1 /* 2 * QEMU RISC-V Boot Helper 3 * 4 * Copyright (c) 2017 SiFive, Inc. 5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/datadir.h" 23 #include "qemu/units.h" 24 #include "qemu/error-report.h" 25 #include "exec/cpu-defs.h" 26 #include "hw/boards.h" 27 #include "hw/loader.h" 28 #include "hw/riscv/boot.h" 29 #include "hw/riscv/boot_opensbi.h" 30 #include "elf.h" 31 #include "sysemu/device_tree.h" 32 #include "sysemu/qtest.h" 33 #include "sysemu/kvm.h" 34 35 #include <libfdt.h> 36 37 bool riscv_is_32bit(RISCVHartArrayState *harts) 38 { 39 return harts->harts[0].env.misa_mxl_max == MXL_RV32; 40 } 41 42 /* 43 * Return the per-socket PLIC hart topology configuration string 44 * (caller must free with g_free()) 45 */ 46 char *riscv_plic_hart_config_string(int hart_count) 47 { 48 g_autofree const char **vals = g_new(const char *, hart_count + 1); 49 int i; 50 51 for (i = 0; i < hart_count; i++) { 52 CPUState *cs = qemu_get_cpu(i); 53 CPURISCVState *env = &RISCV_CPU(cs)->env; 54 55 if (kvm_enabled()) { 56 vals[i] = "S"; 57 } else if (riscv_has_ext(env, RVS)) { 58 vals[i] = "MS"; 59 } else { 60 vals[i] = "M"; 61 } 62 } 63 vals[i] = NULL; 64 65 /* g_strjoinv() obliges us to cast away const here */ 66 return g_strjoinv(",", (char **)vals); 67 } 68 69 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts, 70 target_ulong firmware_end_addr) { 71 if (riscv_is_32bit(harts)) { 72 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB); 73 } else { 74 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB); 75 } 76 } 77 78 target_ulong riscv_find_and_load_firmware(MachineState *machine, 79 const char *default_machine_firmware, 80 hwaddr firmware_load_addr, 81 symbol_fn_t sym_cb) 82 { 83 char *firmware_filename = NULL; 84 target_ulong firmware_end_addr = firmware_load_addr; 85 86 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) { 87 /* 88 * The user didn't specify -bios, or has specified "-bios default". 89 * That means we are going to load the OpenSBI binary included in 90 * the QEMU source. 91 */ 92 firmware_filename = riscv_find_firmware(default_machine_firmware); 93 } else if (strcmp(machine->firmware, "none")) { 94 firmware_filename = riscv_find_firmware(machine->firmware); 95 } 96 97 if (firmware_filename) { 98 /* If not "none" load the firmware */ 99 firmware_end_addr = riscv_load_firmware(firmware_filename, 100 firmware_load_addr, sym_cb); 101 g_free(firmware_filename); 102 } 103 104 return firmware_end_addr; 105 } 106 107 char *riscv_find_firmware(const char *firmware_filename) 108 { 109 char *filename; 110 111 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename); 112 if (filename == NULL) { 113 if (!qtest_enabled()) { 114 /* 115 * We only ship plain binary bios images in the QEMU source. 116 * With Spike machine that uses ELF images as the default bios, 117 * running QEMU test will complain hence let's suppress the error 118 * report for QEMU testing. 119 */ 120 error_report("Unable to load the RISC-V firmware \"%s\"", 121 firmware_filename); 122 exit(1); 123 } 124 } 125 126 return filename; 127 } 128 129 target_ulong riscv_load_firmware(const char *firmware_filename, 130 hwaddr firmware_load_addr, 131 symbol_fn_t sym_cb) 132 { 133 uint64_t firmware_entry, firmware_size, firmware_end; 134 135 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL, 136 &firmware_entry, NULL, &firmware_end, NULL, 137 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { 138 return firmware_end; 139 } 140 141 firmware_size = load_image_targphys_as(firmware_filename, 142 firmware_load_addr, 143 current_machine->ram_size, NULL); 144 145 if (firmware_size > 0) { 146 return firmware_load_addr + firmware_size; 147 } 148 149 error_report("could not load firmware '%s'", firmware_filename); 150 exit(1); 151 } 152 153 target_ulong riscv_load_kernel(const char *kernel_filename, 154 target_ulong kernel_start_addr, 155 symbol_fn_t sym_cb) 156 { 157 uint64_t kernel_load_base, kernel_entry; 158 159 /* 160 * NB: Use low address not ELF entry point to ensure that the fw_dynamic 161 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL 162 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to 163 * the (expected) load address load address. This allows kernels to have 164 * separate SBI and ELF entry points (used by FreeBSD, for example). 165 */ 166 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL, 167 NULL, &kernel_load_base, NULL, NULL, 0, 168 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) { 169 return kernel_load_base; 170 } 171 172 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL, 173 NULL, NULL, NULL) > 0) { 174 return kernel_entry; 175 } 176 177 if (load_image_targphys_as(kernel_filename, kernel_start_addr, 178 current_machine->ram_size, NULL) > 0) { 179 return kernel_start_addr; 180 } 181 182 error_report("could not load kernel '%s'", kernel_filename); 183 exit(1); 184 } 185 186 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size, 187 uint64_t kernel_entry, hwaddr *start) 188 { 189 int size; 190 191 /* 192 * We want to put the initrd far enough into RAM that when the 193 * kernel is uncompressed it will not clobber the initrd. However 194 * on boards without much RAM we must ensure that we still leave 195 * enough room for a decent sized initrd, and on boards with large 196 * amounts of RAM we must avoid the initrd being so far up in RAM 197 * that it is outside lowmem and inaccessible to the kernel. 198 * So for boards with less than 256MB of RAM we put the initrd 199 * halfway into RAM, and for boards with 256MB of RAM or more we put 200 * the initrd at 128MB. 201 */ 202 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB); 203 204 size = load_ramdisk(filename, *start, mem_size - *start); 205 if (size == -1) { 206 size = load_image_targphys(filename, *start, mem_size - *start); 207 if (size == -1) { 208 error_report("could not load ramdisk '%s'", filename); 209 exit(1); 210 } 211 } 212 213 return *start + size; 214 } 215 216 uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt) 217 { 218 uint32_t temp, fdt_addr; 219 hwaddr dram_end = dram_base + mem_size; 220 int ret, fdtsize = fdt_totalsize(fdt); 221 222 if (fdtsize <= 0) { 223 error_report("invalid device-tree"); 224 exit(1); 225 } 226 227 /* 228 * We should put fdt as far as possible to avoid kernel/initrd overwriting 229 * its content. But it should be addressable by 32 bit system as well. 230 * Thus, put it at an 16MB aligned address that less than fdt size from the 231 * end of dram or 3GB whichever is lesser. 232 */ 233 temp = MIN(dram_end, 3072 * MiB); 234 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 16 * MiB); 235 236 ret = fdt_pack(fdt); 237 /* Should only fail if we've built a corrupted tree */ 238 g_assert(ret == 0); 239 /* copy in the device tree */ 240 qemu_fdt_dumpdtb(fdt, fdtsize); 241 242 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr, 243 &address_space_memory); 244 245 return fdt_addr; 246 } 247 248 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base, 249 hwaddr rom_size, uint32_t reset_vec_size, 250 uint64_t kernel_entry) 251 { 252 struct fw_dynamic_info dinfo; 253 size_t dinfo_len; 254 255 if (sizeof(dinfo.magic) == 4) { 256 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE); 257 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION); 258 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S); 259 dinfo.next_addr = cpu_to_le32(kernel_entry); 260 } else { 261 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE); 262 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION); 263 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S); 264 dinfo.next_addr = cpu_to_le64(kernel_entry); 265 } 266 dinfo.options = 0; 267 dinfo.boot_hart = 0; 268 dinfo_len = sizeof(dinfo); 269 270 /** 271 * copy the dynamic firmware info. This information is specific to 272 * OpenSBI but doesn't break any other firmware as long as they don't 273 * expect any certain value in "a2" register. 274 */ 275 if (dinfo_len > (rom_size - reset_vec_size)) { 276 error_report("not enough space to store dynamic firmware info"); 277 exit(1); 278 } 279 280 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len, 281 rom_base + reset_vec_size, 282 &address_space_memory); 283 } 284 285 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts, 286 hwaddr start_addr, 287 hwaddr rom_base, hwaddr rom_size, 288 uint64_t kernel_entry, 289 uint32_t fdt_load_addr, void *fdt) 290 { 291 int i; 292 uint32_t start_addr_hi32 = 0x00000000; 293 294 if (!riscv_is_32bit(harts)) { 295 start_addr_hi32 = start_addr >> 32; 296 } 297 /* reset vector */ 298 uint32_t reset_vec[10] = { 299 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */ 300 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */ 301 0xf1402573, /* csrr a0, mhartid */ 302 0, 303 0, 304 0x00028067, /* jr t0 */ 305 start_addr, /* start: .dword */ 306 start_addr_hi32, 307 fdt_load_addr, /* fdt_laddr: .dword */ 308 0x00000000, 309 /* fw_dyn: */ 310 }; 311 if (riscv_is_32bit(harts)) { 312 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */ 313 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */ 314 } else { 315 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */ 316 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */ 317 } 318 319 /* copy in the reset vector in little_endian byte order */ 320 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) { 321 reset_vec[i] = cpu_to_le32(reset_vec[i]); 322 } 323 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), 324 rom_base, &address_space_memory); 325 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec), 326 kernel_entry); 327 328 return; 329 } 330 331 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr) 332 { 333 CPUState *cs; 334 335 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) { 336 RISCVCPU *riscv_cpu = RISCV_CPU(cs); 337 riscv_cpu->env.kernel_addr = kernel_addr; 338 riscv_cpu->env.fdt_addr = fdt_addr; 339 } 340 } 341