1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Hypercall based emulated RTAS 5 * 6 * Copyright (c) 2010-2011 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "cpu.h" 29 #include "qemu/log.h" 30 #include "qemu/error-report.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/char.h" 33 #include "hw/qdev.h" 34 #include "sysemu/device_tree.h" 35 #include "sysemu/cpus.h" 36 #include "sysemu/kvm.h" 37 38 #include "hw/ppc/spapr.h" 39 #include "hw/ppc/spapr_vio.h" 40 #include "hw/ppc/spapr_rtas.h" 41 #include "hw/ppc/ppc.h" 42 #include "qapi-event.h" 43 #include "hw/boards.h" 44 45 #include <libfdt.h> 46 #include "hw/ppc/spapr_drc.h" 47 #include "qemu/cutils.h" 48 #include "trace.h" 49 50 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr, 51 uint32_t drc_index) 52 { 53 sPAPRConfigureConnectorState *ccs = NULL; 54 55 QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) { 56 if (ccs->drc_index == drc_index) { 57 break; 58 } 59 } 60 61 return ccs; 62 } 63 64 static void spapr_ccs_add(sPAPRMachineState *spapr, 65 sPAPRConfigureConnectorState *ccs) 66 { 67 g_assert(!spapr_ccs_find(spapr, ccs->drc_index)); 68 QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next); 69 } 70 71 static void spapr_ccs_remove(sPAPRMachineState *spapr, 72 sPAPRConfigureConnectorState *ccs) 73 { 74 QTAILQ_REMOVE(&spapr->ccs_list, ccs, next); 75 g_free(ccs); 76 } 77 78 void spapr_ccs_reset_hook(void *opaque) 79 { 80 sPAPRMachineState *spapr = opaque; 81 sPAPRConfigureConnectorState *ccs, *ccs_tmp; 82 83 QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) { 84 spapr_ccs_remove(spapr, ccs); 85 } 86 } 87 88 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr, 89 uint32_t token, uint32_t nargs, 90 target_ulong args, 91 uint32_t nret, target_ulong rets) 92 { 93 uint8_t c = rtas_ld(args, 0); 94 VIOsPAPRDevice *sdev = vty_lookup(spapr, 0); 95 96 if (!sdev) { 97 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 98 } else { 99 vty_putchars(sdev, &c, sizeof(c)); 100 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 101 } 102 } 103 104 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr, 105 uint32_t token, uint32_t nargs, target_ulong args, 106 uint32_t nret, target_ulong rets) 107 { 108 if (nargs != 2 || nret != 1) { 109 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 110 return; 111 } 112 qemu_system_shutdown_request(); 113 cpu_stop_current(); 114 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 115 } 116 117 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr, 118 uint32_t token, uint32_t nargs, 119 target_ulong args, 120 uint32_t nret, target_ulong rets) 121 { 122 if (nargs != 0 || nret != 1) { 123 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 124 return; 125 } 126 qemu_system_reset_request(); 127 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 128 } 129 130 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_, 131 sPAPRMachineState *spapr, 132 uint32_t token, uint32_t nargs, 133 target_ulong args, 134 uint32_t nret, target_ulong rets) 135 { 136 target_ulong id; 137 PowerPCCPU *cpu; 138 139 if (nargs != 1 || nret != 2) { 140 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 141 return; 142 } 143 144 id = rtas_ld(args, 0); 145 cpu = ppc_get_vcpu_by_dt_id(id); 146 if (cpu != NULL) { 147 if (CPU(cpu)->halted) { 148 rtas_st(rets, 1, 0); 149 } else { 150 rtas_st(rets, 1, 2); 151 } 152 153 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 154 return; 155 } 156 157 /* Didn't find a matching cpu */ 158 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 159 } 160 161 /* 162 * Set the timebase offset of the CPU to that of first CPU. 163 * This helps hotplugged CPU to have the correct timebase offset. 164 */ 165 static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu) 166 { 167 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 168 169 cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset; 170 } 171 172 static void spapr_cpu_set_endianness(PowerPCCPU *cpu) 173 { 174 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 175 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu); 176 177 if (!pcc->interrupts_big_endian(fcpu)) { 178 cpu->env.spr[SPR_LPCR] |= LPCR_ILE; 179 } 180 } 181 182 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr, 183 uint32_t token, uint32_t nargs, 184 target_ulong args, 185 uint32_t nret, target_ulong rets) 186 { 187 target_ulong id, start, r3; 188 PowerPCCPU *cpu; 189 190 if (nargs != 3 || nret != 1) { 191 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 192 return; 193 } 194 195 id = rtas_ld(args, 0); 196 start = rtas_ld(args, 1); 197 r3 = rtas_ld(args, 2); 198 199 cpu = ppc_get_vcpu_by_dt_id(id); 200 if (cpu != NULL) { 201 CPUState *cs = CPU(cpu); 202 CPUPPCState *env = &cpu->env; 203 204 if (!cs->halted) { 205 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 206 return; 207 } 208 209 /* This will make sure qemu state is up to date with kvm, and 210 * mark it dirty so our changes get flushed back before the 211 * new cpu enters */ 212 kvm_cpu_synchronize_state(cs); 213 214 env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME); 215 env->nip = start; 216 env->gpr[3] = r3; 217 cs->halted = 0; 218 spapr_cpu_set_endianness(cpu); 219 spapr_cpu_update_tb_offset(cpu); 220 221 qemu_cpu_kick(cs); 222 223 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 224 return; 225 } 226 227 /* Didn't find a matching cpu */ 228 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 229 } 230 231 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, 232 uint32_t token, uint32_t nargs, 233 target_ulong args, 234 uint32_t nret, target_ulong rets) 235 { 236 CPUState *cs = CPU(cpu); 237 CPUPPCState *env = &cpu->env; 238 239 cs->halted = 1; 240 qemu_cpu_kick(cs); 241 /* 242 * While stopping a CPU, the guest calls H_CPPR which 243 * effectively disables interrupts on XICS level. 244 * However decrementer interrupts in TCG can still 245 * wake the CPU up so here we disable interrupts in MSR 246 * as well. 247 * As rtas_start_cpu() resets the whole MSR anyway, there is 248 * no need to bother with specific bits, we just clear it. 249 */ 250 env->msr = 0; 251 } 252 253 static inline int sysparm_st(target_ulong addr, target_ulong len, 254 const void *val, uint16_t vallen) 255 { 256 hwaddr phys = ppc64_phys_to_real(addr); 257 258 if (len < 2) { 259 return RTAS_OUT_SYSPARM_PARAM_ERROR; 260 } 261 stw_be_phys(&address_space_memory, phys, vallen); 262 cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen)); 263 return RTAS_OUT_SUCCESS; 264 } 265 266 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu, 267 sPAPRMachineState *spapr, 268 uint32_t token, uint32_t nargs, 269 target_ulong args, 270 uint32_t nret, target_ulong rets) 271 { 272 target_ulong parameter = rtas_ld(args, 0); 273 target_ulong buffer = rtas_ld(args, 1); 274 target_ulong length = rtas_ld(args, 2); 275 target_ulong ret; 276 277 switch (parameter) { 278 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: { 279 char *param_val = g_strdup_printf("MaxEntCap=%d," 280 "DesMem=%llu," 281 "DesProcs=%d," 282 "MaxPlatProcs=%d", 283 max_cpus, 284 current_machine->ram_size / M_BYTE, 285 smp_cpus, 286 max_cpus); 287 ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1); 288 g_free(param_val); 289 break; 290 } 291 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: { 292 uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED; 293 294 ret = sysparm_st(buffer, length, ¶m_val, sizeof(param_val)); 295 break; 296 } 297 case RTAS_SYSPARM_UUID: 298 ret = sysparm_st(buffer, length, (unsigned char *)&qemu_uuid, 299 (qemu_uuid_set ? 16 : 0)); 300 break; 301 default: 302 ret = RTAS_OUT_NOT_SUPPORTED; 303 } 304 305 rtas_st(rets, 0, ret); 306 } 307 308 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu, 309 sPAPRMachineState *spapr, 310 uint32_t token, uint32_t nargs, 311 target_ulong args, 312 uint32_t nret, target_ulong rets) 313 { 314 target_ulong parameter = rtas_ld(args, 0); 315 target_ulong ret = RTAS_OUT_NOT_SUPPORTED; 316 317 switch (parameter) { 318 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: 319 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: 320 case RTAS_SYSPARM_UUID: 321 ret = RTAS_OUT_NOT_AUTHORIZED; 322 break; 323 } 324 325 rtas_st(rets, 0, ret); 326 } 327 328 static void rtas_ibm_os_term(PowerPCCPU *cpu, 329 sPAPRMachineState *spapr, 330 uint32_t token, uint32_t nargs, 331 target_ulong args, 332 uint32_t nret, target_ulong rets) 333 { 334 target_ulong ret = 0; 335 336 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort); 337 338 rtas_st(rets, 0, ret); 339 } 340 341 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 342 uint32_t token, uint32_t nargs, 343 target_ulong args, uint32_t nret, 344 target_ulong rets) 345 { 346 int32_t power_domain; 347 348 if (nargs != 2 || nret != 2) { 349 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 350 return; 351 } 352 353 /* we currently only use a single, "live insert" powerdomain for 354 * hotplugged/dlpar'd resources, so the power is always live/full (100) 355 */ 356 power_domain = rtas_ld(args, 0); 357 if (power_domain != -1) { 358 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 359 return; 360 } 361 362 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 363 rtas_st(rets, 1, 100); 364 } 365 366 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 367 uint32_t token, uint32_t nargs, 368 target_ulong args, uint32_t nret, 369 target_ulong rets) 370 { 371 int32_t power_domain; 372 373 if (nargs != 1 || nret != 2) { 374 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 375 return; 376 } 377 378 /* we currently only use a single, "live insert" powerdomain for 379 * hotplugged/dlpar'd resources, so the power is always live/full (100) 380 */ 381 power_domain = rtas_ld(args, 0); 382 if (power_domain != -1) { 383 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 384 return; 385 } 386 387 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 388 rtas_st(rets, 1, 100); 389 } 390 391 static bool sensor_type_is_dr(uint32_t sensor_type) 392 { 393 switch (sensor_type) { 394 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 395 case RTAS_SENSOR_TYPE_DR: 396 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 397 return true; 398 } 399 400 return false; 401 } 402 403 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 404 uint32_t token, uint32_t nargs, 405 target_ulong args, uint32_t nret, 406 target_ulong rets) 407 { 408 uint32_t sensor_type; 409 uint32_t sensor_index; 410 uint32_t sensor_state; 411 uint32_t ret = RTAS_OUT_SUCCESS; 412 sPAPRDRConnector *drc; 413 sPAPRDRConnectorClass *drck; 414 415 if (nargs != 3 || nret != 1) { 416 ret = RTAS_OUT_PARAM_ERROR; 417 goto out; 418 } 419 420 sensor_type = rtas_ld(args, 0); 421 sensor_index = rtas_ld(args, 1); 422 sensor_state = rtas_ld(args, 2); 423 424 if (!sensor_type_is_dr(sensor_type)) { 425 goto out_unimplemented; 426 } 427 428 /* if this is a DR sensor we can assume sensor_index == drc_index */ 429 drc = spapr_dr_connector_by_index(sensor_index); 430 if (!drc) { 431 trace_spapr_rtas_set_indicator_invalid(sensor_index); 432 ret = RTAS_OUT_PARAM_ERROR; 433 goto out; 434 } 435 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 436 437 switch (sensor_type) { 438 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 439 /* if the guest is configuring a device attached to this 440 * DRC, we should reset the configuration state at this 441 * point since it may no longer be reliable (guest released 442 * device and needs to start over, or unplug occurred so 443 * the FDT is no longer valid) 444 */ 445 if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) { 446 sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr, 447 sensor_index); 448 if (ccs) { 449 spapr_ccs_remove(spapr, ccs); 450 } 451 } 452 ret = drck->set_isolation_state(drc, sensor_state); 453 break; 454 case RTAS_SENSOR_TYPE_DR: 455 ret = drck->set_indicator_state(drc, sensor_state); 456 break; 457 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 458 ret = drck->set_allocation_state(drc, sensor_state); 459 break; 460 default: 461 goto out_unimplemented; 462 } 463 464 out: 465 rtas_st(rets, 0, ret); 466 return; 467 468 out_unimplemented: 469 /* currently only DR-related sensors are implemented */ 470 trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type); 471 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 472 } 473 474 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 475 uint32_t token, uint32_t nargs, 476 target_ulong args, uint32_t nret, 477 target_ulong rets) 478 { 479 uint32_t sensor_type; 480 uint32_t sensor_index; 481 uint32_t sensor_state = 0; 482 sPAPRDRConnector *drc; 483 sPAPRDRConnectorClass *drck; 484 uint32_t ret = RTAS_OUT_SUCCESS; 485 486 if (nargs != 2 || nret != 2) { 487 ret = RTAS_OUT_PARAM_ERROR; 488 goto out; 489 } 490 491 sensor_type = rtas_ld(args, 0); 492 sensor_index = rtas_ld(args, 1); 493 494 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 495 /* currently only DR-related sensors are implemented */ 496 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 497 sensor_type); 498 ret = RTAS_OUT_NOT_SUPPORTED; 499 goto out; 500 } 501 502 drc = spapr_dr_connector_by_index(sensor_index); 503 if (!drc) { 504 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 505 ret = RTAS_OUT_PARAM_ERROR; 506 goto out; 507 } 508 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 509 ret = drck->entity_sense(drc, &sensor_state); 510 511 out: 512 rtas_st(rets, 0, ret); 513 rtas_st(rets, 1, sensor_state); 514 } 515 516 /* configure-connector work area offsets, int32_t units for field 517 * indexes, bytes for field offset/len values. 518 * 519 * as documented by PAPR+ v2.7, 13.5.3.5 520 */ 521 #define CC_IDX_NODE_NAME_OFFSET 2 522 #define CC_IDX_PROP_NAME_OFFSET 2 523 #define CC_IDX_PROP_LEN 3 524 #define CC_IDX_PROP_DATA_OFFSET 4 525 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 526 #define CC_WA_LEN 4096 527 528 static void configure_connector_st(target_ulong addr, target_ulong offset, 529 const void *buf, size_t len) 530 { 531 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 532 buf, MIN(len, CC_WA_LEN - offset)); 533 } 534 535 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 536 sPAPRMachineState *spapr, 537 uint32_t token, uint32_t nargs, 538 target_ulong args, uint32_t nret, 539 target_ulong rets) 540 { 541 uint64_t wa_addr; 542 uint64_t wa_offset; 543 uint32_t drc_index; 544 sPAPRDRConnector *drc; 545 sPAPRDRConnectorClass *drck; 546 sPAPRConfigureConnectorState *ccs; 547 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 548 int rc; 549 const void *fdt; 550 551 if (nargs != 2 || nret != 1) { 552 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 553 return; 554 } 555 556 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 557 558 drc_index = rtas_ld(wa_addr, 0); 559 drc = spapr_dr_connector_by_index(drc_index); 560 if (!drc) { 561 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 562 rc = RTAS_OUT_PARAM_ERROR; 563 goto out; 564 } 565 566 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 567 fdt = drck->get_fdt(drc, NULL); 568 if (!fdt) { 569 trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index); 570 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 571 goto out; 572 } 573 574 ccs = spapr_ccs_find(spapr, drc_index); 575 if (!ccs) { 576 ccs = g_new0(sPAPRConfigureConnectorState, 1); 577 (void)drck->get_fdt(drc, &ccs->fdt_offset); 578 ccs->drc_index = drc_index; 579 spapr_ccs_add(spapr, ccs); 580 } 581 582 do { 583 uint32_t tag; 584 const char *name; 585 const struct fdt_property *prop; 586 int fdt_offset_next, prop_len; 587 588 tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next); 589 590 switch (tag) { 591 case FDT_BEGIN_NODE: 592 ccs->fdt_depth++; 593 name = fdt_get_name(fdt, ccs->fdt_offset, NULL); 594 595 /* provide the name of the next OF node */ 596 wa_offset = CC_VAL_DATA_OFFSET; 597 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 598 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 599 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 600 break; 601 case FDT_END_NODE: 602 ccs->fdt_depth--; 603 if (ccs->fdt_depth == 0) { 604 /* done sending the device tree, don't need to track 605 * the state anymore 606 */ 607 drck->set_configured(drc); 608 spapr_ccs_remove(spapr, ccs); 609 ccs = NULL; 610 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 611 } else { 612 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 613 } 614 break; 615 case FDT_PROP: 616 prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset, 617 &prop_len); 618 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 619 620 /* provide the name of the next OF property */ 621 wa_offset = CC_VAL_DATA_OFFSET; 622 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 623 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 624 625 /* provide the length and value of the OF property. data gets 626 * placed immediately after NULL terminator of the OF property's 627 * name string 628 */ 629 wa_offset += strlen(name) + 1, 630 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 631 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 632 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 633 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 634 break; 635 case FDT_END: 636 resp = SPAPR_DR_CC_RESPONSE_ERROR; 637 default: 638 /* keep seeking for an actionable tag */ 639 break; 640 } 641 if (ccs) { 642 ccs->fdt_offset = fdt_offset_next; 643 } 644 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 645 646 rc = resp; 647 out: 648 rtas_st(rets, 0, rc); 649 } 650 651 static struct rtas_call { 652 const char *name; 653 spapr_rtas_fn fn; 654 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE]; 655 656 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr, 657 uint32_t token, uint32_t nargs, target_ulong args, 658 uint32_t nret, target_ulong rets) 659 { 660 if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) { 661 struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE); 662 663 if (call->fn) { 664 call->fn(cpu, spapr, token, nargs, args, nret, rets); 665 return H_SUCCESS; 666 } 667 } 668 669 /* HACK: Some Linux early debug code uses RTAS display-character, 670 * but assumes the token value is 0xa (which it is on some real 671 * machines) without looking it up in the device tree. This 672 * special case makes this work */ 673 if (token == 0xa) { 674 rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets); 675 return H_SUCCESS; 676 } 677 678 hcall_dprintf("Unknown RTAS token 0x%x\n", token); 679 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 680 return H_PARAMETER; 681 } 682 683 uint64_t qtest_rtas_call(char *cmd, uint32_t nargs, uint64_t args, 684 uint32_t nret, uint64_t rets) 685 { 686 int token; 687 688 for (token = 0; token < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; token++) { 689 if (strcmp(cmd, rtas_table[token].name) == 0) { 690 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 691 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 692 693 rtas_table[token].fn(cpu, spapr, token + RTAS_TOKEN_BASE, 694 nargs, args, nret, rets); 695 return H_SUCCESS; 696 } 697 } 698 return H_PARAMETER; 699 } 700 701 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn) 702 { 703 assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)); 704 705 token -= RTAS_TOKEN_BASE; 706 707 assert(!rtas_table[token].name); 708 709 rtas_table[token].name = name; 710 rtas_table[token].fn = fn; 711 } 712 713 int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr, 714 hwaddr rtas_size) 715 { 716 int ret; 717 int i; 718 uint32_t lrdr_capacity[5]; 719 MachineState *machine = MACHINE(qdev_get_machine()); 720 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 721 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 722 memory_region_size(&spapr->hotplug_memory.mr); 723 724 ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size); 725 if (ret < 0) { 726 error_report("Couldn't add RTAS reserve entry: %s", 727 fdt_strerror(ret)); 728 return ret; 729 } 730 731 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base", 732 rtas_addr); 733 if (ret < 0) { 734 error_report("Couldn't add linux,rtas-base property: %s", 735 fdt_strerror(ret)); 736 return ret; 737 } 738 739 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry", 740 rtas_addr); 741 if (ret < 0) { 742 error_report("Couldn't add linux,rtas-entry property: %s", 743 fdt_strerror(ret)); 744 return ret; 745 } 746 747 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size", 748 rtas_size); 749 if (ret < 0) { 750 error_report("Couldn't add rtas-size property: %s", 751 fdt_strerror(ret)); 752 return ret; 753 } 754 755 for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) { 756 struct rtas_call *call = &rtas_table[i]; 757 758 if (!call->name) { 759 continue; 760 } 761 762 ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name, 763 i + RTAS_TOKEN_BASE); 764 if (ret < 0) { 765 error_report("Couldn't add rtas token for %s: %s", 766 call->name, fdt_strerror(ret)); 767 return ret; 768 } 769 770 } 771 772 lrdr_capacity[0] = cpu_to_be32(max_hotplug_addr >> 32); 773 lrdr_capacity[1] = cpu_to_be32(max_hotplug_addr & 0xffffffff); 774 lrdr_capacity[2] = 0; 775 lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE); 776 lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads); 777 ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity, 778 sizeof(lrdr_capacity)); 779 if (ret < 0) { 780 error_report("Couldn't add ibm,lrdr-capacity rtas property"); 781 return ret; 782 } 783 784 return 0; 785 } 786 787 static void core_rtas_register_types(void) 788 { 789 spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character", 790 rtas_display_character); 791 spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off); 792 spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot", 793 rtas_system_reboot); 794 spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state", 795 rtas_query_cpu_stopped_state); 796 spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu); 797 spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self); 798 spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER, 799 "ibm,get-system-parameter", 800 rtas_ibm_get_system_parameter); 801 spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER, 802 "ibm,set-system-parameter", 803 rtas_ibm_set_system_parameter); 804 spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term", 805 rtas_ibm_os_term); 806 spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level", 807 rtas_set_power_level); 808 spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level", 809 rtas_get_power_level); 810 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 811 rtas_set_indicator); 812 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 813 rtas_get_sensor_state); 814 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 815 rtas_ibm_configure_connector); 816 } 817 818 type_init(core_rtas_register_types) 819