 memmap[MICROCHIP_PFSOC_DRAM_LO].base, 561 mem_low); 562 memory_region_add_subregion(system_memory, 563 memmap[MICROCHIP_PFSOC_DRAM_HI].base, 564 mem_high); 565 566 /* Create aliases for the low and high RAM regions */ 567 memory_region_init_alias(mem_low_alias, NULL, 568 "microchip.icicle.kit.ram_low.alias", 569 mem_low, 0, mem_low_size); 570 memory_region_add_subregion(system_memory, 571 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base, 572 mem_low_alias); 573 memory_region_init_alias(mem_high_alias, NULL, 574 "microchip.icicle.kit.ram_high.alias", 575 mem_high, 0, mem_high_size); 576 memory_region_add_subregion(system_memory, 577 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base, 578 mem_high_alias); 579 580 /* Attach an SD card */ 581 if (dinfo) { 582 CadenceSDHCIState *sdhci = &(s->soc.sdhci); 583 DeviceState *card = qdev_new(TYPE_SD_CARD); 584 585 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo), 586 &error_fatal); 587 qdev_realize_and_unref(card, sdhci->bus, &error_fatal); 588 } 589 590 /* 591 * We follow the following table to select which payload we execute. 592 * 593 * -bios | -kernel | payload 594 * -------+------------+-------- 595 * N | N | HSS 596 * Y | don't care | HSS 597 * N | Y | kernel 598 * 599 * This ensures backwards compatibility with how we used to expose -bios 600 * to users but allows them to run through direct kernel booting as well. 601 * 602 * When -kernel is used for direct boot, -dtb must be present to provide 603 * a valid device tree for the board, as we don't generate device tree. 604 */ 605 606 if (machine->kernel_filename && machine->dtb) { 607 int fdt_size; 608 machine->fdt = load_device_tree(machine->dtb, &fdt_size); 609 if (!machine->fdt) { 610 error_report("load_device_tree() failed"); 611 exit(1); 612 } 613 614 firmware_name = RISCV64_BIOS_BIN; 615 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base; 616 kernel_as_payload = true; 617 } 618 619 if (!kernel_as_payload) { 620 firmware_name = BIOS_FILENAME; 621 firmware_load_addr = RESET_VECTOR; 622 } 623 624 /* Load the firmware */ 625 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name, 626 firmware_load_addr, NULL); 627 628 if (kernel_as_payload) { 629 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus, 630 firmware_end_addr); 631 632 kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus, 633 kernel_start_addr, true, NULL); 634 635 /* Compute the fdt load address in dram */ 636 fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base, 637 memmap[MICROCHIP_PFSOC_DRAM_LO].size, 638 machine); 639 riscv_load_fdt(fdt_load_addr, machine->fdt); 640 641 /* Load the reset vector */ 642 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr, 643 memmap[MICROCHIP_PFSOC_ENVM_DATA].base, 644 memmap[MICROCHIP_PFSOC_ENVM_DATA].size, 645 kernel_entry, fdt_load_addr); 646 } 647 } 648 649 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data) 650 { 651 MachineClass *mc = MACHINE_CLASS(oc); 652 653 mc->desc = "Microchip PolarFire SoC Icicle Kit"; 654 mc->init = microchip_icicle_kit_machine_init; 655 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 656 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT; 657 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1; 658 mc->default_cpus = mc->min_cpus; 659 mc->default_ram_id = "microchip.icicle.kit.ram"; 660 661 /* 662 * Map 513 MiB high memory, the mimimum required high memory size, because 663 * HSS will do memory test against the high memory address range regardless 664 * of physical memory installed. 665 * 666 * See memory_tests() in mss_ddr.c in the HSS source code. 667 */ 668 mc->default_ram_size = 1537 * MiB; 669 } 670 671 static const TypeInfo microchip_icicle_kit_machine_typeinfo = { 672 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"), 673 .parent = TYPE_MACHINE, 674 .class_init = microchip_icicle_kit_machine_class_init, 675 .instance_size = sizeof(MicrochipIcicleKitState), 676 }; 677 678 static void microchip_icicle_kit_machine_init_register_types(void) 679 { 680 type_register_static(µchip_icicle_kit_machine_typeinfo); 681 } 682 683 type_init(microchip_icicle_kit_machine_init_register_types) 684