1 /* 2 * QEMU sPAPR VIO code 3 * 4 * Copyright (c) 2010 David Gibson, IBM Corporation <dwg@au1.ibm.com> 5 * Based on the s390 virtio bus code: 6 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "qapi/visitor.h" 26 #include "hw/hw.h" 27 #include "hw/irq.h" 28 #include "qemu/log.h" 29 #include "sysemu/sysemu.h" 30 #include "hw/boards.h" 31 #include "hw/loader.h" 32 #include "elf.h" 33 #include "hw/sysbus.h" 34 #include "sysemu/kvm.h" 35 #include "sysemu/device_tree.h" 36 #include "kvm_ppc.h" 37 #include "migration/vmstate.h" 38 #include "sysemu/qtest.h" 39 40 #include "hw/ppc/spapr.h" 41 #include "hw/ppc/spapr_vio.h" 42 #include "hw/ppc/fdt.h" 43 #include "trace.h" 44 45 #include <libfdt.h> 46 47 #define SPAPR_VIO_REG_BASE 0x71000000 48 49 static char *spapr_vio_get_dev_name(DeviceState *qdev) 50 { 51 SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev); 52 SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 53 54 /* Device tree style name device@reg */ 55 return g_strdup_printf("%s@%x", pc->dt_name, dev->reg); 56 } 57 58 static void spapr_vio_bus_class_init(ObjectClass *klass, void *data) 59 { 60 BusClass *k = BUS_CLASS(klass); 61 62 k->get_dev_path = spapr_vio_get_dev_name; 63 k->get_fw_dev_path = spapr_vio_get_dev_name; 64 } 65 66 static const TypeInfo spapr_vio_bus_info = { 67 .name = TYPE_SPAPR_VIO_BUS, 68 .parent = TYPE_BUS, 69 .class_init = spapr_vio_bus_class_init, 70 .instance_size = sizeof(SpaprVioBus), 71 }; 72 73 SpaprVioDevice *spapr_vio_find_by_reg(SpaprVioBus *bus, uint32_t reg) 74 { 75 BusChild *kid; 76 SpaprVioDevice *dev = NULL; 77 78 QTAILQ_FOREACH(kid, &bus->bus.children, sibling) { 79 dev = (SpaprVioDevice *)kid->child; 80 if (dev->reg == reg) { 81 return dev; 82 } 83 } 84 85 return NULL; 86 } 87 88 static int vio_make_devnode(SpaprVioDevice *dev, 89 void *fdt) 90 { 91 SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 92 int vdevice_off, node_off, ret; 93 char *dt_name; 94 95 vdevice_off = fdt_path_offset(fdt, "/vdevice"); 96 if (vdevice_off < 0) { 97 return vdevice_off; 98 } 99 100 dt_name = spapr_vio_get_dev_name(DEVICE(dev)); 101 node_off = fdt_add_subnode(fdt, vdevice_off, dt_name); 102 g_free(dt_name); 103 if (node_off < 0) { 104 return node_off; 105 } 106 107 ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg); 108 if (ret < 0) { 109 return ret; 110 } 111 112 if (pc->dt_type) { 113 ret = fdt_setprop_string(fdt, node_off, "device_type", 114 pc->dt_type); 115 if (ret < 0) { 116 return ret; 117 } 118 } 119 120 if (pc->dt_compatible) { 121 ret = fdt_setprop_string(fdt, node_off, "compatible", 122 pc->dt_compatible); 123 if (ret < 0) { 124 return ret; 125 } 126 } 127 128 if (dev->irq) { 129 uint32_t ints_prop[2]; 130 131 spapr_dt_irq(ints_prop, dev->irq, false); 132 ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop, 133 sizeof(ints_prop)); 134 if (ret < 0) { 135 return ret; 136 } 137 } 138 139 ret = spapr_tcet_dma_dt(fdt, node_off, "ibm,my-dma-window", dev->tcet); 140 if (ret < 0) { 141 return ret; 142 } 143 144 if (pc->devnode) { 145 ret = (pc->devnode)(dev, fdt, node_off); 146 if (ret < 0) { 147 return ret; 148 } 149 } 150 151 return node_off; 152 } 153 154 /* 155 * CRQ handling 156 */ 157 static target_ulong h_reg_crq(PowerPCCPU *cpu, SpaprMachineState *spapr, 158 target_ulong opcode, target_ulong *args) 159 { 160 target_ulong reg = args[0]; 161 target_ulong queue_addr = args[1]; 162 target_ulong queue_len = args[2]; 163 SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg); 164 165 if (!dev) { 166 hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg); 167 return H_PARAMETER; 168 } 169 170 /* We can't grok a queue size bigger than 256M for now */ 171 if (queue_len < 0x1000 || queue_len > 0x10000000) { 172 hcall_dprintf("Queue size too small or too big (0x" TARGET_FMT_lx 173 ")\n", queue_len); 174 return H_PARAMETER; 175 } 176 177 /* Check queue alignment */ 178 if (queue_addr & 0xfff) { 179 hcall_dprintf("Queue not aligned (0x" TARGET_FMT_lx ")\n", queue_addr); 180 return H_PARAMETER; 181 } 182 183 /* Check if device supports CRQs */ 184 if (!dev->crq.SendFunc) { 185 hcall_dprintf("Device does not support CRQ\n"); 186 return H_NOT_FOUND; 187 } 188 189 /* Already a queue ? */ 190 if (dev->crq.qsize) { 191 hcall_dprintf("CRQ already registered\n"); 192 return H_RESOURCE; 193 } 194 dev->crq.qladdr = queue_addr; 195 dev->crq.qsize = queue_len; 196 dev->crq.qnext = 0; 197 198 trace_spapr_vio_h_reg_crq(reg, queue_addr, queue_len); 199 return H_SUCCESS; 200 } 201 202 static target_ulong free_crq(SpaprVioDevice *dev) 203 { 204 dev->crq.qladdr = 0; 205 dev->crq.qsize = 0; 206 dev->crq.qnext = 0; 207 208 trace_spapr_vio_free_crq(dev->reg); 209 210 return H_SUCCESS; 211 } 212 213 static target_ulong h_free_crq(PowerPCCPU *cpu, SpaprMachineState *spapr, 214 target_ulong opcode, target_ulong *args) 215 { 216 target_ulong reg = args[0]; 217 SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg); 218 219 if (!dev) { 220 hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg); 221 return H_PARAMETER; 222 } 223 224 return free_crq(dev); 225 } 226 227 static target_ulong h_send_crq(PowerPCCPU *cpu, SpaprMachineState *spapr, 228 target_ulong opcode, target_ulong *args) 229 { 230 target_ulong reg = args[0]; 231 target_ulong msg_hi = args[1]; 232 target_ulong msg_lo = args[2]; 233 SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg); 234 uint64_t crq_mangle[2]; 235 236 if (!dev) { 237 hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg); 238 return H_PARAMETER; 239 } 240 crq_mangle[0] = cpu_to_be64(msg_hi); 241 crq_mangle[1] = cpu_to_be64(msg_lo); 242 243 if (dev->crq.SendFunc) { 244 return dev->crq.SendFunc(dev, (uint8_t *)crq_mangle); 245 } 246 247 return H_HARDWARE; 248 } 249 250 static target_ulong h_enable_crq(PowerPCCPU *cpu, SpaprMachineState *spapr, 251 target_ulong opcode, target_ulong *args) 252 { 253 target_ulong reg = args[0]; 254 SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg); 255 256 if (!dev) { 257 hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg); 258 return H_PARAMETER; 259 } 260 261 return 0; 262 } 263 264 /* Returns negative error, 0 success, or positive: queue full */ 265 int spapr_vio_send_crq(SpaprVioDevice *dev, uint8_t *crq) 266 { 267 int rc; 268 uint8_t byte; 269 270 if (!dev->crq.qsize) { 271 error_report("spapr_vio_send_creq on uninitialized queue"); 272 return -1; 273 } 274 275 /* Maybe do a fast path for KVM just writing to the pages */ 276 rc = spapr_vio_dma_read(dev, dev->crq.qladdr + dev->crq.qnext, &byte, 1); 277 if (rc) { 278 return rc; 279 } 280 if (byte != 0) { 281 return 1; 282 } 283 284 rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext + 8, 285 &crq[8], 8); 286 if (rc) { 287 return rc; 288 } 289 290 kvmppc_eieio(); 291 292 rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext, crq, 8); 293 if (rc) { 294 return rc; 295 } 296 297 dev->crq.qnext = (dev->crq.qnext + 16) % dev->crq.qsize; 298 299 if (dev->signal_state & 1) { 300 qemu_irq_pulse(spapr_vio_qirq(dev)); 301 } 302 303 return 0; 304 } 305 306 /* "quiesce" handling */ 307 308 static void spapr_vio_quiesce_one(SpaprVioDevice *dev) 309 { 310 if (dev->tcet) { 311 device_reset(DEVICE(dev->tcet)); 312 } 313 free_crq(dev); 314 } 315 316 void spapr_vio_set_bypass(SpaprVioDevice *dev, bool bypass) 317 { 318 if (!dev->tcet) { 319 return; 320 } 321 322 memory_region_set_enabled(&dev->mrbypass, bypass); 323 memory_region_set_enabled(spapr_tce_get_iommu(dev->tcet), !bypass); 324 325 dev->tcet->bypass = bypass; 326 } 327 328 static void rtas_set_tce_bypass(PowerPCCPU *cpu, SpaprMachineState *spapr, 329 uint32_t token, 330 uint32_t nargs, target_ulong args, 331 uint32_t nret, target_ulong rets) 332 { 333 SpaprVioBus *bus = spapr->vio_bus; 334 SpaprVioDevice *dev; 335 uint32_t unit, enable; 336 337 if (nargs != 2) { 338 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 339 return; 340 } 341 unit = rtas_ld(args, 0); 342 enable = rtas_ld(args, 1); 343 dev = spapr_vio_find_by_reg(bus, unit); 344 if (!dev) { 345 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 346 return; 347 } 348 349 if (!dev->tcet) { 350 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 351 return; 352 } 353 354 spapr_vio_set_bypass(dev, !!enable); 355 356 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 357 } 358 359 static void rtas_quiesce(PowerPCCPU *cpu, SpaprMachineState *spapr, 360 uint32_t token, 361 uint32_t nargs, target_ulong args, 362 uint32_t nret, target_ulong rets) 363 { 364 SpaprVioBus *bus = spapr->vio_bus; 365 BusChild *kid; 366 SpaprVioDevice *dev = NULL; 367 368 if (nargs != 0) { 369 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 370 return; 371 } 372 373 QTAILQ_FOREACH(kid, &bus->bus.children, sibling) { 374 dev = (SpaprVioDevice *)kid->child; 375 spapr_vio_quiesce_one(dev); 376 } 377 378 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 379 } 380 381 static SpaprVioDevice *reg_conflict(SpaprVioDevice *dev) 382 { 383 SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus); 384 BusChild *kid; 385 SpaprVioDevice *other; 386 387 /* 388 * Check for a device other than the given one which is already 389 * using the requested address. We have to open code this because 390 * the given dev might already be in the list. 391 */ 392 QTAILQ_FOREACH(kid, &bus->bus.children, sibling) { 393 other = VIO_SPAPR_DEVICE(kid->child); 394 395 if (other != dev && other->reg == dev->reg) { 396 return other; 397 } 398 } 399 400 return 0; 401 } 402 403 static void spapr_vio_busdev_reset(DeviceState *qdev) 404 { 405 SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev); 406 SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 407 408 /* Shut down the request queue and TCEs if necessary */ 409 spapr_vio_quiesce_one(dev); 410 411 dev->signal_state = 0; 412 413 spapr_vio_set_bypass(dev, false); 414 if (pc->reset) { 415 pc->reset(dev); 416 } 417 } 418 419 /* 420 * The register property of a VIO device is defined in livirt using 421 * 0x1000 as a base register number plus a 0x1000 increment. For the 422 * VIO tty device, the base number is changed to 0x30000000. QEMU uses 423 * a base register number of 0x71000000 and then a simple increment. 424 * 425 * The formula below tries to compute a unique index number from the 426 * register value that will be used to define the IRQ number of the 427 * VIO device. 428 * 429 * A maximum of 256 VIO devices is covered. Collisions are possible 430 * but they will be detected when the IRQ is claimed. 431 */ 432 static inline uint32_t spapr_vio_reg_to_irq(uint32_t reg) 433 { 434 uint32_t irq; 435 436 if (reg >= SPAPR_VIO_REG_BASE) { 437 /* 438 * VIO device register values when allocated by QEMU. For 439 * these, we simply mask the high bits to fit the overall 440 * range: [0x00 - 0xff]. 441 * 442 * The nvram VIO device (reg=0x71000000) is a static device of 443 * the pseries machine and so is always allocated by QEMU. Its 444 * IRQ number is 0x0. 445 */ 446 irq = reg & 0xff; 447 448 } else if (reg >= 0x30000000) { 449 /* 450 * VIO tty devices register values, when allocated by livirt, 451 * are mapped in range [0xf0 - 0xff], gives us a maximum of 16 452 * vtys. 453 */ 454 irq = 0xf0 | ((reg >> 12) & 0xf); 455 456 } else { 457 /* 458 * Other VIO devices register values, when allocated by 459 * livirt, should be mapped in range [0x00 - 0xef]. Conflicts 460 * will be detected when IRQ is claimed. 461 */ 462 irq = (reg >> 12) & 0xff; 463 } 464 465 return SPAPR_IRQ_VIO | irq; 466 } 467 468 static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp) 469 { 470 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 471 SpaprVioDevice *dev = (SpaprVioDevice *)qdev; 472 SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 473 char *id; 474 Error *local_err = NULL; 475 476 if (dev->reg != -1) { 477 /* 478 * Explicitly assigned address, just verify that no-one else 479 * is using it. other mechanism). We have to open code this 480 * rather than using spapr_vio_find_by_reg() because sdev 481 * itself is already in the list. 482 */ 483 SpaprVioDevice *other = reg_conflict(dev); 484 485 if (other) { 486 error_setg(errp, "%s and %s devices conflict at address %#x", 487 object_get_typename(OBJECT(qdev)), 488 object_get_typename(OBJECT(&other->qdev)), 489 dev->reg); 490 return; 491 } 492 } else { 493 /* Need to assign an address */ 494 SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus); 495 496 do { 497 dev->reg = bus->next_reg++; 498 } while (reg_conflict(dev)); 499 } 500 501 /* Don't overwrite ids assigned on the command line */ 502 if (!dev->qdev.id) { 503 id = spapr_vio_get_dev_name(DEVICE(dev)); 504 dev->qdev.id = id; 505 } 506 507 dev->irq = spapr_vio_reg_to_irq(dev->reg); 508 509 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 510 dev->irq = spapr_irq_findone(spapr, &local_err); 511 if (local_err) { 512 error_propagate(errp, local_err); 513 return; 514 } 515 } 516 517 spapr_irq_claim(spapr, dev->irq, false, &local_err); 518 if (local_err) { 519 error_propagate(errp, local_err); 520 return; 521 } 522 523 if (pc->rtce_window_size) { 524 uint32_t liobn = SPAPR_VIO_LIOBN(dev->reg); 525 526 memory_region_init(&dev->mrroot, OBJECT(dev), "iommu-spapr-root", 527 ram_size); 528 memory_region_init_alias(&dev->mrbypass, OBJECT(dev), 529 "iommu-spapr-bypass", get_system_memory(), 530 0, ram_size); 531 memory_region_add_subregion_overlap(&dev->mrroot, 0, &dev->mrbypass, 1); 532 address_space_init(&dev->as, &dev->mrroot, qdev->id); 533 534 dev->tcet = spapr_tce_new_table(qdev, liobn); 535 spapr_tce_table_enable(dev->tcet, SPAPR_TCE_PAGE_SHIFT, 0, 536 pc->rtce_window_size >> SPAPR_TCE_PAGE_SHIFT); 537 dev->tcet->vdev = dev; 538 memory_region_add_subregion_overlap(&dev->mrroot, 0, 539 spapr_tce_get_iommu(dev->tcet), 2); 540 } 541 542 pc->realize(dev, errp); 543 } 544 545 static target_ulong h_vio_signal(PowerPCCPU *cpu, SpaprMachineState *spapr, 546 target_ulong opcode, 547 target_ulong *args) 548 { 549 target_ulong reg = args[0]; 550 target_ulong mode = args[1]; 551 SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg); 552 SpaprVioDeviceClass *pc; 553 554 if (!dev) { 555 return H_PARAMETER; 556 } 557 558 pc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 559 560 if (mode & ~pc->signal_mask) { 561 return H_PARAMETER; 562 } 563 564 dev->signal_state = mode; 565 566 return H_SUCCESS; 567 } 568 569 SpaprVioBus *spapr_vio_bus_init(void) 570 { 571 SpaprVioBus *bus; 572 BusState *qbus; 573 DeviceState *dev; 574 575 /* Create bridge device */ 576 dev = qdev_create(NULL, TYPE_SPAPR_VIO_BRIDGE); 577 qdev_init_nofail(dev); 578 579 /* Create bus on bridge device */ 580 qbus = qbus_create(TYPE_SPAPR_VIO_BUS, dev, "spapr-vio"); 581 bus = SPAPR_VIO_BUS(qbus); 582 bus->next_reg = SPAPR_VIO_REG_BASE; 583 584 /* hcall-vio */ 585 spapr_register_hypercall(H_VIO_SIGNAL, h_vio_signal); 586 587 /* hcall-crq */ 588 spapr_register_hypercall(H_REG_CRQ, h_reg_crq); 589 spapr_register_hypercall(H_FREE_CRQ, h_free_crq); 590 spapr_register_hypercall(H_SEND_CRQ, h_send_crq); 591 spapr_register_hypercall(H_ENABLE_CRQ, h_enable_crq); 592 593 /* RTAS calls */ 594 spapr_rtas_register(RTAS_IBM_SET_TCE_BYPASS, "ibm,set-tce-bypass", 595 rtas_set_tce_bypass); 596 spapr_rtas_register(RTAS_QUIESCE, "quiesce", rtas_quiesce); 597 598 return bus; 599 } 600 601 static void spapr_vio_bridge_class_init(ObjectClass *klass, void *data) 602 { 603 DeviceClass *dc = DEVICE_CLASS(klass); 604 605 dc->fw_name = "vdevice"; 606 } 607 608 static const TypeInfo spapr_vio_bridge_info = { 609 .name = TYPE_SPAPR_VIO_BRIDGE, 610 .parent = TYPE_SYS_BUS_DEVICE, 611 .class_init = spapr_vio_bridge_class_init, 612 }; 613 614 const VMStateDescription vmstate_spapr_vio = { 615 .name = "spapr_vio", 616 .version_id = 1, 617 .minimum_version_id = 1, 618 .fields = (VMStateField[]) { 619 /* Sanity check */ 620 VMSTATE_UINT32_EQUAL(reg, SpaprVioDevice, NULL), 621 VMSTATE_UINT32_EQUAL(irq, SpaprVioDevice, NULL), 622 623 /* General VIO device state */ 624 VMSTATE_UINT64(signal_state, SpaprVioDevice), 625 VMSTATE_UINT64(crq.qladdr, SpaprVioDevice), 626 VMSTATE_UINT32(crq.qsize, SpaprVioDevice), 627 VMSTATE_UINT32(crq.qnext, SpaprVioDevice), 628 629 VMSTATE_END_OF_LIST() 630 }, 631 }; 632 633 static void vio_spapr_device_class_init(ObjectClass *klass, void *data) 634 { 635 DeviceClass *k = DEVICE_CLASS(klass); 636 k->realize = spapr_vio_busdev_realize; 637 k->reset = spapr_vio_busdev_reset; 638 k->bus_type = TYPE_SPAPR_VIO_BUS; 639 } 640 641 static const TypeInfo spapr_vio_type_info = { 642 .name = TYPE_VIO_SPAPR_DEVICE, 643 .parent = TYPE_DEVICE, 644 .instance_size = sizeof(SpaprVioDevice), 645 .abstract = true, 646 .class_size = sizeof(SpaprVioDeviceClass), 647 .class_init = vio_spapr_device_class_init, 648 }; 649 650 static void spapr_vio_register_types(void) 651 { 652 type_register_static(&spapr_vio_bus_info); 653 type_register_static(&spapr_vio_bridge_info); 654 type_register_static(&spapr_vio_type_info); 655 } 656 657 type_init(spapr_vio_register_types) 658 659 static int compare_reg(const void *p1, const void *p2) 660 { 661 SpaprVioDevice const *dev1, *dev2; 662 663 dev1 = (SpaprVioDevice *)*(DeviceState **)p1; 664 dev2 = (SpaprVioDevice *)*(DeviceState **)p2; 665 666 if (dev1->reg < dev2->reg) { 667 return -1; 668 } 669 if (dev1->reg == dev2->reg) { 670 return 0; 671 } 672 673 /* dev1->reg > dev2->reg */ 674 return 1; 675 } 676 677 void spapr_dt_vdevice(SpaprVioBus *bus, void *fdt) 678 { 679 DeviceState *qdev, **qdevs; 680 BusChild *kid; 681 int i, num, ret = 0; 682 int node; 683 684 _FDT(node = fdt_add_subnode(fdt, 0, "vdevice")); 685 686 _FDT(fdt_setprop_string(fdt, node, "device_type", "vdevice")); 687 _FDT(fdt_setprop_string(fdt, node, "compatible", "IBM,vdevice")); 688 _FDT(fdt_setprop_cell(fdt, node, "#address-cells", 1)); 689 _FDT(fdt_setprop_cell(fdt, node, "#size-cells", 0)); 690 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2)); 691 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0)); 692 693 /* Count qdevs on the bus list */ 694 num = 0; 695 QTAILQ_FOREACH(kid, &bus->bus.children, sibling) { 696 num++; 697 } 698 699 /* Copy out into an array of pointers */ 700 qdevs = g_new(DeviceState *, num); 701 num = 0; 702 QTAILQ_FOREACH(kid, &bus->bus.children, sibling) { 703 qdevs[num++] = kid->child; 704 } 705 706 /* Sort the array */ 707 qsort(qdevs, num, sizeof(qdev), compare_reg); 708 709 /* Hack alert. Give the devices to libfdt in reverse order, we happen 710 * to know that will mean they are in forward order in the tree. */ 711 for (i = num - 1; i >= 0; i--) { 712 SpaprVioDevice *dev = (SpaprVioDevice *)(qdevs[i]); 713 SpaprVioDeviceClass *vdc = VIO_SPAPR_DEVICE_GET_CLASS(dev); 714 715 ret = vio_make_devnode(dev, fdt); 716 if (ret < 0) { 717 error_report("Couldn't create device node /vdevice/%s@%"PRIx32, 718 vdc->dt_name, dev->reg); 719 exit(1); 720 } 721 } 722 723 g_free(qdevs); 724 } 725 726 gchar *spapr_vio_stdout_path(SpaprVioBus *bus) 727 { 728 SpaprVioDevice *dev; 729 char *name, *path; 730 731 dev = spapr_vty_get_default(bus); 732 if (!dev) { 733 return NULL; 734 } 735 736 name = spapr_vio_get_dev_name(DEVICE(dev)); 737 path = g_strdup_printf("/vdevice/%s", name); 738 739 g_free(name); 740 return path; 741 } 742