1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Hypercall based emulated RTAS 5 * 6 * Copyright (c) 2010-2011 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "cpu.h" 29 #include "qemu/log.h" 30 #include "qemu/error-report.h" 31 #include "sysemu/sysemu.h" 32 #include "hw/qdev.h" 33 #include "sysemu/device_tree.h" 34 #include "sysemu/cpus.h" 35 #include "sysemu/kvm.h" 36 37 #include "hw/ppc/spapr.h" 38 #include "hw/ppc/spapr_vio.h" 39 #include "hw/ppc/spapr_rtas.h" 40 #include "hw/ppc/ppc.h" 41 #include "qapi-event.h" 42 #include "hw/boards.h" 43 44 #include <libfdt.h> 45 #include "hw/ppc/spapr_drc.h" 46 #include "qemu/cutils.h" 47 #include "trace.h" 48 #include "hw/ppc/fdt.h" 49 50 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr, 51 uint32_t drc_index) 52 { 53 sPAPRConfigureConnectorState *ccs = NULL; 54 55 QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) { 56 if (ccs->drc_index == drc_index) { 57 break; 58 } 59 } 60 61 return ccs; 62 } 63 64 static void spapr_ccs_add(sPAPRMachineState *spapr, 65 sPAPRConfigureConnectorState *ccs) 66 { 67 g_assert(!spapr_ccs_find(spapr, ccs->drc_index)); 68 QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next); 69 } 70 71 static void spapr_ccs_remove(sPAPRMachineState *spapr, 72 sPAPRConfigureConnectorState *ccs) 73 { 74 QTAILQ_REMOVE(&spapr->ccs_list, ccs, next); 75 g_free(ccs); 76 } 77 78 void spapr_ccs_reset_hook(void *opaque) 79 { 80 sPAPRMachineState *spapr = opaque; 81 sPAPRConfigureConnectorState *ccs, *ccs_tmp; 82 83 QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) { 84 spapr_ccs_remove(spapr, ccs); 85 } 86 } 87 88 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr, 89 uint32_t token, uint32_t nargs, 90 target_ulong args, 91 uint32_t nret, target_ulong rets) 92 { 93 uint8_t c = rtas_ld(args, 0); 94 VIOsPAPRDevice *sdev = vty_lookup(spapr, 0); 95 96 if (!sdev) { 97 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 98 } else { 99 vty_putchars(sdev, &c, sizeof(c)); 100 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 101 } 102 } 103 104 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr, 105 uint32_t token, uint32_t nargs, target_ulong args, 106 uint32_t nret, target_ulong rets) 107 { 108 if (nargs != 2 || nret != 1) { 109 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 110 return; 111 } 112 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 113 cpu_stop_current(); 114 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 115 } 116 117 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr, 118 uint32_t token, uint32_t nargs, 119 target_ulong args, 120 uint32_t nret, target_ulong rets) 121 { 122 if (nargs != 0 || nret != 1) { 123 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 124 return; 125 } 126 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 127 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 128 } 129 130 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_, 131 sPAPRMachineState *spapr, 132 uint32_t token, uint32_t nargs, 133 target_ulong args, 134 uint32_t nret, target_ulong rets) 135 { 136 target_ulong id; 137 PowerPCCPU *cpu; 138 139 if (nargs != 1 || nret != 2) { 140 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 141 return; 142 } 143 144 id = rtas_ld(args, 0); 145 cpu = ppc_get_vcpu_by_dt_id(id); 146 if (cpu != NULL) { 147 if (CPU(cpu)->halted) { 148 rtas_st(rets, 1, 0); 149 } else { 150 rtas_st(rets, 1, 2); 151 } 152 153 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 154 return; 155 } 156 157 /* Didn't find a matching cpu */ 158 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 159 } 160 161 /* 162 * Set the timebase offset of the CPU to that of first CPU. 163 * This helps hotplugged CPU to have the correct timebase offset. 164 */ 165 static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu) 166 { 167 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 168 169 cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset; 170 } 171 172 static void spapr_cpu_set_endianness(PowerPCCPU *cpu) 173 { 174 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 175 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu); 176 177 if (!pcc->interrupts_big_endian(fcpu)) { 178 cpu->env.spr[SPR_LPCR] |= LPCR_ILE; 179 } 180 } 181 182 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr, 183 uint32_t token, uint32_t nargs, 184 target_ulong args, 185 uint32_t nret, target_ulong rets) 186 { 187 target_ulong id, start, r3; 188 PowerPCCPU *cpu; 189 190 if (nargs != 3 || nret != 1) { 191 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 192 return; 193 } 194 195 id = rtas_ld(args, 0); 196 start = rtas_ld(args, 1); 197 r3 = rtas_ld(args, 2); 198 199 cpu = ppc_get_vcpu_by_dt_id(id); 200 if (cpu != NULL) { 201 CPUState *cs = CPU(cpu); 202 CPUPPCState *env = &cpu->env; 203 204 if (!cs->halted) { 205 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 206 return; 207 } 208 209 /* This will make sure qemu state is up to date with kvm, and 210 * mark it dirty so our changes get flushed back before the 211 * new cpu enters */ 212 kvm_cpu_synchronize_state(cs); 213 214 env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME); 215 env->nip = start; 216 env->gpr[3] = r3; 217 cs->halted = 0; 218 spapr_cpu_set_endianness(cpu); 219 spapr_cpu_update_tb_offset(cpu); 220 221 qemu_cpu_kick(cs); 222 223 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 224 return; 225 } 226 227 /* Didn't find a matching cpu */ 228 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 229 } 230 231 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, 232 uint32_t token, uint32_t nargs, 233 target_ulong args, 234 uint32_t nret, target_ulong rets) 235 { 236 CPUState *cs = CPU(cpu); 237 CPUPPCState *env = &cpu->env; 238 239 cs->halted = 1; 240 qemu_cpu_kick(cs); 241 /* 242 * While stopping a CPU, the guest calls H_CPPR which 243 * effectively disables interrupts on XICS level. 244 * However decrementer interrupts in TCG can still 245 * wake the CPU up so here we disable interrupts in MSR 246 * as well. 247 * As rtas_start_cpu() resets the whole MSR anyway, there is 248 * no need to bother with specific bits, we just clear it. 249 */ 250 env->msr = 0; 251 } 252 253 static inline int sysparm_st(target_ulong addr, target_ulong len, 254 const void *val, uint16_t vallen) 255 { 256 hwaddr phys = ppc64_phys_to_real(addr); 257 258 if (len < 2) { 259 return RTAS_OUT_SYSPARM_PARAM_ERROR; 260 } 261 stw_be_phys(&address_space_memory, phys, vallen); 262 cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen)); 263 return RTAS_OUT_SUCCESS; 264 } 265 266 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu, 267 sPAPRMachineState *spapr, 268 uint32_t token, uint32_t nargs, 269 target_ulong args, 270 uint32_t nret, target_ulong rets) 271 { 272 target_ulong parameter = rtas_ld(args, 0); 273 target_ulong buffer = rtas_ld(args, 1); 274 target_ulong length = rtas_ld(args, 2); 275 target_ulong ret; 276 277 switch (parameter) { 278 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: { 279 char *param_val = g_strdup_printf("MaxEntCap=%d," 280 "DesMem=%llu," 281 "DesProcs=%d," 282 "MaxPlatProcs=%d", 283 max_cpus, 284 current_machine->ram_size / M_BYTE, 285 smp_cpus, 286 max_cpus); 287 ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1); 288 g_free(param_val); 289 break; 290 } 291 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: { 292 uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED; 293 294 ret = sysparm_st(buffer, length, ¶m_val, sizeof(param_val)); 295 break; 296 } 297 case RTAS_SYSPARM_UUID: 298 ret = sysparm_st(buffer, length, (unsigned char *)&qemu_uuid, 299 (qemu_uuid_set ? 16 : 0)); 300 break; 301 default: 302 ret = RTAS_OUT_NOT_SUPPORTED; 303 } 304 305 rtas_st(rets, 0, ret); 306 } 307 308 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu, 309 sPAPRMachineState *spapr, 310 uint32_t token, uint32_t nargs, 311 target_ulong args, 312 uint32_t nret, target_ulong rets) 313 { 314 target_ulong parameter = rtas_ld(args, 0); 315 target_ulong ret = RTAS_OUT_NOT_SUPPORTED; 316 317 switch (parameter) { 318 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: 319 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: 320 case RTAS_SYSPARM_UUID: 321 ret = RTAS_OUT_NOT_AUTHORIZED; 322 break; 323 } 324 325 rtas_st(rets, 0, ret); 326 } 327 328 static void rtas_ibm_os_term(PowerPCCPU *cpu, 329 sPAPRMachineState *spapr, 330 uint32_t token, uint32_t nargs, 331 target_ulong args, 332 uint32_t nret, target_ulong rets) 333 { 334 target_ulong ret = 0; 335 336 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, false, NULL, 337 &error_abort); 338 339 rtas_st(rets, 0, ret); 340 } 341 342 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 343 uint32_t token, uint32_t nargs, 344 target_ulong args, uint32_t nret, 345 target_ulong rets) 346 { 347 int32_t power_domain; 348 349 if (nargs != 2 || nret != 2) { 350 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 351 return; 352 } 353 354 /* we currently only use a single, "live insert" powerdomain for 355 * hotplugged/dlpar'd resources, so the power is always live/full (100) 356 */ 357 power_domain = rtas_ld(args, 0); 358 if (power_domain != -1) { 359 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 360 return; 361 } 362 363 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 364 rtas_st(rets, 1, 100); 365 } 366 367 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 368 uint32_t token, uint32_t nargs, 369 target_ulong args, uint32_t nret, 370 target_ulong rets) 371 { 372 int32_t power_domain; 373 374 if (nargs != 1 || nret != 2) { 375 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 376 return; 377 } 378 379 /* we currently only use a single, "live insert" powerdomain for 380 * hotplugged/dlpar'd resources, so the power is always live/full (100) 381 */ 382 power_domain = rtas_ld(args, 0); 383 if (power_domain != -1) { 384 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 385 return; 386 } 387 388 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 389 rtas_st(rets, 1, 100); 390 } 391 392 static bool sensor_type_is_dr(uint32_t sensor_type) 393 { 394 switch (sensor_type) { 395 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 396 case RTAS_SENSOR_TYPE_DR: 397 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 398 return true; 399 } 400 401 return false; 402 } 403 404 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 405 uint32_t token, uint32_t nargs, 406 target_ulong args, uint32_t nret, 407 target_ulong rets) 408 { 409 uint32_t sensor_type; 410 uint32_t sensor_index; 411 uint32_t sensor_state; 412 uint32_t ret = RTAS_OUT_SUCCESS; 413 sPAPRDRConnector *drc; 414 sPAPRDRConnectorClass *drck; 415 416 if (nargs != 3 || nret != 1) { 417 ret = RTAS_OUT_PARAM_ERROR; 418 goto out; 419 } 420 421 sensor_type = rtas_ld(args, 0); 422 sensor_index = rtas_ld(args, 1); 423 sensor_state = rtas_ld(args, 2); 424 425 if (!sensor_type_is_dr(sensor_type)) { 426 goto out_unimplemented; 427 } 428 429 /* if this is a DR sensor we can assume sensor_index == drc_index */ 430 drc = spapr_dr_connector_by_index(sensor_index); 431 if (!drc) { 432 trace_spapr_rtas_set_indicator_invalid(sensor_index); 433 ret = RTAS_OUT_PARAM_ERROR; 434 goto out; 435 } 436 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 437 438 switch (sensor_type) { 439 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 440 /* if the guest is configuring a device attached to this 441 * DRC, we should reset the configuration state at this 442 * point since it may no longer be reliable (guest released 443 * device and needs to start over, or unplug occurred so 444 * the FDT is no longer valid) 445 */ 446 if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) { 447 sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr, 448 sensor_index); 449 if (ccs) { 450 spapr_ccs_remove(spapr, ccs); 451 } 452 } 453 ret = drck->set_isolation_state(drc, sensor_state); 454 break; 455 case RTAS_SENSOR_TYPE_DR: 456 ret = drck->set_indicator_state(drc, sensor_state); 457 break; 458 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 459 ret = drck->set_allocation_state(drc, sensor_state); 460 break; 461 default: 462 goto out_unimplemented; 463 } 464 465 out: 466 rtas_st(rets, 0, ret); 467 return; 468 469 out_unimplemented: 470 /* currently only DR-related sensors are implemented */ 471 trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type); 472 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 473 } 474 475 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 476 uint32_t token, uint32_t nargs, 477 target_ulong args, uint32_t nret, 478 target_ulong rets) 479 { 480 uint32_t sensor_type; 481 uint32_t sensor_index; 482 uint32_t sensor_state = 0; 483 sPAPRDRConnector *drc; 484 sPAPRDRConnectorClass *drck; 485 uint32_t ret = RTAS_OUT_SUCCESS; 486 487 if (nargs != 2 || nret != 2) { 488 ret = RTAS_OUT_PARAM_ERROR; 489 goto out; 490 } 491 492 sensor_type = rtas_ld(args, 0); 493 sensor_index = rtas_ld(args, 1); 494 495 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 496 /* currently only DR-related sensors are implemented */ 497 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 498 sensor_type); 499 ret = RTAS_OUT_NOT_SUPPORTED; 500 goto out; 501 } 502 503 drc = spapr_dr_connector_by_index(sensor_index); 504 if (!drc) { 505 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 506 ret = RTAS_OUT_PARAM_ERROR; 507 goto out; 508 } 509 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 510 ret = drck->entity_sense(drc, &sensor_state); 511 512 out: 513 rtas_st(rets, 0, ret); 514 rtas_st(rets, 1, sensor_state); 515 } 516 517 /* configure-connector work area offsets, int32_t units for field 518 * indexes, bytes for field offset/len values. 519 * 520 * as documented by PAPR+ v2.7, 13.5.3.5 521 */ 522 #define CC_IDX_NODE_NAME_OFFSET 2 523 #define CC_IDX_PROP_NAME_OFFSET 2 524 #define CC_IDX_PROP_LEN 3 525 #define CC_IDX_PROP_DATA_OFFSET 4 526 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 527 #define CC_WA_LEN 4096 528 529 static void configure_connector_st(target_ulong addr, target_ulong offset, 530 const void *buf, size_t len) 531 { 532 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 533 buf, MIN(len, CC_WA_LEN - offset)); 534 } 535 536 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 537 sPAPRMachineState *spapr, 538 uint32_t token, uint32_t nargs, 539 target_ulong args, uint32_t nret, 540 target_ulong rets) 541 { 542 uint64_t wa_addr; 543 uint64_t wa_offset; 544 uint32_t drc_index; 545 sPAPRDRConnector *drc; 546 sPAPRDRConnectorClass *drck; 547 sPAPRConfigureConnectorState *ccs; 548 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 549 int rc; 550 const void *fdt; 551 552 if (nargs != 2 || nret != 1) { 553 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 554 return; 555 } 556 557 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 558 559 drc_index = rtas_ld(wa_addr, 0); 560 drc = spapr_dr_connector_by_index(drc_index); 561 if (!drc) { 562 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 563 rc = RTAS_OUT_PARAM_ERROR; 564 goto out; 565 } 566 567 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 568 fdt = drck->get_fdt(drc, NULL); 569 if (!fdt) { 570 trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index); 571 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 572 goto out; 573 } 574 575 ccs = spapr_ccs_find(spapr, drc_index); 576 if (!ccs) { 577 ccs = g_new0(sPAPRConfigureConnectorState, 1); 578 (void)drck->get_fdt(drc, &ccs->fdt_offset); 579 ccs->drc_index = drc_index; 580 spapr_ccs_add(spapr, ccs); 581 } 582 583 do { 584 uint32_t tag; 585 const char *name; 586 const struct fdt_property *prop; 587 int fdt_offset_next, prop_len; 588 589 tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next); 590 591 switch (tag) { 592 case FDT_BEGIN_NODE: 593 ccs->fdt_depth++; 594 name = fdt_get_name(fdt, ccs->fdt_offset, NULL); 595 596 /* provide the name of the next OF node */ 597 wa_offset = CC_VAL_DATA_OFFSET; 598 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 599 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 600 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 601 break; 602 case FDT_END_NODE: 603 ccs->fdt_depth--; 604 if (ccs->fdt_depth == 0) { 605 /* done sending the device tree, don't need to track 606 * the state anymore 607 */ 608 drck->set_configured(drc); 609 spapr_ccs_remove(spapr, ccs); 610 ccs = NULL; 611 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 612 } else { 613 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 614 } 615 break; 616 case FDT_PROP: 617 prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset, 618 &prop_len); 619 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 620 621 /* provide the name of the next OF property */ 622 wa_offset = CC_VAL_DATA_OFFSET; 623 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 624 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 625 626 /* provide the length and value of the OF property. data gets 627 * placed immediately after NULL terminator of the OF property's 628 * name string 629 */ 630 wa_offset += strlen(name) + 1, 631 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 632 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 633 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 634 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 635 break; 636 case FDT_END: 637 resp = SPAPR_DR_CC_RESPONSE_ERROR; 638 default: 639 /* keep seeking for an actionable tag */ 640 break; 641 } 642 if (ccs) { 643 ccs->fdt_offset = fdt_offset_next; 644 } 645 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 646 647 rc = resp; 648 out: 649 rtas_st(rets, 0, rc); 650 } 651 652 static struct rtas_call { 653 const char *name; 654 spapr_rtas_fn fn; 655 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE]; 656 657 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr, 658 uint32_t token, uint32_t nargs, target_ulong args, 659 uint32_t nret, target_ulong rets) 660 { 661 if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) { 662 struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE); 663 664 if (call->fn) { 665 call->fn(cpu, spapr, token, nargs, args, nret, rets); 666 return H_SUCCESS; 667 } 668 } 669 670 /* HACK: Some Linux early debug code uses RTAS display-character, 671 * but assumes the token value is 0xa (which it is on some real 672 * machines) without looking it up in the device tree. This 673 * special case makes this work */ 674 if (token == 0xa) { 675 rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets); 676 return H_SUCCESS; 677 } 678 679 hcall_dprintf("Unknown RTAS token 0x%x\n", token); 680 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 681 return H_PARAMETER; 682 } 683 684 uint64_t qtest_rtas_call(char *cmd, uint32_t nargs, uint64_t args, 685 uint32_t nret, uint64_t rets) 686 { 687 int token; 688 689 for (token = 0; token < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; token++) { 690 if (strcmp(cmd, rtas_table[token].name) == 0) { 691 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 692 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 693 694 rtas_table[token].fn(cpu, spapr, token + RTAS_TOKEN_BASE, 695 nargs, args, nret, rets); 696 return H_SUCCESS; 697 } 698 } 699 return H_PARAMETER; 700 } 701 702 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn) 703 { 704 assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)); 705 706 token -= RTAS_TOKEN_BASE; 707 708 assert(!rtas_table[token].name); 709 710 rtas_table[token].name = name; 711 rtas_table[token].fn = fn; 712 } 713 714 void spapr_dt_rtas_tokens(void *fdt, int rtas) 715 { 716 int i; 717 718 for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) { 719 struct rtas_call *call = &rtas_table[i]; 720 721 if (!call->name) { 722 continue; 723 } 724 725 _FDT(fdt_setprop_cell(fdt, rtas, call->name, i + RTAS_TOKEN_BASE)); 726 } 727 } 728 729 void spapr_load_rtas(sPAPRMachineState *spapr, void *fdt, hwaddr addr) 730 { 731 int rtas_node; 732 int ret; 733 734 /* Copy RTAS blob into guest RAM */ 735 cpu_physical_memory_write(addr, spapr->rtas_blob, spapr->rtas_size); 736 737 ret = fdt_add_mem_rsv(fdt, addr, spapr->rtas_size); 738 if (ret < 0) { 739 error_report("Couldn't add RTAS reserve entry: %s", 740 fdt_strerror(ret)); 741 exit(1); 742 } 743 744 /* Update the device tree with the blob's location */ 745 rtas_node = fdt_path_offset(fdt, "/rtas"); 746 assert(rtas_node >= 0); 747 748 ret = fdt_setprop_cell(fdt, rtas_node, "linux,rtas-base", addr); 749 if (ret < 0) { 750 error_report("Couldn't add linux,rtas-base property: %s", 751 fdt_strerror(ret)); 752 exit(1); 753 } 754 755 ret = fdt_setprop_cell(fdt, rtas_node, "linux,rtas-entry", addr); 756 if (ret < 0) { 757 error_report("Couldn't add linux,rtas-entry property: %s", 758 fdt_strerror(ret)); 759 exit(1); 760 } 761 762 ret = fdt_setprop_cell(fdt, rtas_node, "rtas-size", spapr->rtas_size); 763 if (ret < 0) { 764 error_report("Couldn't add rtas-size property: %s", 765 fdt_strerror(ret)); 766 exit(1); 767 } 768 } 769 770 static void core_rtas_register_types(void) 771 { 772 spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character", 773 rtas_display_character); 774 spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off); 775 spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot", 776 rtas_system_reboot); 777 spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state", 778 rtas_query_cpu_stopped_state); 779 spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu); 780 spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self); 781 spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER, 782 "ibm,get-system-parameter", 783 rtas_ibm_get_system_parameter); 784 spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER, 785 "ibm,set-system-parameter", 786 rtas_ibm_set_system_parameter); 787 spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term", 788 rtas_ibm_os_term); 789 spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level", 790 rtas_set_power_level); 791 spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level", 792 rtas_get_power_level); 793 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 794 rtas_set_indicator); 795 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 796 rtas_get_sensor_state); 797 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 798 rtas_ibm_configure_connector); 799 } 800 801 type_init(core_rtas_register_types) 802