xref: /openbmc/qemu/hw/ppc/spapr_vio.c (revision 06a47ef5)
1 /*
2  * QEMU sPAPR VIO code
3  *
4  * Copyright (c) 2010 David Gibson, IBM Corporation <dwg@au1.ibm.com>
5  * Based on the s390 virtio bus code:
6  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
26 #include "qemu/log.h"
27 #include "hw/loader.h"
28 #include "elf.h"
29 #include "hw/sysbus.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/device_tree.h"
32 #include "kvm_ppc.h"
33 #include "migration/vmstate.h"
34 #include "sysemu/qtest.h"
35 
36 #include "hw/ppc/spapr.h"
37 #include "hw/ppc/spapr_vio.h"
38 #include "hw/ppc/fdt.h"
39 #include "trace.h"
40 
41 #include <libfdt.h>
42 
43 #define SPAPR_VIO_REG_BASE 0x71000000
44 
45 static char *spapr_vio_get_dev_name(DeviceState *qdev)
46 {
47     SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
48     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
49 
50     /* Device tree style name device@reg */
51     return g_strdup_printf("%s@%x", pc->dt_name, dev->reg);
52 }
53 
54 static void spapr_vio_bus_class_init(ObjectClass *klass, void *data)
55 {
56     BusClass *k = BUS_CLASS(klass);
57 
58     k->get_dev_path = spapr_vio_get_dev_name;
59     k->get_fw_dev_path = spapr_vio_get_dev_name;
60 }
61 
62 static const TypeInfo spapr_vio_bus_info = {
63     .name = TYPE_SPAPR_VIO_BUS,
64     .parent = TYPE_BUS,
65     .class_init = spapr_vio_bus_class_init,
66     .instance_size = sizeof(SpaprVioBus),
67 };
68 
69 SpaprVioDevice *spapr_vio_find_by_reg(SpaprVioBus *bus, uint32_t reg)
70 {
71     BusChild *kid;
72     SpaprVioDevice *dev = NULL;
73 
74     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
75         dev = (SpaprVioDevice *)kid->child;
76         if (dev->reg == reg) {
77             return dev;
78         }
79     }
80 
81     return NULL;
82 }
83 
84 static int vio_make_devnode(SpaprVioDevice *dev,
85                             void *fdt)
86 {
87     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
88     int vdevice_off, node_off, ret;
89     char *dt_name;
90 
91     vdevice_off = fdt_path_offset(fdt, "/vdevice");
92     if (vdevice_off < 0) {
93         return vdevice_off;
94     }
95 
96     dt_name = spapr_vio_get_dev_name(DEVICE(dev));
97     node_off = fdt_add_subnode(fdt, vdevice_off, dt_name);
98     g_free(dt_name);
99     if (node_off < 0) {
100         return node_off;
101     }
102 
103     ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg);
104     if (ret < 0) {
105         return ret;
106     }
107 
108     if (pc->dt_type) {
109         ret = fdt_setprop_string(fdt, node_off, "device_type",
110                                  pc->dt_type);
111         if (ret < 0) {
112             return ret;
113         }
114     }
115 
116     if (pc->dt_compatible) {
117         ret = fdt_setprop_string(fdt, node_off, "compatible",
118                                  pc->dt_compatible);
119         if (ret < 0) {
120             return ret;
121         }
122     }
123 
124     if (dev->irq) {
125         uint32_t ints_prop[2];
126 
127         spapr_dt_irq(ints_prop, dev->irq, false);
128         ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop,
129                           sizeof(ints_prop));
130         if (ret < 0) {
131             return ret;
132         }
133     }
134 
135     ret = spapr_tcet_dma_dt(fdt, node_off, "ibm,my-dma-window", dev->tcet);
136     if (ret < 0) {
137         return ret;
138     }
139 
140     if (pc->devnode) {
141         ret = (pc->devnode)(dev, fdt, node_off);
142         if (ret < 0) {
143             return ret;
144         }
145     }
146 
147     return node_off;
148 }
149 
150 /*
151  * CRQ handling
152  */
153 static target_ulong h_reg_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
154                               target_ulong opcode, target_ulong *args)
155 {
156     target_ulong reg = args[0];
157     target_ulong queue_addr = args[1];
158     target_ulong queue_len = args[2];
159     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
160 
161     if (!dev) {
162         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
163         return H_PARAMETER;
164     }
165 
166     /* We can't grok a queue size bigger than 256M for now */
167     if (queue_len < 0x1000 || queue_len > 0x10000000) {
168         hcall_dprintf("Queue size too small or too big (0x" TARGET_FMT_lx
169                       ")\n", queue_len);
170         return H_PARAMETER;
171     }
172 
173     /* Check queue alignment */
174     if (queue_addr & 0xfff) {
175         hcall_dprintf("Queue not aligned (0x" TARGET_FMT_lx ")\n", queue_addr);
176         return H_PARAMETER;
177     }
178 
179     /* Check if device supports CRQs */
180     if (!dev->crq.SendFunc) {
181         hcall_dprintf("Device does not support CRQ\n");
182         return H_NOT_FOUND;
183     }
184 
185     /* Already a queue ? */
186     if (dev->crq.qsize) {
187         hcall_dprintf("CRQ already registered\n");
188         return H_RESOURCE;
189     }
190     dev->crq.qladdr = queue_addr;
191     dev->crq.qsize = queue_len;
192     dev->crq.qnext = 0;
193 
194     trace_spapr_vio_h_reg_crq(reg, queue_addr, queue_len);
195     return H_SUCCESS;
196 }
197 
198 static target_ulong free_crq(SpaprVioDevice *dev)
199 {
200     dev->crq.qladdr = 0;
201     dev->crq.qsize = 0;
202     dev->crq.qnext = 0;
203 
204     trace_spapr_vio_free_crq(dev->reg);
205 
206     return H_SUCCESS;
207 }
208 
209 static target_ulong h_free_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
210                                target_ulong opcode, target_ulong *args)
211 {
212     target_ulong reg = args[0];
213     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
214 
215     if (!dev) {
216         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
217         return H_PARAMETER;
218     }
219 
220     return free_crq(dev);
221 }
222 
223 static target_ulong h_send_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
224                                target_ulong opcode, target_ulong *args)
225 {
226     target_ulong reg = args[0];
227     target_ulong msg_hi = args[1];
228     target_ulong msg_lo = args[2];
229     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
230     uint64_t crq_mangle[2];
231 
232     if (!dev) {
233         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
234         return H_PARAMETER;
235     }
236     crq_mangle[0] = cpu_to_be64(msg_hi);
237     crq_mangle[1] = cpu_to_be64(msg_lo);
238 
239     if (dev->crq.SendFunc) {
240         return dev->crq.SendFunc(dev, (uint8_t *)crq_mangle);
241     }
242 
243     return H_HARDWARE;
244 }
245 
246 static target_ulong h_enable_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
247                                  target_ulong opcode, target_ulong *args)
248 {
249     target_ulong reg = args[0];
250     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
251 
252     if (!dev) {
253         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
254         return H_PARAMETER;
255     }
256 
257     return 0;
258 }
259 
260 /* Returns negative error, 0 success, or positive: queue full */
261 int spapr_vio_send_crq(SpaprVioDevice *dev, uint8_t *crq)
262 {
263     int rc;
264     uint8_t byte;
265 
266     if (!dev->crq.qsize) {
267         error_report("spapr_vio_send_creq on uninitialized queue");
268         return -1;
269     }
270 
271     /* Maybe do a fast path for KVM just writing to the pages */
272     rc = spapr_vio_dma_read(dev, dev->crq.qladdr + dev->crq.qnext, &byte, 1);
273     if (rc) {
274         return rc;
275     }
276     if (byte != 0) {
277         return 1;
278     }
279 
280     rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext + 8,
281                              &crq[8], 8);
282     if (rc) {
283         return rc;
284     }
285 
286     kvmppc_eieio();
287 
288     rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext, crq, 8);
289     if (rc) {
290         return rc;
291     }
292 
293     dev->crq.qnext = (dev->crq.qnext + 16) % dev->crq.qsize;
294 
295     if (dev->signal_state & 1) {
296         spapr_vio_irq_pulse(dev);
297     }
298 
299     return 0;
300 }
301 
302 /* "quiesce" handling */
303 
304 static void spapr_vio_quiesce_one(SpaprVioDevice *dev)
305 {
306     if (dev->tcet) {
307         device_legacy_reset(DEVICE(dev->tcet));
308     }
309     free_crq(dev);
310 }
311 
312 void spapr_vio_set_bypass(SpaprVioDevice *dev, bool bypass)
313 {
314     if (!dev->tcet) {
315         return;
316     }
317 
318     memory_region_set_enabled(&dev->mrbypass, bypass);
319     memory_region_set_enabled(spapr_tce_get_iommu(dev->tcet), !bypass);
320 
321     dev->tcet->bypass = bypass;
322 }
323 
324 static void rtas_set_tce_bypass(PowerPCCPU *cpu, SpaprMachineState *spapr,
325                                 uint32_t token,
326                                 uint32_t nargs, target_ulong args,
327                                 uint32_t nret, target_ulong rets)
328 {
329     SpaprVioBus *bus = spapr->vio_bus;
330     SpaprVioDevice *dev;
331     uint32_t unit, enable;
332 
333     if (nargs != 2) {
334         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
335         return;
336     }
337     unit = rtas_ld(args, 0);
338     enable = rtas_ld(args, 1);
339     dev = spapr_vio_find_by_reg(bus, unit);
340     if (!dev) {
341         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
342         return;
343     }
344 
345     if (!dev->tcet) {
346         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
347         return;
348     }
349 
350     spapr_vio_set_bypass(dev, !!enable);
351 
352     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
353 }
354 
355 static void rtas_quiesce(PowerPCCPU *cpu, SpaprMachineState *spapr,
356                          uint32_t token,
357                          uint32_t nargs, target_ulong args,
358                          uint32_t nret, target_ulong rets)
359 {
360     SpaprVioBus *bus = spapr->vio_bus;
361     BusChild *kid;
362     SpaprVioDevice *dev = NULL;
363 
364     if (nargs != 0) {
365         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
366         return;
367     }
368 
369     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
370         dev = (SpaprVioDevice *)kid->child;
371         spapr_vio_quiesce_one(dev);
372     }
373 
374     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
375 }
376 
377 static SpaprVioDevice *reg_conflict(SpaprVioDevice *dev)
378 {
379     SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
380     BusChild *kid;
381     SpaprVioDevice *other;
382 
383     /*
384      * Check for a device other than the given one which is already
385      * using the requested address. We have to open code this because
386      * the given dev might already be in the list.
387      */
388     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
389         other = VIO_SPAPR_DEVICE(kid->child);
390 
391         if (other != dev && other->reg == dev->reg) {
392             return other;
393         }
394     }
395 
396     return 0;
397 }
398 
399 static void spapr_vio_busdev_reset(DeviceState *qdev)
400 {
401     SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
402     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
403 
404     /* Shut down the request queue and TCEs if necessary */
405     spapr_vio_quiesce_one(dev);
406 
407     dev->signal_state = 0;
408 
409     spapr_vio_set_bypass(dev, false);
410     if (pc->reset) {
411         pc->reset(dev);
412     }
413 }
414 
415 /*
416  * The register property of a VIO device is defined in livirt using
417  * 0x1000 as a base register number plus a 0x1000 increment. For the
418  * VIO tty device, the base number is changed to 0x30000000. QEMU uses
419  * a base register number of 0x71000000 and then a simple increment.
420  *
421  * The formula below tries to compute a unique index number from the
422  * register value that will be used to define the IRQ number of the
423  * VIO device.
424  *
425  * A maximum of 256 VIO devices is covered. Collisions are possible
426  * but they will be detected when the IRQ is claimed.
427  */
428 static inline uint32_t spapr_vio_reg_to_irq(uint32_t reg)
429 {
430     uint32_t irq;
431 
432     if (reg >= SPAPR_VIO_REG_BASE) {
433         /*
434          * VIO device register values when allocated by QEMU. For
435          * these, we simply mask the high bits to fit the overall
436          * range: [0x00 - 0xff].
437          *
438          * The nvram VIO device (reg=0x71000000) is a static device of
439          * the pseries machine and so is always allocated by QEMU. Its
440          * IRQ number is 0x0.
441          */
442         irq = reg & 0xff;
443 
444     } else if (reg >= 0x30000000) {
445         /*
446          * VIO tty devices register values, when allocated by livirt,
447          * are mapped in range [0xf0 - 0xff], gives us a maximum of 16
448          * vtys.
449          */
450         irq = 0xf0 | ((reg >> 12) & 0xf);
451 
452     } else {
453         /*
454          * Other VIO devices register values, when allocated by
455          * livirt, should be mapped in range [0x00 - 0xef]. Conflicts
456          * will be detected when IRQ is claimed.
457          */
458         irq = (reg >> 12) & 0xff;
459     }
460 
461     return SPAPR_IRQ_VIO | irq;
462 }
463 
464 static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp)
465 {
466     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
467     SpaprVioDevice *dev = (SpaprVioDevice *)qdev;
468     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
469     char *id;
470     Error *local_err = NULL;
471 
472     if (dev->reg != -1) {
473         /*
474          * Explicitly assigned address, just verify that no-one else
475          * is using it.  other mechanism). We have to open code this
476          * rather than using spapr_vio_find_by_reg() because sdev
477          * itself is already in the list.
478          */
479         SpaprVioDevice *other = reg_conflict(dev);
480 
481         if (other) {
482             error_setg(errp, "%s and %s devices conflict at address %#x",
483                        object_get_typename(OBJECT(qdev)),
484                        object_get_typename(OBJECT(&other->qdev)),
485                        dev->reg);
486             return;
487         }
488     } else {
489         /* Need to assign an address */
490         SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
491 
492         do {
493             dev->reg = bus->next_reg++;
494         } while (reg_conflict(dev));
495     }
496 
497     /* Don't overwrite ids assigned on the command line */
498     if (!dev->qdev.id) {
499         id = spapr_vio_get_dev_name(DEVICE(dev));
500         dev->qdev.id = id;
501     }
502 
503     dev->irq = spapr_vio_reg_to_irq(dev->reg);
504 
505     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
506         dev->irq = spapr_irq_findone(spapr, &local_err);
507         if (local_err) {
508             error_propagate(errp, local_err);
509             return;
510         }
511     }
512 
513     spapr_irq_claim(spapr, dev->irq, false, &local_err);
514     if (local_err) {
515         error_propagate(errp, local_err);
516         return;
517     }
518 
519     if (pc->rtce_window_size) {
520         uint32_t liobn = SPAPR_VIO_LIOBN(dev->reg);
521 
522         memory_region_init(&dev->mrroot, OBJECT(dev), "iommu-spapr-root",
523                            ram_size);
524         memory_region_init_alias(&dev->mrbypass, OBJECT(dev),
525                                  "iommu-spapr-bypass", get_system_memory(),
526                                  0, ram_size);
527         memory_region_add_subregion_overlap(&dev->mrroot, 0, &dev->mrbypass, 1);
528         address_space_init(&dev->as, &dev->mrroot, qdev->id);
529 
530         dev->tcet = spapr_tce_new_table(qdev, liobn);
531         spapr_tce_table_enable(dev->tcet, SPAPR_TCE_PAGE_SHIFT, 0,
532                                pc->rtce_window_size >> SPAPR_TCE_PAGE_SHIFT);
533         dev->tcet->vdev = dev;
534         memory_region_add_subregion_overlap(&dev->mrroot, 0,
535                                             spapr_tce_get_iommu(dev->tcet), 2);
536     }
537 
538     pc->realize(dev, errp);
539 }
540 
541 static target_ulong h_vio_signal(PowerPCCPU *cpu, SpaprMachineState *spapr,
542                                  target_ulong opcode,
543                                  target_ulong *args)
544 {
545     target_ulong reg = args[0];
546     target_ulong mode = args[1];
547     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
548     SpaprVioDeviceClass *pc;
549 
550     if (!dev) {
551         return H_PARAMETER;
552     }
553 
554     pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
555 
556     if (mode & ~pc->signal_mask) {
557         return H_PARAMETER;
558     }
559 
560     dev->signal_state = mode;
561 
562     return H_SUCCESS;
563 }
564 
565 SpaprVioBus *spapr_vio_bus_init(void)
566 {
567     SpaprVioBus *bus;
568     BusState *qbus;
569     DeviceState *dev;
570 
571     /* Create bridge device */
572     dev = qdev_create(NULL, TYPE_SPAPR_VIO_BRIDGE);
573     qdev_init_nofail(dev);
574 
575     /* Create bus on bridge device */
576     qbus = qbus_create(TYPE_SPAPR_VIO_BUS, dev, "spapr-vio");
577     bus = SPAPR_VIO_BUS(qbus);
578     bus->next_reg = SPAPR_VIO_REG_BASE;
579 
580     /* hcall-vio */
581     spapr_register_hypercall(H_VIO_SIGNAL, h_vio_signal);
582 
583     /* hcall-crq */
584     spapr_register_hypercall(H_REG_CRQ, h_reg_crq);
585     spapr_register_hypercall(H_FREE_CRQ, h_free_crq);
586     spapr_register_hypercall(H_SEND_CRQ, h_send_crq);
587     spapr_register_hypercall(H_ENABLE_CRQ, h_enable_crq);
588 
589     /* RTAS calls */
590     spapr_rtas_register(RTAS_IBM_SET_TCE_BYPASS, "ibm,set-tce-bypass",
591                         rtas_set_tce_bypass);
592     spapr_rtas_register(RTAS_QUIESCE, "quiesce", rtas_quiesce);
593 
594     return bus;
595 }
596 
597 static void spapr_vio_bridge_class_init(ObjectClass *klass, void *data)
598 {
599     DeviceClass *dc = DEVICE_CLASS(klass);
600 
601     dc->fw_name = "vdevice";
602 }
603 
604 static const TypeInfo spapr_vio_bridge_info = {
605     .name          = TYPE_SPAPR_VIO_BRIDGE,
606     .parent        = TYPE_SYS_BUS_DEVICE,
607     .class_init    = spapr_vio_bridge_class_init,
608 };
609 
610 const VMStateDescription vmstate_spapr_vio = {
611     .name = "spapr_vio",
612     .version_id = 1,
613     .minimum_version_id = 1,
614     .fields = (VMStateField[]) {
615         /* Sanity check */
616         VMSTATE_UINT32_EQUAL(reg, SpaprVioDevice, NULL),
617         VMSTATE_UINT32_EQUAL(irq, SpaprVioDevice, NULL),
618 
619         /* General VIO device state */
620         VMSTATE_UINT64(signal_state, SpaprVioDevice),
621         VMSTATE_UINT64(crq.qladdr, SpaprVioDevice),
622         VMSTATE_UINT32(crq.qsize, SpaprVioDevice),
623         VMSTATE_UINT32(crq.qnext, SpaprVioDevice),
624 
625         VMSTATE_END_OF_LIST()
626     },
627 };
628 
629 static void vio_spapr_device_class_init(ObjectClass *klass, void *data)
630 {
631     DeviceClass *k = DEVICE_CLASS(klass);
632     k->realize = spapr_vio_busdev_realize;
633     k->reset = spapr_vio_busdev_reset;
634     k->bus_type = TYPE_SPAPR_VIO_BUS;
635 }
636 
637 static const TypeInfo spapr_vio_type_info = {
638     .name = TYPE_VIO_SPAPR_DEVICE,
639     .parent = TYPE_DEVICE,
640     .instance_size = sizeof(SpaprVioDevice),
641     .abstract = true,
642     .class_size = sizeof(SpaprVioDeviceClass),
643     .class_init = vio_spapr_device_class_init,
644 };
645 
646 static void spapr_vio_register_types(void)
647 {
648     type_register_static(&spapr_vio_bus_info);
649     type_register_static(&spapr_vio_bridge_info);
650     type_register_static(&spapr_vio_type_info);
651 }
652 
653 type_init(spapr_vio_register_types)
654 
655 static int compare_reg(const void *p1, const void *p2)
656 {
657     SpaprVioDevice const *dev1, *dev2;
658 
659     dev1 = (SpaprVioDevice *)*(DeviceState **)p1;
660     dev2 = (SpaprVioDevice *)*(DeviceState **)p2;
661 
662     if (dev1->reg < dev2->reg) {
663         return -1;
664     }
665     if (dev1->reg == dev2->reg) {
666         return 0;
667     }
668 
669     /* dev1->reg > dev2->reg */
670     return 1;
671 }
672 
673 void spapr_dt_vdevice(SpaprVioBus *bus, void *fdt)
674 {
675     DeviceState *qdev, **qdevs;
676     BusChild *kid;
677     int i, num, ret = 0;
678     int node;
679 
680     _FDT(node = fdt_add_subnode(fdt, 0, "vdevice"));
681 
682     _FDT(fdt_setprop_string(fdt, node, "device_type", "vdevice"));
683     _FDT(fdt_setprop_string(fdt, node, "compatible", "IBM,vdevice"));
684     _FDT(fdt_setprop_cell(fdt, node, "#address-cells", 1));
685     _FDT(fdt_setprop_cell(fdt, node, "#size-cells", 0));
686     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
687     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
688 
689     /* Count qdevs on the bus list */
690     num = 0;
691     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
692         num++;
693     }
694 
695     /* Copy out into an array of pointers */
696     qdevs = g_new(DeviceState *, num);
697     num = 0;
698     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
699         qdevs[num++] = kid->child;
700     }
701 
702     /* Sort the array */
703     qsort(qdevs, num, sizeof(qdev), compare_reg);
704 
705     /* Hack alert. Give the devices to libfdt in reverse order, we happen
706      * to know that will mean they are in forward order in the tree. */
707     for (i = num - 1; i >= 0; i--) {
708         SpaprVioDevice *dev = (SpaprVioDevice *)(qdevs[i]);
709         SpaprVioDeviceClass *vdc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
710 
711         ret = vio_make_devnode(dev, fdt);
712         if (ret < 0) {
713             error_report("Couldn't create device node /vdevice/%s@%"PRIx32,
714                          vdc->dt_name, dev->reg);
715             exit(1);
716         }
717     }
718 
719     g_free(qdevs);
720 }
721 
722 gchar *spapr_vio_stdout_path(SpaprVioBus *bus)
723 {
724     SpaprVioDevice *dev;
725     char *name, *path;
726 
727     dev = spapr_vty_get_default(bus);
728     if (!dev) {
729         return NULL;
730     }
731 
732     name = spapr_vio_get_dev_name(DEVICE(dev));
733     path = g_strdup_printf("/vdevice/%s", name);
734 
735     g_free(name);
736     return path;
737 }
738