xref: /openbmc/qemu/hw/ppc/spapr_rtas.c (revision c2b38b27)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Hypercall based emulated RTAS
5  *
6  * Copyright (c) 2010-2011 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "cpu.h"
29 #include "qemu/log.h"
30 #include "qemu/error-report.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/char.h"
33 #include "hw/qdev.h"
34 #include "sysemu/device_tree.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 
38 #include "hw/ppc/spapr.h"
39 #include "hw/ppc/spapr_vio.h"
40 #include "hw/ppc/spapr_rtas.h"
41 #include "hw/ppc/ppc.h"
42 #include "qapi-event.h"
43 #include "hw/boards.h"
44 
45 #include <libfdt.h>
46 #include "hw/ppc/spapr_drc.h"
47 #include "qemu/cutils.h"
48 #include "trace.h"
49 #include "hw/ppc/fdt.h"
50 
51 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr,
52                                                     uint32_t drc_index)
53 {
54     sPAPRConfigureConnectorState *ccs = NULL;
55 
56     QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
57         if (ccs->drc_index == drc_index) {
58             break;
59         }
60     }
61 
62     return ccs;
63 }
64 
65 static void spapr_ccs_add(sPAPRMachineState *spapr,
66                           sPAPRConfigureConnectorState *ccs)
67 {
68     g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
69     QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
70 }
71 
72 static void spapr_ccs_remove(sPAPRMachineState *spapr,
73                              sPAPRConfigureConnectorState *ccs)
74 {
75     QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
76     g_free(ccs);
77 }
78 
79 void spapr_ccs_reset_hook(void *opaque)
80 {
81     sPAPRMachineState *spapr = opaque;
82     sPAPRConfigureConnectorState *ccs, *ccs_tmp;
83 
84     QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
85         spapr_ccs_remove(spapr, ccs);
86     }
87 }
88 
89 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr,
90                                    uint32_t token, uint32_t nargs,
91                                    target_ulong args,
92                                    uint32_t nret, target_ulong rets)
93 {
94     uint8_t c = rtas_ld(args, 0);
95     VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
96 
97     if (!sdev) {
98         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
99     } else {
100         vty_putchars(sdev, &c, sizeof(c));
101         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
102     }
103 }
104 
105 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr,
106                            uint32_t token, uint32_t nargs, target_ulong args,
107                            uint32_t nret, target_ulong rets)
108 {
109     if (nargs != 2 || nret != 1) {
110         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
111         return;
112     }
113     qemu_system_shutdown_request();
114     cpu_stop_current();
115     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
116 }
117 
118 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr,
119                                uint32_t token, uint32_t nargs,
120                                target_ulong args,
121                                uint32_t nret, target_ulong rets)
122 {
123     if (nargs != 0 || nret != 1) {
124         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
125         return;
126     }
127     qemu_system_reset_request();
128     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
129 }
130 
131 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
132                                          sPAPRMachineState *spapr,
133                                          uint32_t token, uint32_t nargs,
134                                          target_ulong args,
135                                          uint32_t nret, target_ulong rets)
136 {
137     target_ulong id;
138     PowerPCCPU *cpu;
139 
140     if (nargs != 1 || nret != 2) {
141         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
142         return;
143     }
144 
145     id = rtas_ld(args, 0);
146     cpu = ppc_get_vcpu_by_dt_id(id);
147     if (cpu != NULL) {
148         if (CPU(cpu)->halted) {
149             rtas_st(rets, 1, 0);
150         } else {
151             rtas_st(rets, 1, 2);
152         }
153 
154         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
155         return;
156     }
157 
158     /* Didn't find a matching cpu */
159     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
160 }
161 
162 /*
163  * Set the timebase offset of the CPU to that of first CPU.
164  * This helps hotplugged CPU to have the correct timebase offset.
165  */
166 static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu)
167 {
168     PowerPCCPU *fcpu = POWERPC_CPU(first_cpu);
169 
170     cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset;
171 }
172 
173 static void spapr_cpu_set_endianness(PowerPCCPU *cpu)
174 {
175     PowerPCCPU *fcpu = POWERPC_CPU(first_cpu);
176     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu);
177 
178     if (!pcc->interrupts_big_endian(fcpu)) {
179         cpu->env.spr[SPR_LPCR] |= LPCR_ILE;
180     }
181 }
182 
183 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr,
184                            uint32_t token, uint32_t nargs,
185                            target_ulong args,
186                            uint32_t nret, target_ulong rets)
187 {
188     target_ulong id, start, r3;
189     PowerPCCPU *cpu;
190 
191     if (nargs != 3 || nret != 1) {
192         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
193         return;
194     }
195 
196     id = rtas_ld(args, 0);
197     start = rtas_ld(args, 1);
198     r3 = rtas_ld(args, 2);
199 
200     cpu = ppc_get_vcpu_by_dt_id(id);
201     if (cpu != NULL) {
202         CPUState *cs = CPU(cpu);
203         CPUPPCState *env = &cpu->env;
204 
205         if (!cs->halted) {
206             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207             return;
208         }
209 
210         /* This will make sure qemu state is up to date with kvm, and
211          * mark it dirty so our changes get flushed back before the
212          * new cpu enters */
213         kvm_cpu_synchronize_state(cs);
214 
215         env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
216         env->nip = start;
217         env->gpr[3] = r3;
218         cs->halted = 0;
219         spapr_cpu_set_endianness(cpu);
220         spapr_cpu_update_tb_offset(cpu);
221 
222         qemu_cpu_kick(cs);
223 
224         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
225         return;
226     }
227 
228     /* Didn't find a matching cpu */
229     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
230 }
231 
232 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr,
233                            uint32_t token, uint32_t nargs,
234                            target_ulong args,
235                            uint32_t nret, target_ulong rets)
236 {
237     CPUState *cs = CPU(cpu);
238     CPUPPCState *env = &cpu->env;
239 
240     cs->halted = 1;
241     qemu_cpu_kick(cs);
242     /*
243      * While stopping a CPU, the guest calls H_CPPR which
244      * effectively disables interrupts on XICS level.
245      * However decrementer interrupts in TCG can still
246      * wake the CPU up so here we disable interrupts in MSR
247      * as well.
248      * As rtas_start_cpu() resets the whole MSR anyway, there is
249      * no need to bother with specific bits, we just clear it.
250      */
251     env->msr = 0;
252 }
253 
254 static inline int sysparm_st(target_ulong addr, target_ulong len,
255                              const void *val, uint16_t vallen)
256 {
257     hwaddr phys = ppc64_phys_to_real(addr);
258 
259     if (len < 2) {
260         return RTAS_OUT_SYSPARM_PARAM_ERROR;
261     }
262     stw_be_phys(&address_space_memory, phys, vallen);
263     cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen));
264     return RTAS_OUT_SUCCESS;
265 }
266 
267 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
268                                           sPAPRMachineState *spapr,
269                                           uint32_t token, uint32_t nargs,
270                                           target_ulong args,
271                                           uint32_t nret, target_ulong rets)
272 {
273     target_ulong parameter = rtas_ld(args, 0);
274     target_ulong buffer = rtas_ld(args, 1);
275     target_ulong length = rtas_ld(args, 2);
276     target_ulong ret;
277 
278     switch (parameter) {
279     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
280         char *param_val = g_strdup_printf("MaxEntCap=%d,"
281                                           "DesMem=%llu,"
282                                           "DesProcs=%d,"
283                                           "MaxPlatProcs=%d",
284                                           max_cpus,
285                                           current_machine->ram_size / M_BYTE,
286                                           smp_cpus,
287                                           max_cpus);
288         ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1);
289         g_free(param_val);
290         break;
291     }
292     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
293         uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
294 
295         ret = sysparm_st(buffer, length, &param_val, sizeof(param_val));
296         break;
297     }
298     case RTAS_SYSPARM_UUID:
299         ret = sysparm_st(buffer, length, (unsigned char *)&qemu_uuid,
300                          (qemu_uuid_set ? 16 : 0));
301         break;
302     default:
303         ret = RTAS_OUT_NOT_SUPPORTED;
304     }
305 
306     rtas_st(rets, 0, ret);
307 }
308 
309 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
310                                           sPAPRMachineState *spapr,
311                                           uint32_t token, uint32_t nargs,
312                                           target_ulong args,
313                                           uint32_t nret, target_ulong rets)
314 {
315     target_ulong parameter = rtas_ld(args, 0);
316     target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
317 
318     switch (parameter) {
319     case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS:
320     case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE:
321     case RTAS_SYSPARM_UUID:
322         ret = RTAS_OUT_NOT_AUTHORIZED;
323         break;
324     }
325 
326     rtas_st(rets, 0, ret);
327 }
328 
329 static void rtas_ibm_os_term(PowerPCCPU *cpu,
330                             sPAPRMachineState *spapr,
331                             uint32_t token, uint32_t nargs,
332                             target_ulong args,
333                             uint32_t nret, target_ulong rets)
334 {
335     target_ulong ret = 0;
336 
337     qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, false, NULL,
338                                    &error_abort);
339 
340     rtas_st(rets, 0, ret);
341 }
342 
343 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
344                                  uint32_t token, uint32_t nargs,
345                                  target_ulong args, uint32_t nret,
346                                  target_ulong rets)
347 {
348     int32_t power_domain;
349 
350     if (nargs != 2 || nret != 2) {
351         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
352         return;
353     }
354 
355     /* we currently only use a single, "live insert" powerdomain for
356      * hotplugged/dlpar'd resources, so the power is always live/full (100)
357      */
358     power_domain = rtas_ld(args, 0);
359     if (power_domain != -1) {
360         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
361         return;
362     }
363 
364     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
365     rtas_st(rets, 1, 100);
366 }
367 
368 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr,
369                                   uint32_t token, uint32_t nargs,
370                                   target_ulong args, uint32_t nret,
371                                   target_ulong rets)
372 {
373     int32_t power_domain;
374 
375     if (nargs != 1 || nret != 2) {
376         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
377         return;
378     }
379 
380     /* we currently only use a single, "live insert" powerdomain for
381      * hotplugged/dlpar'd resources, so the power is always live/full (100)
382      */
383     power_domain = rtas_ld(args, 0);
384     if (power_domain != -1) {
385         rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
386         return;
387     }
388 
389     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
390     rtas_st(rets, 1, 100);
391 }
392 
393 static bool sensor_type_is_dr(uint32_t sensor_type)
394 {
395     switch (sensor_type) {
396     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
397     case RTAS_SENSOR_TYPE_DR:
398     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
399         return true;
400     }
401 
402     return false;
403 }
404 
405 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
406                                uint32_t token, uint32_t nargs,
407                                target_ulong args, uint32_t nret,
408                                target_ulong rets)
409 {
410     uint32_t sensor_type;
411     uint32_t sensor_index;
412     uint32_t sensor_state;
413     uint32_t ret = RTAS_OUT_SUCCESS;
414     sPAPRDRConnector *drc;
415     sPAPRDRConnectorClass *drck;
416 
417     if (nargs != 3 || nret != 1) {
418         ret = RTAS_OUT_PARAM_ERROR;
419         goto out;
420     }
421 
422     sensor_type = rtas_ld(args, 0);
423     sensor_index = rtas_ld(args, 1);
424     sensor_state = rtas_ld(args, 2);
425 
426     if (!sensor_type_is_dr(sensor_type)) {
427         goto out_unimplemented;
428     }
429 
430     /* if this is a DR sensor we can assume sensor_index == drc_index */
431     drc = spapr_dr_connector_by_index(sensor_index);
432     if (!drc) {
433         trace_spapr_rtas_set_indicator_invalid(sensor_index);
434         ret = RTAS_OUT_PARAM_ERROR;
435         goto out;
436     }
437     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
438 
439     switch (sensor_type) {
440     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
441         /* if the guest is configuring a device attached to this
442          * DRC, we should reset the configuration state at this
443          * point since it may no longer be reliable (guest released
444          * device and needs to start over, or unplug occurred so
445          * the FDT is no longer valid)
446          */
447         if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
448             sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
449                                                                sensor_index);
450             if (ccs) {
451                 spapr_ccs_remove(spapr, ccs);
452             }
453         }
454         ret = drck->set_isolation_state(drc, sensor_state);
455         break;
456     case RTAS_SENSOR_TYPE_DR:
457         ret = drck->set_indicator_state(drc, sensor_state);
458         break;
459     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
460         ret = drck->set_allocation_state(drc, sensor_state);
461         break;
462     default:
463         goto out_unimplemented;
464     }
465 
466 out:
467     rtas_st(rets, 0, ret);
468     return;
469 
470 out_unimplemented:
471     /* currently only DR-related sensors are implemented */
472     trace_spapr_rtas_set_indicator_not_supported(sensor_index, sensor_type);
473     rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
474 }
475 
476 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
477                                   uint32_t token, uint32_t nargs,
478                                   target_ulong args, uint32_t nret,
479                                   target_ulong rets)
480 {
481     uint32_t sensor_type;
482     uint32_t sensor_index;
483     uint32_t sensor_state = 0;
484     sPAPRDRConnector *drc;
485     sPAPRDRConnectorClass *drck;
486     uint32_t ret = RTAS_OUT_SUCCESS;
487 
488     if (nargs != 2 || nret != 2) {
489         ret = RTAS_OUT_PARAM_ERROR;
490         goto out;
491     }
492 
493     sensor_type = rtas_ld(args, 0);
494     sensor_index = rtas_ld(args, 1);
495 
496     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
497         /* currently only DR-related sensors are implemented */
498         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
499                                                         sensor_type);
500         ret = RTAS_OUT_NOT_SUPPORTED;
501         goto out;
502     }
503 
504     drc = spapr_dr_connector_by_index(sensor_index);
505     if (!drc) {
506         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
507         ret = RTAS_OUT_PARAM_ERROR;
508         goto out;
509     }
510     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
511     ret = drck->entity_sense(drc, &sensor_state);
512 
513 out:
514     rtas_st(rets, 0, ret);
515     rtas_st(rets, 1, sensor_state);
516 }
517 
518 /* configure-connector work area offsets, int32_t units for field
519  * indexes, bytes for field offset/len values.
520  *
521  * as documented by PAPR+ v2.7, 13.5.3.5
522  */
523 #define CC_IDX_NODE_NAME_OFFSET 2
524 #define CC_IDX_PROP_NAME_OFFSET 2
525 #define CC_IDX_PROP_LEN 3
526 #define CC_IDX_PROP_DATA_OFFSET 4
527 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
528 #define CC_WA_LEN 4096
529 
530 static void configure_connector_st(target_ulong addr, target_ulong offset,
531                                    const void *buf, size_t len)
532 {
533     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
534                               buf, MIN(len, CC_WA_LEN - offset));
535 }
536 
537 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
538                                          sPAPRMachineState *spapr,
539                                          uint32_t token, uint32_t nargs,
540                                          target_ulong args, uint32_t nret,
541                                          target_ulong rets)
542 {
543     uint64_t wa_addr;
544     uint64_t wa_offset;
545     uint32_t drc_index;
546     sPAPRDRConnector *drc;
547     sPAPRDRConnectorClass *drck;
548     sPAPRConfigureConnectorState *ccs;
549     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
550     int rc;
551     const void *fdt;
552 
553     if (nargs != 2 || nret != 1) {
554         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
555         return;
556     }
557 
558     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
559 
560     drc_index = rtas_ld(wa_addr, 0);
561     drc = spapr_dr_connector_by_index(drc_index);
562     if (!drc) {
563         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
564         rc = RTAS_OUT_PARAM_ERROR;
565         goto out;
566     }
567 
568     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
569     fdt = drck->get_fdt(drc, NULL);
570     if (!fdt) {
571         trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
572         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
573         goto out;
574     }
575 
576     ccs = spapr_ccs_find(spapr, drc_index);
577     if (!ccs) {
578         ccs = g_new0(sPAPRConfigureConnectorState, 1);
579         (void)drck->get_fdt(drc, &ccs->fdt_offset);
580         ccs->drc_index = drc_index;
581         spapr_ccs_add(spapr, ccs);
582     }
583 
584     do {
585         uint32_t tag;
586         const char *name;
587         const struct fdt_property *prop;
588         int fdt_offset_next, prop_len;
589 
590         tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next);
591 
592         switch (tag) {
593         case FDT_BEGIN_NODE:
594             ccs->fdt_depth++;
595             name = fdt_get_name(fdt, ccs->fdt_offset, NULL);
596 
597             /* provide the name of the next OF node */
598             wa_offset = CC_VAL_DATA_OFFSET;
599             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
600             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
601             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
602             break;
603         case FDT_END_NODE:
604             ccs->fdt_depth--;
605             if (ccs->fdt_depth == 0) {
606                 /* done sending the device tree, don't need to track
607                  * the state anymore
608                  */
609                 drck->set_configured(drc);
610                 spapr_ccs_remove(spapr, ccs);
611                 ccs = NULL;
612                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
613             } else {
614                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
615             }
616             break;
617         case FDT_PROP:
618             prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset,
619                                               &prop_len);
620             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
621 
622             /* provide the name of the next OF property */
623             wa_offset = CC_VAL_DATA_OFFSET;
624             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
625             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
626 
627             /* provide the length and value of the OF property. data gets
628              * placed immediately after NULL terminator of the OF property's
629              * name string
630              */
631             wa_offset += strlen(name) + 1,
632             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
633             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
634             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
635             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
636             break;
637         case FDT_END:
638             resp = SPAPR_DR_CC_RESPONSE_ERROR;
639         default:
640             /* keep seeking for an actionable tag */
641             break;
642         }
643         if (ccs) {
644             ccs->fdt_offset = fdt_offset_next;
645         }
646     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
647 
648     rc = resp;
649 out:
650     rtas_st(rets, 0, rc);
651 }
652 
653 static struct rtas_call {
654     const char *name;
655     spapr_rtas_fn fn;
656 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
657 
658 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr,
659                              uint32_t token, uint32_t nargs, target_ulong args,
660                              uint32_t nret, target_ulong rets)
661 {
662     if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
663         struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
664 
665         if (call->fn) {
666             call->fn(cpu, spapr, token, nargs, args, nret, rets);
667             return H_SUCCESS;
668         }
669     }
670 
671     /* HACK: Some Linux early debug code uses RTAS display-character,
672      * but assumes the token value is 0xa (which it is on some real
673      * machines) without looking it up in the device tree.  This
674      * special case makes this work */
675     if (token == 0xa) {
676         rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
677         return H_SUCCESS;
678     }
679 
680     hcall_dprintf("Unknown RTAS token 0x%x\n", token);
681     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
682     return H_PARAMETER;
683 }
684 
685 uint64_t qtest_rtas_call(char *cmd, uint32_t nargs, uint64_t args,
686                          uint32_t nret, uint64_t rets)
687 {
688     int token;
689 
690     for (token = 0; token < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; token++) {
691         if (strcmp(cmd, rtas_table[token].name) == 0) {
692             sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
693             PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
694 
695             rtas_table[token].fn(cpu, spapr, token + RTAS_TOKEN_BASE,
696                                  nargs, args, nret, rets);
697             return H_SUCCESS;
698         }
699     }
700     return H_PARAMETER;
701 }
702 
703 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
704 {
705     assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX));
706 
707     token -= RTAS_TOKEN_BASE;
708 
709     assert(!rtas_table[token].name);
710 
711     rtas_table[token].name = name;
712     rtas_table[token].fn = fn;
713 }
714 
715 void spapr_dt_rtas_tokens(void *fdt, int rtas)
716 {
717     int i;
718 
719     for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
720         struct rtas_call *call = &rtas_table[i];
721 
722         if (!call->name) {
723             continue;
724         }
725 
726         _FDT(fdt_setprop_cell(fdt, rtas, call->name, i + RTAS_TOKEN_BASE));
727     }
728 }
729 
730 void spapr_load_rtas(sPAPRMachineState *spapr, void *fdt, hwaddr addr)
731 {
732     int rtas_node;
733     int ret;
734 
735     /* Copy RTAS blob into guest RAM */
736     cpu_physical_memory_write(addr, spapr->rtas_blob, spapr->rtas_size);
737 
738     ret = fdt_add_mem_rsv(fdt, addr, spapr->rtas_size);
739     if (ret < 0) {
740         error_report("Couldn't add RTAS reserve entry: %s",
741                      fdt_strerror(ret));
742         exit(1);
743     }
744 
745     /* Update the device tree with the blob's location */
746     rtas_node = fdt_path_offset(fdt, "/rtas");
747     assert(rtas_node >= 0);
748 
749     ret = fdt_setprop_cell(fdt, rtas_node, "linux,rtas-base", addr);
750     if (ret < 0) {
751         error_report("Couldn't add linux,rtas-base property: %s",
752                      fdt_strerror(ret));
753         exit(1);
754     }
755 
756     ret = fdt_setprop_cell(fdt, rtas_node, "linux,rtas-entry", addr);
757     if (ret < 0) {
758         error_report("Couldn't add linux,rtas-entry property: %s",
759                      fdt_strerror(ret));
760         exit(1);
761     }
762 
763     ret = fdt_setprop_cell(fdt, rtas_node, "rtas-size", spapr->rtas_size);
764     if (ret < 0) {
765         error_report("Couldn't add rtas-size property: %s",
766                      fdt_strerror(ret));
767         exit(1);
768     }
769 }
770 
771 static void core_rtas_register_types(void)
772 {
773     spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
774                         rtas_display_character);
775     spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
776     spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
777                         rtas_system_reboot);
778     spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
779                         rtas_query_cpu_stopped_state);
780     spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
781     spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
782     spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
783                         "ibm,get-system-parameter",
784                         rtas_ibm_get_system_parameter);
785     spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
786                         "ibm,set-system-parameter",
787                         rtas_ibm_set_system_parameter);
788     spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term",
789                         rtas_ibm_os_term);
790     spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level",
791                         rtas_set_power_level);
792     spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level",
793                         rtas_get_power_level);
794     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
795                         rtas_set_indicator);
796     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
797                         rtas_get_sensor_state);
798     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
799                         rtas_ibm_configure_connector);
800 }
801 
802 type_init(core_rtas_register_types)
803