1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Hypercall based emulated RTAS 5 * 6 * Copyright (c) 2010-2011 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "cpu.h" 29 #include "qemu/log.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/char.h" 32 #include "hw/qdev.h" 33 #include "sysemu/device_tree.h" 34 #include "sysemu/cpus.h" 35 #include "sysemu/kvm.h" 36 37 #include "hw/ppc/spapr.h" 38 #include "hw/ppc/spapr_vio.h" 39 #include "hw/ppc/ppc.h" 40 #include "qapi-event.h" 41 #include "hw/boards.h" 42 43 #include <libfdt.h> 44 #include "hw/ppc/spapr_drc.h" 45 #include "qemu/cutils.h" 46 47 /* #define DEBUG_SPAPR */ 48 49 #ifdef DEBUG_SPAPR 50 #define DPRINTF(fmt, ...) \ 51 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 52 #else 53 #define DPRINTF(fmt, ...) \ 54 do { } while (0) 55 #endif 56 57 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr, 58 uint32_t drc_index) 59 { 60 sPAPRConfigureConnectorState *ccs = NULL; 61 62 QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) { 63 if (ccs->drc_index == drc_index) { 64 break; 65 } 66 } 67 68 return ccs; 69 } 70 71 static void spapr_ccs_add(sPAPRMachineState *spapr, 72 sPAPRConfigureConnectorState *ccs) 73 { 74 g_assert(!spapr_ccs_find(spapr, ccs->drc_index)); 75 QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next); 76 } 77 78 static void spapr_ccs_remove(sPAPRMachineState *spapr, 79 sPAPRConfigureConnectorState *ccs) 80 { 81 QTAILQ_REMOVE(&spapr->ccs_list, ccs, next); 82 g_free(ccs); 83 } 84 85 void spapr_ccs_reset_hook(void *opaque) 86 { 87 sPAPRMachineState *spapr = opaque; 88 sPAPRConfigureConnectorState *ccs, *ccs_tmp; 89 90 QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) { 91 spapr_ccs_remove(spapr, ccs); 92 } 93 } 94 95 static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr, 96 uint32_t token, uint32_t nargs, 97 target_ulong args, 98 uint32_t nret, target_ulong rets) 99 { 100 uint8_t c = rtas_ld(args, 0); 101 VIOsPAPRDevice *sdev = vty_lookup(spapr, 0); 102 103 if (!sdev) { 104 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 105 } else { 106 vty_putchars(sdev, &c, sizeof(c)); 107 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 108 } 109 } 110 111 static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr, 112 uint32_t token, uint32_t nargs, target_ulong args, 113 uint32_t nret, target_ulong rets) 114 { 115 if (nargs != 2 || nret != 1) { 116 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 117 return; 118 } 119 qemu_system_shutdown_request(); 120 cpu_stop_current(); 121 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 122 } 123 124 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr, 125 uint32_t token, uint32_t nargs, 126 target_ulong args, 127 uint32_t nret, target_ulong rets) 128 { 129 if (nargs != 0 || nret != 1) { 130 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 131 return; 132 } 133 qemu_system_reset_request(); 134 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 135 } 136 137 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_, 138 sPAPRMachineState *spapr, 139 uint32_t token, uint32_t nargs, 140 target_ulong args, 141 uint32_t nret, target_ulong rets) 142 { 143 target_ulong id; 144 PowerPCCPU *cpu; 145 146 if (nargs != 1 || nret != 2) { 147 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 148 return; 149 } 150 151 id = rtas_ld(args, 0); 152 cpu = ppc_get_vcpu_by_dt_id(id); 153 if (cpu != NULL) { 154 if (CPU(cpu)->halted) { 155 rtas_st(rets, 1, 0); 156 } else { 157 rtas_st(rets, 1, 2); 158 } 159 160 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 161 return; 162 } 163 164 /* Didn't find a matching cpu */ 165 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 166 } 167 168 /* 169 * Set the timebase offset of the CPU to that of first CPU. 170 * This helps hotplugged CPU to have the correct timebase offset. 171 */ 172 static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu) 173 { 174 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 175 176 cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset; 177 } 178 179 static void spapr_cpu_set_endianness(PowerPCCPU *cpu) 180 { 181 PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); 182 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu); 183 184 if (!pcc->interrupts_big_endian(fcpu)) { 185 cpu->env.spr[SPR_LPCR] |= LPCR_ILE; 186 } 187 } 188 189 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr, 190 uint32_t token, uint32_t nargs, 191 target_ulong args, 192 uint32_t nret, target_ulong rets) 193 { 194 target_ulong id, start, r3; 195 PowerPCCPU *cpu; 196 197 if (nargs != 3 || nret != 1) { 198 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 199 return; 200 } 201 202 id = rtas_ld(args, 0); 203 start = rtas_ld(args, 1); 204 r3 = rtas_ld(args, 2); 205 206 cpu = ppc_get_vcpu_by_dt_id(id); 207 if (cpu != NULL) { 208 CPUState *cs = CPU(cpu); 209 CPUPPCState *env = &cpu->env; 210 211 if (!cs->halted) { 212 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 213 return; 214 } 215 216 /* This will make sure qemu state is up to date with kvm, and 217 * mark it dirty so our changes get flushed back before the 218 * new cpu enters */ 219 kvm_cpu_synchronize_state(cs); 220 221 env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME); 222 env->nip = start; 223 env->gpr[3] = r3; 224 cs->halted = 0; 225 spapr_cpu_set_endianness(cpu); 226 spapr_cpu_update_tb_offset(cpu); 227 228 qemu_cpu_kick(cs); 229 230 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 231 return; 232 } 233 234 /* Didn't find a matching cpu */ 235 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 236 } 237 238 static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, 239 uint32_t token, uint32_t nargs, 240 target_ulong args, 241 uint32_t nret, target_ulong rets) 242 { 243 CPUState *cs = CPU(cpu); 244 CPUPPCState *env = &cpu->env; 245 246 cs->halted = 1; 247 qemu_cpu_kick(cs); 248 /* 249 * While stopping a CPU, the guest calls H_CPPR which 250 * effectively disables interrupts on XICS level. 251 * However decrementer interrupts in TCG can still 252 * wake the CPU up so here we disable interrupts in MSR 253 * as well. 254 * As rtas_start_cpu() resets the whole MSR anyway, there is 255 * no need to bother with specific bits, we just clear it. 256 */ 257 env->msr = 0; 258 } 259 260 static inline int sysparm_st(target_ulong addr, target_ulong len, 261 const void *val, uint16_t vallen) 262 { 263 hwaddr phys = ppc64_phys_to_real(addr); 264 265 if (len < 2) { 266 return RTAS_OUT_SYSPARM_PARAM_ERROR; 267 } 268 stw_be_phys(&address_space_memory, phys, vallen); 269 cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen)); 270 return RTAS_OUT_SUCCESS; 271 } 272 273 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu, 274 sPAPRMachineState *spapr, 275 uint32_t token, uint32_t nargs, 276 target_ulong args, 277 uint32_t nret, target_ulong rets) 278 { 279 target_ulong parameter = rtas_ld(args, 0); 280 target_ulong buffer = rtas_ld(args, 1); 281 target_ulong length = rtas_ld(args, 2); 282 target_ulong ret; 283 284 switch (parameter) { 285 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: { 286 char *param_val = g_strdup_printf("MaxEntCap=%d," 287 "DesMem=%llu," 288 "DesProcs=%d," 289 "MaxPlatProcs=%d", 290 max_cpus, 291 current_machine->ram_size / M_BYTE, 292 smp_cpus, 293 max_cpus); 294 ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1); 295 g_free(param_val); 296 break; 297 } 298 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: { 299 uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED; 300 301 ret = sysparm_st(buffer, length, ¶m_val, sizeof(param_val)); 302 break; 303 } 304 case RTAS_SYSPARM_UUID: 305 ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0)); 306 break; 307 default: 308 ret = RTAS_OUT_NOT_SUPPORTED; 309 } 310 311 rtas_st(rets, 0, ret); 312 } 313 314 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu, 315 sPAPRMachineState *spapr, 316 uint32_t token, uint32_t nargs, 317 target_ulong args, 318 uint32_t nret, target_ulong rets) 319 { 320 target_ulong parameter = rtas_ld(args, 0); 321 target_ulong ret = RTAS_OUT_NOT_SUPPORTED; 322 323 switch (parameter) { 324 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: 325 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: 326 case RTAS_SYSPARM_UUID: 327 ret = RTAS_OUT_NOT_AUTHORIZED; 328 break; 329 } 330 331 rtas_st(rets, 0, ret); 332 } 333 334 static void rtas_ibm_os_term(PowerPCCPU *cpu, 335 sPAPRMachineState *spapr, 336 uint32_t token, uint32_t nargs, 337 target_ulong args, 338 uint32_t nret, target_ulong rets) 339 { 340 target_ulong ret = 0; 341 342 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort); 343 344 rtas_st(rets, 0, ret); 345 } 346 347 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 348 uint32_t token, uint32_t nargs, 349 target_ulong args, uint32_t nret, 350 target_ulong rets) 351 { 352 int32_t power_domain; 353 354 if (nargs != 2 || nret != 2) { 355 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 356 return; 357 } 358 359 /* we currently only use a single, "live insert" powerdomain for 360 * hotplugged/dlpar'd resources, so the power is always live/full (100) 361 */ 362 power_domain = rtas_ld(args, 0); 363 if (power_domain != -1) { 364 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 365 return; 366 } 367 368 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 369 rtas_st(rets, 1, 100); 370 } 371 372 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, 373 uint32_t token, uint32_t nargs, 374 target_ulong args, uint32_t nret, 375 target_ulong rets) 376 { 377 int32_t power_domain; 378 379 if (nargs != 1 || nret != 2) { 380 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 381 return; 382 } 383 384 /* we currently only use a single, "live insert" powerdomain for 385 * hotplugged/dlpar'd resources, so the power is always live/full (100) 386 */ 387 power_domain = rtas_ld(args, 0); 388 if (power_domain != -1) { 389 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 390 return; 391 } 392 393 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 394 rtas_st(rets, 1, 100); 395 } 396 397 static bool sensor_type_is_dr(uint32_t sensor_type) 398 { 399 switch (sensor_type) { 400 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 401 case RTAS_SENSOR_TYPE_DR: 402 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 403 return true; 404 } 405 406 return false; 407 } 408 409 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 410 uint32_t token, uint32_t nargs, 411 target_ulong args, uint32_t nret, 412 target_ulong rets) 413 { 414 uint32_t sensor_type; 415 uint32_t sensor_index; 416 uint32_t sensor_state; 417 uint32_t ret = RTAS_OUT_SUCCESS; 418 sPAPRDRConnector *drc; 419 sPAPRDRConnectorClass *drck; 420 421 if (nargs != 3 || nret != 1) { 422 ret = RTAS_OUT_PARAM_ERROR; 423 goto out; 424 } 425 426 sensor_type = rtas_ld(args, 0); 427 sensor_index = rtas_ld(args, 1); 428 sensor_state = rtas_ld(args, 2); 429 430 if (!sensor_type_is_dr(sensor_type)) { 431 goto out_unimplemented; 432 } 433 434 /* if this is a DR sensor we can assume sensor_index == drc_index */ 435 drc = spapr_dr_connector_by_index(sensor_index); 436 if (!drc) { 437 DPRINTF("rtas_set_indicator: invalid sensor/DRC index: %xh\n", 438 sensor_index); 439 ret = RTAS_OUT_PARAM_ERROR; 440 goto out; 441 } 442 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 443 444 switch (sensor_type) { 445 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 446 /* if the guest is configuring a device attached to this 447 * DRC, we should reset the configuration state at this 448 * point since it may no longer be reliable (guest released 449 * device and needs to start over, or unplug occurred so 450 * the FDT is no longer valid) 451 */ 452 if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) { 453 sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr, 454 sensor_index); 455 if (ccs) { 456 spapr_ccs_remove(spapr, ccs); 457 } 458 } 459 ret = drck->set_isolation_state(drc, sensor_state); 460 break; 461 case RTAS_SENSOR_TYPE_DR: 462 ret = drck->set_indicator_state(drc, sensor_state); 463 break; 464 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 465 ret = drck->set_allocation_state(drc, sensor_state); 466 break; 467 default: 468 goto out_unimplemented; 469 } 470 471 out: 472 rtas_st(rets, 0, ret); 473 return; 474 475 out_unimplemented: 476 /* currently only DR-related sensors are implemented */ 477 DPRINTF("rtas_set_indicator: sensor/indicator not implemented: %d\n", 478 sensor_type); 479 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); 480 } 481 482 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 483 uint32_t token, uint32_t nargs, 484 target_ulong args, uint32_t nret, 485 target_ulong rets) 486 { 487 uint32_t sensor_type; 488 uint32_t sensor_index; 489 uint32_t sensor_state = 0; 490 sPAPRDRConnector *drc; 491 sPAPRDRConnectorClass *drck; 492 uint32_t ret = RTAS_OUT_SUCCESS; 493 494 if (nargs != 2 || nret != 2) { 495 ret = RTAS_OUT_PARAM_ERROR; 496 goto out; 497 } 498 499 sensor_type = rtas_ld(args, 0); 500 sensor_index = rtas_ld(args, 1); 501 502 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 503 /* currently only DR-related sensors are implemented */ 504 DPRINTF("rtas_get_sensor_state: sensor/indicator not implemented: %d\n", 505 sensor_type); 506 ret = RTAS_OUT_NOT_SUPPORTED; 507 goto out; 508 } 509 510 drc = spapr_dr_connector_by_index(sensor_index); 511 if (!drc) { 512 DPRINTF("rtas_get_sensor_state: invalid sensor/DRC index: %xh\n", 513 sensor_index); 514 ret = RTAS_OUT_PARAM_ERROR; 515 goto out; 516 } 517 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 518 ret = drck->entity_sense(drc, &sensor_state); 519 520 out: 521 rtas_st(rets, 0, ret); 522 rtas_st(rets, 1, sensor_state); 523 } 524 525 /* configure-connector work area offsets, int32_t units for field 526 * indexes, bytes for field offset/len values. 527 * 528 * as documented by PAPR+ v2.7, 13.5.3.5 529 */ 530 #define CC_IDX_NODE_NAME_OFFSET 2 531 #define CC_IDX_PROP_NAME_OFFSET 2 532 #define CC_IDX_PROP_LEN 3 533 #define CC_IDX_PROP_DATA_OFFSET 4 534 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 535 #define CC_WA_LEN 4096 536 537 static void configure_connector_st(target_ulong addr, target_ulong offset, 538 const void *buf, size_t len) 539 { 540 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 541 buf, MIN(len, CC_WA_LEN - offset)); 542 } 543 544 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 545 sPAPRMachineState *spapr, 546 uint32_t token, uint32_t nargs, 547 target_ulong args, uint32_t nret, 548 target_ulong rets) 549 { 550 uint64_t wa_addr; 551 uint64_t wa_offset; 552 uint32_t drc_index; 553 sPAPRDRConnector *drc; 554 sPAPRDRConnectorClass *drck; 555 sPAPRConfigureConnectorState *ccs; 556 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 557 int rc; 558 const void *fdt; 559 560 if (nargs != 2 || nret != 1) { 561 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 562 return; 563 } 564 565 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 566 567 drc_index = rtas_ld(wa_addr, 0); 568 drc = spapr_dr_connector_by_index(drc_index); 569 if (!drc) { 570 DPRINTF("rtas_ibm_configure_connector: invalid DRC index: %xh\n", 571 drc_index); 572 rc = RTAS_OUT_PARAM_ERROR; 573 goto out; 574 } 575 576 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 577 fdt = drck->get_fdt(drc, NULL); 578 if (!fdt) { 579 DPRINTF("rtas_ibm_configure_connector: Missing FDT for DRC index: %xh\n", 580 drc_index); 581 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 582 goto out; 583 } 584 585 ccs = spapr_ccs_find(spapr, drc_index); 586 if (!ccs) { 587 ccs = g_new0(sPAPRConfigureConnectorState, 1); 588 (void)drck->get_fdt(drc, &ccs->fdt_offset); 589 ccs->drc_index = drc_index; 590 spapr_ccs_add(spapr, ccs); 591 } 592 593 do { 594 uint32_t tag; 595 const char *name; 596 const struct fdt_property *prop; 597 int fdt_offset_next, prop_len; 598 599 tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next); 600 601 switch (tag) { 602 case FDT_BEGIN_NODE: 603 ccs->fdt_depth++; 604 name = fdt_get_name(fdt, ccs->fdt_offset, NULL); 605 606 /* provide the name of the next OF node */ 607 wa_offset = CC_VAL_DATA_OFFSET; 608 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 609 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 610 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 611 break; 612 case FDT_END_NODE: 613 ccs->fdt_depth--; 614 if (ccs->fdt_depth == 0) { 615 /* done sending the device tree, don't need to track 616 * the state anymore 617 */ 618 drck->set_configured(drc); 619 spapr_ccs_remove(spapr, ccs); 620 ccs = NULL; 621 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 622 } else { 623 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 624 } 625 break; 626 case FDT_PROP: 627 prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset, 628 &prop_len); 629 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 630 631 /* provide the name of the next OF property */ 632 wa_offset = CC_VAL_DATA_OFFSET; 633 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 634 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 635 636 /* provide the length and value of the OF property. data gets 637 * placed immediately after NULL terminator of the OF property's 638 * name string 639 */ 640 wa_offset += strlen(name) + 1, 641 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 642 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 643 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 644 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 645 break; 646 case FDT_END: 647 resp = SPAPR_DR_CC_RESPONSE_ERROR; 648 default: 649 /* keep seeking for an actionable tag */ 650 break; 651 } 652 if (ccs) { 653 ccs->fdt_offset = fdt_offset_next; 654 } 655 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 656 657 rc = resp; 658 out: 659 rtas_st(rets, 0, rc); 660 } 661 662 static struct rtas_call { 663 const char *name; 664 spapr_rtas_fn fn; 665 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE]; 666 667 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr, 668 uint32_t token, uint32_t nargs, target_ulong args, 669 uint32_t nret, target_ulong rets) 670 { 671 if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) { 672 struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE); 673 674 if (call->fn) { 675 call->fn(cpu, spapr, token, nargs, args, nret, rets); 676 return H_SUCCESS; 677 } 678 } 679 680 /* HACK: Some Linux early debug code uses RTAS display-character, 681 * but assumes the token value is 0xa (which it is on some real 682 * machines) without looking it up in the device tree. This 683 * special case makes this work */ 684 if (token == 0xa) { 685 rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets); 686 return H_SUCCESS; 687 } 688 689 hcall_dprintf("Unknown RTAS token 0x%x\n", token); 690 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 691 return H_PARAMETER; 692 } 693 694 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn) 695 { 696 assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)); 697 698 token -= RTAS_TOKEN_BASE; 699 700 assert(!rtas_table[token].name); 701 702 rtas_table[token].name = name; 703 rtas_table[token].fn = fn; 704 } 705 706 int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr, 707 hwaddr rtas_size) 708 { 709 int ret; 710 int i; 711 uint32_t lrdr_capacity[5]; 712 MachineState *machine = MACHINE(qdev_get_machine()); 713 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 714 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 715 memory_region_size(&spapr->hotplug_memory.mr); 716 717 ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size); 718 if (ret < 0) { 719 fprintf(stderr, "Couldn't add RTAS reserve entry: %s\n", 720 fdt_strerror(ret)); 721 return ret; 722 } 723 724 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base", 725 rtas_addr); 726 if (ret < 0) { 727 fprintf(stderr, "Couldn't add linux,rtas-base property: %s\n", 728 fdt_strerror(ret)); 729 return ret; 730 } 731 732 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry", 733 rtas_addr); 734 if (ret < 0) { 735 fprintf(stderr, "Couldn't add linux,rtas-entry property: %s\n", 736 fdt_strerror(ret)); 737 return ret; 738 } 739 740 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size", 741 rtas_size); 742 if (ret < 0) { 743 fprintf(stderr, "Couldn't add rtas-size property: %s\n", 744 fdt_strerror(ret)); 745 return ret; 746 } 747 748 for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) { 749 struct rtas_call *call = &rtas_table[i]; 750 751 if (!call->name) { 752 continue; 753 } 754 755 ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name, 756 i + RTAS_TOKEN_BASE); 757 if (ret < 0) { 758 fprintf(stderr, "Couldn't add rtas token for %s: %s\n", 759 call->name, fdt_strerror(ret)); 760 return ret; 761 } 762 763 } 764 765 lrdr_capacity[0] = cpu_to_be32(max_hotplug_addr >> 32); 766 lrdr_capacity[1] = cpu_to_be32(max_hotplug_addr & 0xffffffff); 767 lrdr_capacity[2] = 0; 768 lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE); 769 lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads); 770 ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity, 771 sizeof(lrdr_capacity)); 772 if (ret < 0) { 773 fprintf(stderr, "Couldn't add ibm,lrdr-capacity rtas property\n"); 774 return ret; 775 } 776 777 return 0; 778 } 779 780 static void core_rtas_register_types(void) 781 { 782 spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character", 783 rtas_display_character); 784 spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off); 785 spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot", 786 rtas_system_reboot); 787 spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state", 788 rtas_query_cpu_stopped_state); 789 spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu); 790 spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self); 791 spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER, 792 "ibm,get-system-parameter", 793 rtas_ibm_get_system_parameter); 794 spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER, 795 "ibm,set-system-parameter", 796 rtas_ibm_set_system_parameter); 797 spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term", 798 rtas_ibm_os_term); 799 spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level", 800 rtas_set_power_level); 801 spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level", 802 rtas_get_power_level); 803 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 804 rtas_set_indicator); 805 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 806 rtas_get_sensor_state); 807 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 808 rtas_ibm_configure_connector); 809 } 810 811 type_init(core_rtas_register_types) 812