xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision fe29141b)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52 
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN           0
55 #define RTAS_CHANGE_FN          1
56 #define RTAS_RESET_FN           2
57 #define RTAS_CHANGE_MSI_FN      3
58 #define RTAS_CHANGE_MSIX_FN     4
59 
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI           1
62 #define RTAS_TYPE_MSIX          2
63 
64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
65 {
66     sPAPRPHBState *sphb;
67 
68     QLIST_FOREACH(sphb, &spapr->phbs, list) {
69         if (sphb->buid != buid) {
70             continue;
71         }
72         return sphb;
73     }
74 
75     return NULL;
76 }
77 
78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
79                               uint32_t config_addr)
80 {
81     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
82     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
83     int bus_num = (config_addr >> 16) & 0xFF;
84     int devfn = (config_addr >> 8) & 0xFF;
85 
86     if (!phb) {
87         return NULL;
88     }
89 
90     return pci_find_device(phb->bus, bus_num, devfn);
91 }
92 
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
94 {
95     /* This handles the encoding of extended config space addresses */
96     return ((arg >> 20) & 0xf00) | (arg & 0xff);
97 }
98 
99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
100                                    uint32_t addr, uint32_t size,
101                                    target_ulong rets)
102 {
103     PCIDevice *pci_dev;
104     uint32_t val;
105 
106     if ((size != 1) && (size != 2) && (size != 4)) {
107         /* access must be 1, 2 or 4 bytes */
108         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
109         return;
110     }
111 
112     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
113     addr = rtas_pci_cfgaddr(addr);
114 
115     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
116         /* Access must be to a valid device, within bounds and
117          * naturally aligned */
118         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119         return;
120     }
121 
122     val = pci_host_config_read_common(pci_dev, addr,
123                                       pci_config_size(pci_dev), size);
124 
125     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
126     rtas_st(rets, 1, val);
127 }
128 
129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
130                                      uint32_t token, uint32_t nargs,
131                                      target_ulong args,
132                                      uint32_t nret, target_ulong rets)
133 {
134     uint64_t buid;
135     uint32_t size, addr;
136 
137     if ((nargs != 4) || (nret != 2)) {
138         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
139         return;
140     }
141 
142     buid = rtas_ldq(args, 1);
143     size = rtas_ld(args, 3);
144     addr = rtas_ld(args, 0);
145 
146     finish_read_pci_config(spapr, buid, addr, size, rets);
147 }
148 
149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
150                                  uint32_t token, uint32_t nargs,
151                                  target_ulong args,
152                                  uint32_t nret, target_ulong rets)
153 {
154     uint32_t size, addr;
155 
156     if ((nargs != 2) || (nret != 2)) {
157         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
158         return;
159     }
160 
161     size = rtas_ld(args, 1);
162     addr = rtas_ld(args, 0);
163 
164     finish_read_pci_config(spapr, 0, addr, size, rets);
165 }
166 
167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
168                                     uint32_t addr, uint32_t size,
169                                     uint32_t val, target_ulong rets)
170 {
171     PCIDevice *pci_dev;
172 
173     if ((size != 1) && (size != 2) && (size != 4)) {
174         /* access must be 1, 2 or 4 bytes */
175         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
176         return;
177     }
178 
179     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
180     addr = rtas_pci_cfgaddr(addr);
181 
182     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
183         /* Access must be to a valid device, within bounds and
184          * naturally aligned */
185         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186         return;
187     }
188 
189     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
190                                  val, size);
191 
192     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
193 }
194 
195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
196                                       uint32_t token, uint32_t nargs,
197                                       target_ulong args,
198                                       uint32_t nret, target_ulong rets)
199 {
200     uint64_t buid;
201     uint32_t val, size, addr;
202 
203     if ((nargs != 5) || (nret != 1)) {
204         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
205         return;
206     }
207 
208     buid = rtas_ldq(args, 1);
209     val = rtas_ld(args, 4);
210     size = rtas_ld(args, 3);
211     addr = rtas_ld(args, 0);
212 
213     finish_write_pci_config(spapr, buid, addr, size, val, rets);
214 }
215 
216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
217                                   uint32_t token, uint32_t nargs,
218                                   target_ulong args,
219                                   uint32_t nret, target_ulong rets)
220 {
221     uint32_t val, size, addr;
222 
223     if ((nargs != 3) || (nret != 1)) {
224         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
225         return;
226     }
227 
228 
229     val = rtas_ld(args, 2);
230     size = rtas_ld(args, 1);
231     addr = rtas_ld(args, 0);
232 
233     finish_write_pci_config(spapr, 0, addr, size, val, rets);
234 }
235 
236 /*
237  * Set MSI/MSIX message data.
238  * This is required for msi_notify()/msix_notify() which
239  * will write at the addresses via spapr_msi_write().
240  *
241  * If hwaddr == 0, all entries will have .data == first_irq i.e.
242  * table will be reset.
243  */
244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
245                              unsigned first_irq, unsigned req_num)
246 {
247     unsigned i;
248     MSIMessage msg = { .address = addr, .data = first_irq };
249 
250     if (!msix) {
251         msi_set_message(pdev, msg);
252         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
253         return;
254     }
255 
256     for (i = 0; i < req_num; ++i) {
257         msix_set_message(pdev, i, msg);
258         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
259         if (addr) {
260             ++msg.data;
261         }
262     }
263 }
264 
265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
266                                 uint32_t token, uint32_t nargs,
267                                 target_ulong args, uint32_t nret,
268                                 target_ulong rets)
269 {
270     uint32_t config_addr = rtas_ld(args, 0);
271     uint64_t buid = rtas_ldq(args, 1);
272     unsigned int func = rtas_ld(args, 3);
273     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
274     unsigned int seq_num = rtas_ld(args, 5);
275     unsigned int ret_intr_type;
276     unsigned int irq, max_irqs = 0;
277     sPAPRPHBState *phb = NULL;
278     PCIDevice *pdev = NULL;
279     spapr_pci_msi *msi;
280     int *config_addr_key;
281     Error *err = NULL;
282 
283     /* Fins sPAPRPHBState */
284     phb = spapr_pci_find_phb(spapr, buid);
285     if (phb) {
286         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
287     }
288     if (!phb || !pdev) {
289         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
290         return;
291     }
292 
293     switch (func) {
294     case RTAS_CHANGE_FN:
295         if (msi_present(pdev)) {
296             ret_intr_type = RTAS_TYPE_MSI;
297         } else if (msix_present(pdev)) {
298             ret_intr_type = RTAS_TYPE_MSIX;
299         } else {
300             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
301             return;
302         }
303         break;
304     case RTAS_CHANGE_MSI_FN:
305         if (msi_present(pdev)) {
306             ret_intr_type = RTAS_TYPE_MSI;
307         } else {
308             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
309             return;
310         }
311         break;
312     case RTAS_CHANGE_MSIX_FN:
313         if (msix_present(pdev)) {
314             ret_intr_type = RTAS_TYPE_MSIX;
315         } else {
316             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
317             return;
318         }
319         break;
320     default:
321         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
322         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
323         return;
324     }
325 
326     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
327 
328     /* Releasing MSIs */
329     if (!req_num) {
330         if (!msi) {
331             trace_spapr_pci_msi("Releasing wrong config", config_addr);
332             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
333             return;
334         }
335 
336         spapr_irq_free(spapr, msi->first_irq, msi->num);
337         if (msi_present(pdev)) {
338             spapr_msi_setmsg(pdev, 0, false, 0, 0);
339         }
340         if (msix_present(pdev)) {
341             spapr_msi_setmsg(pdev, 0, true, 0, 0);
342         }
343         g_hash_table_remove(phb->msi, &config_addr);
344 
345         trace_spapr_pci_msi("Released MSIs", config_addr);
346         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
347         rtas_st(rets, 1, 0);
348         return;
349     }
350 
351     /* Enabling MSI */
352 
353     /* Check if the device supports as many IRQs as requested */
354     if (ret_intr_type == RTAS_TYPE_MSI) {
355         max_irqs = msi_nr_vectors_allocated(pdev);
356     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
357         max_irqs = pdev->msix_entries_nr;
358     }
359     if (!max_irqs) {
360         error_report("Requested interrupt type %d is not enabled for device %x",
361                      ret_intr_type, config_addr);
362         rtas_st(rets, 0, -1); /* Hardware error */
363         return;
364     }
365     /* Correct the number if the guest asked for too many */
366     if (req_num > max_irqs) {
367         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
368         req_num = max_irqs;
369         irq = 0; /* to avoid misleading trace */
370         goto out;
371     }
372 
373     /* Allocate MSIs */
374     irq = spapr_irq_alloc_block(spapr, req_num, false,
375                            ret_intr_type == RTAS_TYPE_MSI, &err);
376     if (err) {
377         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
378                           config_addr);
379         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
380         return;
381     }
382 
383     /* Release previous MSIs */
384     if (msi) {
385         spapr_irq_free(spapr, msi->first_irq, msi->num);
386         g_hash_table_remove(phb->msi, &config_addr);
387     }
388 
389     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
390     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
391                      irq, req_num);
392 
393     /* Add MSI device to cache */
394     msi = g_new(spapr_pci_msi, 1);
395     msi->first_irq = irq;
396     msi->num = req_num;
397     config_addr_key = g_new(int, 1);
398     *config_addr_key = config_addr;
399     g_hash_table_insert(phb->msi, config_addr_key, msi);
400 
401 out:
402     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
403     rtas_st(rets, 1, req_num);
404     rtas_st(rets, 2, ++seq_num);
405     if (nret > 3) {
406         rtas_st(rets, 3, ret_intr_type);
407     }
408 
409     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
410 }
411 
412 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
413                                                    sPAPRMachineState *spapr,
414                                                    uint32_t token,
415                                                    uint32_t nargs,
416                                                    target_ulong args,
417                                                    uint32_t nret,
418                                                    target_ulong rets)
419 {
420     uint32_t config_addr = rtas_ld(args, 0);
421     uint64_t buid = rtas_ldq(args, 1);
422     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
423     sPAPRPHBState *phb = NULL;
424     PCIDevice *pdev = NULL;
425     spapr_pci_msi *msi;
426 
427     /* Find sPAPRPHBState */
428     phb = spapr_pci_find_phb(spapr, buid);
429     if (phb) {
430         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
431     }
432     if (!phb || !pdev) {
433         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
434         return;
435     }
436 
437     /* Find device descriptor and start IRQ */
438     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
439     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
440         trace_spapr_pci_msi("Failed to return vector", config_addr);
441         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
442         return;
443     }
444     intr_src_num = msi->first_irq + ioa_intr_num;
445     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
446                                                            intr_src_num);
447 
448     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
449     rtas_st(rets, 1, intr_src_num);
450     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
451 }
452 
453 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
454                                     sPAPRMachineState *spapr,
455                                     uint32_t token, uint32_t nargs,
456                                     target_ulong args, uint32_t nret,
457                                     target_ulong rets)
458 {
459     sPAPRPHBState *sphb;
460     uint32_t addr, option;
461     uint64_t buid;
462     int ret;
463 
464     if ((nargs != 4) || (nret != 1)) {
465         goto param_error_exit;
466     }
467 
468     buid = rtas_ldq(args, 1);
469     addr = rtas_ld(args, 0);
470     option = rtas_ld(args, 3);
471 
472     sphb = spapr_pci_find_phb(spapr, buid);
473     if (!sphb) {
474         goto param_error_exit;
475     }
476 
477     if (!spapr_phb_eeh_available(sphb)) {
478         goto param_error_exit;
479     }
480 
481     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
482     rtas_st(rets, 0, ret);
483     return;
484 
485 param_error_exit:
486     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
487 }
488 
489 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
490                                            sPAPRMachineState *spapr,
491                                            uint32_t token, uint32_t nargs,
492                                            target_ulong args, uint32_t nret,
493                                            target_ulong rets)
494 {
495     sPAPRPHBState *sphb;
496     PCIDevice *pdev;
497     uint32_t addr, option;
498     uint64_t buid;
499 
500     if ((nargs != 4) || (nret != 2)) {
501         goto param_error_exit;
502     }
503 
504     buid = rtas_ldq(args, 1);
505     sphb = spapr_pci_find_phb(spapr, buid);
506     if (!sphb) {
507         goto param_error_exit;
508     }
509 
510     if (!spapr_phb_eeh_available(sphb)) {
511         goto param_error_exit;
512     }
513 
514     /*
515      * We always have PE address of form "00BB0001". "BB"
516      * represents the bus number of PE's primary bus.
517      */
518     option = rtas_ld(args, 3);
519     switch (option) {
520     case RTAS_GET_PE_ADDR:
521         addr = rtas_ld(args, 0);
522         pdev = spapr_pci_find_dev(spapr, buid, addr);
523         if (!pdev) {
524             goto param_error_exit;
525         }
526 
527         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
528         break;
529     case RTAS_GET_PE_MODE:
530         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
531         break;
532     default:
533         goto param_error_exit;
534     }
535 
536     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
537     return;
538 
539 param_error_exit:
540     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
541 }
542 
543 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
544                                             sPAPRMachineState *spapr,
545                                             uint32_t token, uint32_t nargs,
546                                             target_ulong args, uint32_t nret,
547                                             target_ulong rets)
548 {
549     sPAPRPHBState *sphb;
550     uint64_t buid;
551     int state, ret;
552 
553     if ((nargs != 3) || (nret != 4 && nret != 5)) {
554         goto param_error_exit;
555     }
556 
557     buid = rtas_ldq(args, 1);
558     sphb = spapr_pci_find_phb(spapr, buid);
559     if (!sphb) {
560         goto param_error_exit;
561     }
562 
563     if (!spapr_phb_eeh_available(sphb)) {
564         goto param_error_exit;
565     }
566 
567     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
568     rtas_st(rets, 0, ret);
569     if (ret != RTAS_OUT_SUCCESS) {
570         return;
571     }
572 
573     rtas_st(rets, 1, state);
574     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
575     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
576     if (nret >= 5) {
577         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
578     }
579     return;
580 
581 param_error_exit:
582     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
583 }
584 
585 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
586                                     sPAPRMachineState *spapr,
587                                     uint32_t token, uint32_t nargs,
588                                     target_ulong args, uint32_t nret,
589                                     target_ulong rets)
590 {
591     sPAPRPHBState *sphb;
592     uint32_t option;
593     uint64_t buid;
594     int ret;
595 
596     if ((nargs != 4) || (nret != 1)) {
597         goto param_error_exit;
598     }
599 
600     buid = rtas_ldq(args, 1);
601     option = rtas_ld(args, 3);
602     sphb = spapr_pci_find_phb(spapr, buid);
603     if (!sphb) {
604         goto param_error_exit;
605     }
606 
607     if (!spapr_phb_eeh_available(sphb)) {
608         goto param_error_exit;
609     }
610 
611     ret = spapr_phb_vfio_eeh_reset(sphb, option);
612     rtas_st(rets, 0, ret);
613     return;
614 
615 param_error_exit:
616     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
617 }
618 
619 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
620                                   sPAPRMachineState *spapr,
621                                   uint32_t token, uint32_t nargs,
622                                   target_ulong args, uint32_t nret,
623                                   target_ulong rets)
624 {
625     sPAPRPHBState *sphb;
626     uint64_t buid;
627     int ret;
628 
629     if ((nargs != 3) || (nret != 1)) {
630         goto param_error_exit;
631     }
632 
633     buid = rtas_ldq(args, 1);
634     sphb = spapr_pci_find_phb(spapr, buid);
635     if (!sphb) {
636         goto param_error_exit;
637     }
638 
639     if (!spapr_phb_eeh_available(sphb)) {
640         goto param_error_exit;
641     }
642 
643     ret = spapr_phb_vfio_eeh_configure(sphb);
644     rtas_st(rets, 0, ret);
645     return;
646 
647 param_error_exit:
648     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
649 }
650 
651 /* To support it later */
652 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
653                                        sPAPRMachineState *spapr,
654                                        uint32_t token, uint32_t nargs,
655                                        target_ulong args, uint32_t nret,
656                                        target_ulong rets)
657 {
658     sPAPRPHBState *sphb;
659     int option;
660     uint64_t buid;
661 
662     if ((nargs != 8) || (nret != 1)) {
663         goto param_error_exit;
664     }
665 
666     buid = rtas_ldq(args, 1);
667     sphb = spapr_pci_find_phb(spapr, buid);
668     if (!sphb) {
669         goto param_error_exit;
670     }
671 
672     if (!spapr_phb_eeh_available(sphb)) {
673         goto param_error_exit;
674     }
675 
676     option = rtas_ld(args, 7);
677     switch (option) {
678     case RTAS_SLOT_TEMP_ERR_LOG:
679     case RTAS_SLOT_PERM_ERR_LOG:
680         break;
681     default:
682         goto param_error_exit;
683     }
684 
685     /* We don't have error log yet */
686     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
687     return;
688 
689 param_error_exit:
690     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
691 }
692 
693 static int pci_spapr_swizzle(int slot, int pin)
694 {
695     return (slot + pin) % PCI_NUM_PINS;
696 }
697 
698 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
699 {
700     /*
701      * Here we need to convert pci_dev + irq_num to some unique value
702      * which is less than number of IRQs on the specific bus (4).  We
703      * use standard PCI swizzling, that is (slot number + pin number)
704      * % 4.
705      */
706     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
707 }
708 
709 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
710 {
711     /*
712      * Here we use the number returned by pci_spapr_map_irq to find a
713      * corresponding qemu_irq.
714      */
715     sPAPRPHBState *phb = opaque;
716 
717     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
718     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
719 }
720 
721 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
722 {
723     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
724     PCIINTxRoute route;
725 
726     route.mode = PCI_INTX_ENABLED;
727     route.irq = sphb->lsi_table[pin].irq;
728 
729     return route;
730 }
731 
732 /*
733  * MSI/MSIX memory region implementation.
734  * The handler handles both MSI and MSIX.
735  * The vector number is encoded in least bits in data.
736  */
737 static void spapr_msi_write(void *opaque, hwaddr addr,
738                             uint64_t data, unsigned size)
739 {
740     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
741     uint32_t irq = data;
742 
743     trace_spapr_pci_msi_write(addr, data, irq);
744 
745     qemu_irq_pulse(spapr_qirq(spapr, irq));
746 }
747 
748 static const MemoryRegionOps spapr_msi_ops = {
749     /* There is no .read as the read result is undefined by PCI spec */
750     .read = NULL,
751     .write = spapr_msi_write,
752     .endianness = DEVICE_LITTLE_ENDIAN
753 };
754 
755 /*
756  * PHB PCI device
757  */
758 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
759 {
760     sPAPRPHBState *phb = opaque;
761 
762     return &phb->iommu_as;
763 }
764 
765 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
766 {
767     char *path = NULL, *buf = NULL, *host = NULL;
768 
769     /* Get the PCI VFIO host id */
770     host = object_property_get_str(OBJECT(pdev), "host", NULL);
771     if (!host) {
772         goto err_out;
773     }
774 
775     /* Construct the path of the file that will give us the DT location */
776     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
777     g_free(host);
778     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
779         goto err_out;
780     }
781     g_free(path);
782 
783     /* Construct and read from host device tree the loc-code */
784     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
785     g_free(buf);
786     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
787         goto err_out;
788     }
789     return buf;
790 
791 err_out:
792     g_free(path);
793     return NULL;
794 }
795 
796 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
797 {
798     char *buf;
799     const char *devtype = "qemu";
800     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
801 
802     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
803         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
804         if (buf) {
805             return buf;
806         }
807         devtype = "vfio";
808     }
809     /*
810      * For emulated devices and VFIO-failure case, make up
811      * the loc-code.
812      */
813     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
814                           devtype, pdev->name, sphb->index, busnr,
815                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
816     return buf;
817 }
818 
819 /* Macros to operate with address in OF binding to PCI */
820 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
821 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
822 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
823 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
824 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
825 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
826 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
827 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
828 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
829 
830 /* for 'reg'/'assigned-addresses' OF properties */
831 #define RESOURCE_CELLS_SIZE 2
832 #define RESOURCE_CELLS_ADDRESS 3
833 
834 typedef struct ResourceFields {
835     uint32_t phys_hi;
836     uint32_t phys_mid;
837     uint32_t phys_lo;
838     uint32_t size_hi;
839     uint32_t size_lo;
840 } QEMU_PACKED ResourceFields;
841 
842 typedef struct ResourceProps {
843     ResourceFields reg[8];
844     ResourceFields assigned[7];
845     uint32_t reg_len;
846     uint32_t assigned_len;
847 } ResourceProps;
848 
849 /* fill in the 'reg'/'assigned-resources' OF properties for
850  * a PCI device. 'reg' describes resource requirements for a
851  * device's IO/MEM regions, 'assigned-addresses' describes the
852  * actual resource assignments.
853  *
854  * the properties are arrays of ('phys-addr', 'size') pairs describing
855  * the addressable regions of the PCI device, where 'phys-addr' is a
856  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
857  * (phys.hi, phys.mid, phys.lo), and 'size' is a
858  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
859  *
860  * phys.hi = 0xYYXXXXZZ, where:
861  *   0xYY = npt000ss
862  *          |||   |
863  *          |||   +-- space code
864  *          |||               |
865  *          |||               +  00 if configuration space
866  *          |||               +  01 if IO region,
867  *          |||               +  10 if 32-bit MEM region
868  *          |||               +  11 if 64-bit MEM region
869  *          |||
870  *          ||+------ for non-relocatable IO: 1 if aliased
871  *          ||        for relocatable IO: 1 if below 64KB
872  *          ||        for MEM: 1 if below 1MB
873  *          |+------- 1 if region is prefetchable
874  *          +-------- 1 if region is non-relocatable
875  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
876  *            bits respectively
877  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
878  *          to the region
879  *
880  * phys.mid and phys.lo correspond respectively to the hi/lo portions
881  * of the actual address of the region.
882  *
883  * how the phys-addr/size values are used differ slightly between
884  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
885  * an additional description for the config space region of the
886  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
887  * to describe the region as relocatable, with an address-mapping
888  * that corresponds directly to the PHB's address space for the
889  * resource. 'assigned-addresses' always has n=1 set with an absolute
890  * address assigned for the resource. in general, 'assigned-addresses'
891  * won't be populated, since addresses for PCI devices are generally
892  * unmapped initially and left to the guest to assign.
893  *
894  * note also that addresses defined in these properties are, at least
895  * for PAPR guests, relative to the PHBs IO/MEM windows, and
896  * correspond directly to the addresses in the BARs.
897  *
898  * in accordance with PCI Bus Binding to Open Firmware,
899  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
900  * Appendix C.
901  */
902 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
903 {
904     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
905     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
906                        b_ddddd(PCI_SLOT(d->devfn)) |
907                        b_fff(PCI_FUNC(d->devfn)));
908     ResourceFields *reg, *assigned;
909     int i, reg_idx = 0, assigned_idx = 0;
910 
911     /* config space region */
912     reg = &rp->reg[reg_idx++];
913     reg->phys_hi = cpu_to_be32(dev_id);
914     reg->phys_mid = 0;
915     reg->phys_lo = 0;
916     reg->size_hi = 0;
917     reg->size_lo = 0;
918 
919     for (i = 0; i < PCI_NUM_REGIONS; i++) {
920         if (!d->io_regions[i].size) {
921             continue;
922         }
923 
924         reg = &rp->reg[reg_idx++];
925 
926         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
927         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
928             reg->phys_hi |= cpu_to_be32(b_ss(1));
929         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
930             reg->phys_hi |= cpu_to_be32(b_ss(3));
931         } else {
932             reg->phys_hi |= cpu_to_be32(b_ss(2));
933         }
934         reg->phys_mid = 0;
935         reg->phys_lo = 0;
936         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
937         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
938 
939         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
940             continue;
941         }
942 
943         assigned = &rp->assigned[assigned_idx++];
944         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
945         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
946         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
947         assigned->size_hi = reg->size_hi;
948         assigned->size_lo = reg->size_lo;
949     }
950 
951     rp->reg_len = reg_idx * sizeof(ResourceFields);
952     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
953 }
954 
955 typedef struct PCIClass PCIClass;
956 typedef struct PCISubClass PCISubClass;
957 typedef struct PCIIFace PCIIFace;
958 
959 struct PCIIFace {
960     int iface;
961     const char *name;
962 };
963 
964 struct PCISubClass {
965     int subclass;
966     const char *name;
967     const PCIIFace *iface;
968 };
969 
970 struct PCIClass {
971     const char *name;
972     const PCISubClass *subc;
973 };
974 
975 static const PCISubClass undef_subclass[] = {
976     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
977     { 0xFF, NULL, NULL },
978 };
979 
980 static const PCISubClass mass_subclass[] = {
981     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
982     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
983     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
984     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
985     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
986     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
987     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
988     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
989     { 0xFF, NULL, NULL },
990 };
991 
992 static const PCISubClass net_subclass[] = {
993     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
994     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
995     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
996     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
997     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
998     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
999     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1000     { 0xFF, NULL, NULL },
1001 };
1002 
1003 static const PCISubClass displ_subclass[] = {
1004     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1005     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1006     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1007     { 0xFF, NULL, NULL },
1008 };
1009 
1010 static const PCISubClass media_subclass[] = {
1011     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1012     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1013     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1014     { 0xFF, NULL, NULL },
1015 };
1016 
1017 static const PCISubClass mem_subclass[] = {
1018     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1019     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1020     { 0xFF, NULL, NULL },
1021 };
1022 
1023 static const PCISubClass bridg_subclass[] = {
1024     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1025     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1026     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1027     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1028     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1029     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1030     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1031     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1032     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1033     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1034     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1035     { 0xFF, NULL, NULL },
1036 };
1037 
1038 static const PCISubClass comm_subclass[] = {
1039     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1040     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1041     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1042     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1043     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1044     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1045     { 0xFF, NULL, NULL, },
1046 };
1047 
1048 static const PCIIFace pic_iface[] = {
1049     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1050     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1051     { 0xFF, NULL },
1052 };
1053 
1054 static const PCISubClass sys_subclass[] = {
1055     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1056     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1057     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1058     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1059     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1060     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1061     { 0xFF, NULL, NULL },
1062 };
1063 
1064 static const PCISubClass inp_subclass[] = {
1065     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1066     { PCI_CLASS_INPUT_PEN, "pen", NULL },
1067     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1068     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1069     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1070     { 0xFF, NULL, NULL },
1071 };
1072 
1073 static const PCISubClass dock_subclass[] = {
1074     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1075     { 0xFF, NULL, NULL },
1076 };
1077 
1078 static const PCISubClass cpu_subclass[] = {
1079     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1080     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1081     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1082     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1083     { 0xFF, NULL, NULL },
1084 };
1085 
1086 static const PCIIFace usb_iface[] = {
1087     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1088     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1089     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1090     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1091     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1092     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1093     { 0xFF, NULL },
1094 };
1095 
1096 static const PCISubClass ser_subclass[] = {
1097     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1098     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1099     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1100     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1101     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1102     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1103     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1104     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1105     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1106     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1107     { 0xFF, NULL, NULL },
1108 };
1109 
1110 static const PCISubClass wrl_subclass[] = {
1111     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1112     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1113     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1114     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1115     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1116     { 0xFF, NULL, NULL },
1117 };
1118 
1119 static const PCISubClass sat_subclass[] = {
1120     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1121     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1122     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1123     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1124     { 0xFF, NULL, NULL },
1125 };
1126 
1127 static const PCISubClass crypt_subclass[] = {
1128     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1129     { PCI_CLASS_CRYPT_ENTERTAINMENT,
1130       "entertainment-encryption", NULL },
1131     { 0xFF, NULL, NULL },
1132 };
1133 
1134 static const PCISubClass spc_subclass[] = {
1135     { PCI_CLASS_SP_DPIO, "dpio", NULL },
1136     { PCI_CLASS_SP_PERF, "counter", NULL },
1137     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1138     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1139     { 0xFF, NULL, NULL },
1140 };
1141 
1142 static const PCIClass pci_classes[] = {
1143     { "legacy-device", undef_subclass },
1144     { "mass-storage",  mass_subclass },
1145     { "network", net_subclass },
1146     { "display", displ_subclass, },
1147     { "multimedia-device", media_subclass },
1148     { "memory-controller", mem_subclass },
1149     { "unknown-bridge", bridg_subclass },
1150     { "communication-controller", comm_subclass},
1151     { "system-peripheral", sys_subclass },
1152     { "input-controller", inp_subclass },
1153     { "docking-station", dock_subclass },
1154     { "cpu", cpu_subclass },
1155     { "serial-bus", ser_subclass },
1156     { "wireless-controller", wrl_subclass },
1157     { "intelligent-io", NULL },
1158     { "satellite-device", sat_subclass },
1159     { "encryption", crypt_subclass },
1160     { "data-processing-controller", spc_subclass },
1161 };
1162 
1163 static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1164                                         uint8_t iface)
1165 {
1166     const PCIClass *pclass;
1167     const PCISubClass *psubclass;
1168     const PCIIFace *piface;
1169     const char *name;
1170 
1171     if (class >= ARRAY_SIZE(pci_classes)) {
1172         return "pci";
1173     }
1174 
1175     pclass = pci_classes + class;
1176     name = pclass->name;
1177 
1178     if (pclass->subc == NULL) {
1179         return name;
1180     }
1181 
1182     psubclass = pclass->subc;
1183     while ((psubclass->subclass & 0xff) != 0xff) {
1184         if ((psubclass->subclass & 0xff) == subclass) {
1185             name = psubclass->name;
1186             break;
1187         }
1188         psubclass++;
1189     }
1190 
1191     piface = psubclass->iface;
1192     if (piface == NULL) {
1193         return name;
1194     }
1195     while ((piface->iface & 0xff) != 0xff) {
1196         if ((piface->iface & 0xff) == iface) {
1197             name = piface->name;
1198             break;
1199         }
1200         piface++;
1201     }
1202 
1203     return name;
1204 }
1205 
1206 static gchar *pci_get_node_name(PCIDevice *dev)
1207 {
1208     int slot = PCI_SLOT(dev->devfn);
1209     int func = PCI_FUNC(dev->devfn);
1210     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1211     const char *name;
1212 
1213     name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1214                                 ccode & 0xff);
1215 
1216     if (func != 0) {
1217         return g_strdup_printf("%s@%x,%x", name, slot, func);
1218     } else {
1219         return g_strdup_printf("%s@%x", name, slot);
1220     }
1221 }
1222 
1223 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1224                                             PCIDevice *pdev);
1225 
1226 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1227                                        sPAPRPHBState *sphb)
1228 {
1229     ResourceProps rp;
1230     bool is_bridge = false;
1231     int pci_status;
1232     char *buf = NULL;
1233     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1234     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1235     uint32_t max_msi, max_msix;
1236 
1237     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1238         PCI_HEADER_TYPE_BRIDGE) {
1239         is_bridge = true;
1240     }
1241 
1242     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1243     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1244                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1245     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1246                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1247     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1248                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1249     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1250     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1251         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1252                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1253     }
1254 
1255     if (!is_bridge) {
1256         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1257             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1258         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1259             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1260     }
1261 
1262     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1263         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1264                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1265     }
1266 
1267     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1268         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1269                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1270     }
1271 
1272     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1273         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1274 
1275     /* the following fdt cells are masked off the pci status register */
1276     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1277     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1278                           PCI_STATUS_DEVSEL_MASK & pci_status));
1279 
1280     if (pci_status & PCI_STATUS_FAST_BACK) {
1281         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1282     }
1283     if (pci_status & PCI_STATUS_66MHZ) {
1284         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1285     }
1286     if (pci_status & PCI_STATUS_UDF) {
1287         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1288     }
1289 
1290     _FDT(fdt_setprop_string(fdt, offset, "name",
1291                             pci_find_device_name((ccode >> 16) & 0xff,
1292                                                  (ccode >> 8) & 0xff,
1293                                                  ccode & 0xff)));
1294 
1295     buf = spapr_phb_get_loc_code(sphb, dev);
1296     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1297     g_free(buf);
1298 
1299     if (drc_index) {
1300         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1301     }
1302 
1303     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1304                           RESOURCE_CELLS_ADDRESS));
1305     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1306                           RESOURCE_CELLS_SIZE));
1307 
1308     if (msi_present(dev)) {
1309         max_msi = msi_nr_vectors_allocated(dev);
1310         if (max_msi) {
1311             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1312         }
1313     }
1314     if (msix_present(dev)) {
1315         max_msix = dev->msix_entries_nr;
1316         if (max_msix) {
1317             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1318         }
1319     }
1320 
1321     populate_resource_props(dev, &rp);
1322     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1323     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1324                      (uint8_t *)rp.assigned, rp.assigned_len));
1325 
1326     if (sphb->pcie_ecs && pci_is_express(dev)) {
1327         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1328     }
1329 }
1330 
1331 /* create OF node for pci device and required OF DT properties */
1332 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1333                                      void *fdt, int node_offset)
1334 {
1335     int offset;
1336     gchar *nodename;
1337 
1338     nodename = pci_get_node_name(dev);
1339     _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1340     g_free(nodename);
1341 
1342     spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1343 
1344     return offset;
1345 }
1346 
1347 /* Callback to be called during DRC release. */
1348 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1349 {
1350     /* some version guests do not wait for completion of a device
1351      * cleanup (generally done asynchronously by the kernel) before
1352      * signaling to QEMU that the device is safe, but instead sleep
1353      * for some 'safe' period of time. unfortunately on a busy host
1354      * this sleep isn't guaranteed to be long enough, resulting in
1355      * bad things like IRQ lines being left asserted during final
1356      * device removal. to deal with this we call reset just prior
1357      * to finalizing the device, which will put the device back into
1358      * an 'idle' state, as the device cleanup code expects.
1359      */
1360     pci_device_reset(PCI_DEVICE(dev));
1361     object_unparent(OBJECT(dev));
1362 }
1363 
1364 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1365                                                     uint32_t busnr,
1366                                                     int32_t devfn)
1367 {
1368     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1369                            (phb->index << 16) | (busnr << 8) | devfn);
1370 }
1371 
1372 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1373                                                PCIDevice *pdev)
1374 {
1375     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1376     return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1377 }
1378 
1379 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1380                                             PCIDevice *pdev)
1381 {
1382     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1383 
1384     if (!drc) {
1385         return 0;
1386     }
1387 
1388     return spapr_drc_index(drc);
1389 }
1390 
1391 static void spapr_pci_plug(HotplugHandler *plug_handler,
1392                            DeviceState *plugged_dev, Error **errp)
1393 {
1394     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1395     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1396     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1397     Error *local_err = NULL;
1398     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1399     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1400     void *fdt = NULL;
1401     int fdt_start_offset, fdt_size;
1402 
1403     /* if DR is disabled we don't need to do anything in the case of
1404      * hotplug or coldplug callbacks
1405      */
1406     if (!phb->dr_enabled) {
1407         /* if this is a hotplug operation initiated by the user
1408          * we need to let them know it's not enabled
1409          */
1410         if (plugged_dev->hotplugged) {
1411             error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1412                        object_get_typename(OBJECT(phb)));
1413         }
1414         goto out;
1415     }
1416 
1417     g_assert(drc);
1418 
1419     /* Following the QEMU convention used for PCIe multifunction
1420      * hotplug, we do not allow functions to be hotplugged to a
1421      * slot that already has function 0 present
1422      */
1423     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1424         PCI_FUNC(pdev->devfn) != 0) {
1425         error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1426                    " additional functions can no longer be exposed to guest.",
1427                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1428         goto out;
1429     }
1430 
1431     fdt = create_device_tree(&fdt_size);
1432     fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1433 
1434     spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1435     if (local_err) {
1436         goto out;
1437     }
1438 
1439     /* If this is function 0, signal hotplug for all the device functions.
1440      * Otherwise defer sending the hotplug event.
1441      */
1442     if (!spapr_drc_hotplugged(plugged_dev)) {
1443         spapr_drc_reset(drc);
1444     } else if (PCI_FUNC(pdev->devfn) == 0) {
1445         int i;
1446 
1447         for (i = 0; i < 8; i++) {
1448             sPAPRDRConnector *func_drc;
1449             sPAPRDRConnectorClass *func_drck;
1450             sPAPRDREntitySense state;
1451 
1452             func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1453                                                   PCI_DEVFN(slotnr, i));
1454             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1455             state = func_drck->dr_entity_sense(func_drc);
1456 
1457             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1458                 spapr_hotplug_req_add_by_index(func_drc);
1459             }
1460         }
1461     }
1462 
1463 out:
1464     if (local_err) {
1465         error_propagate(errp, local_err);
1466         g_free(fdt);
1467     }
1468 }
1469 
1470 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1471                                      DeviceState *plugged_dev, Error **errp)
1472 {
1473     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1474     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1475     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1476 
1477     if (!phb->dr_enabled) {
1478         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1479                    object_get_typename(OBJECT(phb)));
1480         return;
1481     }
1482 
1483     g_assert(drc);
1484     g_assert(drc->dev == plugged_dev);
1485 
1486     if (!spapr_drc_unplug_requested(drc)) {
1487         PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1488         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1489         sPAPRDRConnector *func_drc;
1490         sPAPRDRConnectorClass *func_drck;
1491         sPAPRDREntitySense state;
1492         int i;
1493 
1494         /* ensure any other present functions are pending unplug */
1495         if (PCI_FUNC(pdev->devfn) == 0) {
1496             for (i = 1; i < 8; i++) {
1497                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1498                                                       PCI_DEVFN(slotnr, i));
1499                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1500                 state = func_drck->dr_entity_sense(func_drc);
1501                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1502                     && !spapr_drc_unplug_requested(func_drc)) {
1503                     error_setg(errp,
1504                                "PCI: slot %d, function %d still present. "
1505                                "Must unplug all non-0 functions first.",
1506                                slotnr, i);
1507                     return;
1508                 }
1509             }
1510         }
1511 
1512         spapr_drc_detach(drc);
1513 
1514         /* if this isn't func 0, defer unplug event. otherwise signal removal
1515          * for all present functions
1516          */
1517         if (PCI_FUNC(pdev->devfn) == 0) {
1518             for (i = 7; i >= 0; i--) {
1519                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1520                                                       PCI_DEVFN(slotnr, i));
1521                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1522                 state = func_drck->dr_entity_sense(func_drc);
1523                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1524                     spapr_hotplug_req_remove_by_index(func_drc);
1525                 }
1526             }
1527         }
1528     }
1529 }
1530 
1531 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1532 {
1533     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1534      * tries to add a sPAPR PHB to a non-pseries machine.
1535      */
1536     sPAPRMachineState *spapr =
1537         (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1538                                                   TYPE_SPAPR_MACHINE);
1539     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1540     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1541     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1542     char *namebuf;
1543     int i;
1544     PCIBus *bus;
1545     uint64_t msi_window_size = 4096;
1546     sPAPRTCETable *tcet;
1547     const unsigned windows_supported =
1548         sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1549 
1550     if (!spapr) {
1551         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1552         return;
1553     }
1554 
1555     if (sphb->index != (uint32_t)-1) {
1556         sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1557         Error *local_err = NULL;
1558 
1559         smc->phb_placement(spapr, sphb->index,
1560                            &sphb->buid, &sphb->io_win_addr,
1561                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
1562                            windows_supported, sphb->dma_liobn, &local_err);
1563         if (local_err) {
1564             error_propagate(errp, local_err);
1565             return;
1566         }
1567     } else {
1568         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1569         return;
1570     }
1571 
1572     if (sphb->mem64_win_size != 0) {
1573         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1574             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1575                        " (max 2 GiB)", sphb->mem_win_size);
1576             return;
1577         }
1578 
1579         /* 64-bit window defaults to identity mapping */
1580         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1581     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1582         /*
1583          * For compatibility with old configuration, if no 64-bit MMIO
1584          * window is specified, but the ordinary (32-bit) memory
1585          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1586          * window, with a 64-bit MMIO window following on immediately
1587          * afterwards
1588          */
1589         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1590         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1591         sphb->mem64_win_pciaddr =
1592             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1593         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1594     }
1595 
1596     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1597         error_setg(errp, "PCI host bridges must have unique BUIDs");
1598         return;
1599     }
1600 
1601     if (sphb->numa_node != -1 &&
1602         (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1603         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1604         return;
1605     }
1606 
1607     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1608 
1609     /* Initialize memory regions */
1610     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1611     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1612     g_free(namebuf);
1613 
1614     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1615     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1616                              namebuf, &sphb->memspace,
1617                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1618     g_free(namebuf);
1619     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1620                                 &sphb->mem32window);
1621 
1622     if (sphb->mem64_win_size != 0) {
1623         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1624         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1625                                  namebuf, &sphb->memspace,
1626                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1627         g_free(namebuf);
1628 
1629         memory_region_add_subregion(get_system_memory(),
1630                                     sphb->mem64_win_addr,
1631                                     &sphb->mem64window);
1632     }
1633 
1634     /* Initialize IO regions */
1635     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1636     memory_region_init(&sphb->iospace, OBJECT(sphb),
1637                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1638     g_free(namebuf);
1639 
1640     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1641     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1642                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1643     g_free(namebuf);
1644     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1645                                 &sphb->iowindow);
1646 
1647     bus = pci_register_root_bus(dev, NULL,
1648                                 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1649                                 &sphb->memspace, &sphb->iospace,
1650                                 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1651     phb->bus = bus;
1652     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1653 
1654     /*
1655      * Initialize PHB address space.
1656      * By default there will be at least one subregion for default
1657      * 32bit DMA window.
1658      * Later the guest might want to create another DMA window
1659      * which will become another memory subregion.
1660      */
1661     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1662     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1663                        namebuf, UINT64_MAX);
1664     g_free(namebuf);
1665     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1666                        sphb->dtbusname);
1667 
1668     /*
1669      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1670      * we need to allocate some memory to catch those writes coming
1671      * from msi_notify()/msix_notify().
1672      * As MSIMessage:addr is going to be the same and MSIMessage:data
1673      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1674      * be used.
1675      *
1676      * For KVM we want to ensure that this memory is a full page so that
1677      * our memory slot is of page size granularity.
1678      */
1679 #ifdef CONFIG_KVM
1680     if (kvm_enabled()) {
1681         msi_window_size = getpagesize();
1682     }
1683 #endif
1684 
1685     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1686                           "msi", msi_window_size);
1687     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1688                                 &sphb->msiwindow);
1689 
1690     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1691 
1692     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1693 
1694     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1695 
1696     /* Initialize the LSI table */
1697     for (i = 0; i < PCI_NUM_PINS; i++) {
1698         uint32_t irq;
1699         Error *local_err = NULL;
1700 
1701         irq = spapr_irq_alloc_block(spapr, 1, true, false, &local_err);
1702         if (local_err) {
1703             error_propagate(errp, local_err);
1704             error_prepend(errp, "can't allocate LSIs: ");
1705             return;
1706         }
1707 
1708         sphb->lsi_table[i].irq = irq;
1709     }
1710 
1711     /* allocate connectors for child PCI devices */
1712     if (sphb->dr_enabled) {
1713         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1714             spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1715                                    (sphb->index << 16) | i);
1716         }
1717     }
1718 
1719     /* DMA setup */
1720     if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
1721         && kvm_enabled()) {
1722         warn_report("System page size 0x%lx is not enabled in page_size_mask "
1723                     "(0x%"PRIx64"). Performance may be slow",
1724                     qemu_getrampagesize(), sphb->page_size_mask);
1725     }
1726 
1727     for (i = 0; i < windows_supported; ++i) {
1728         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1729         if (!tcet) {
1730             error_setg(errp, "Creating window#%d failed for %s",
1731                        i, sphb->dtbusname);
1732             return;
1733         }
1734         memory_region_add_subregion(&sphb->iommu_root, 0,
1735                                     spapr_tce_get_iommu(tcet));
1736     }
1737 
1738     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1739 }
1740 
1741 static int spapr_phb_children_reset(Object *child, void *opaque)
1742 {
1743     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1744 
1745     if (dev) {
1746         device_reset(dev);
1747     }
1748 
1749     return 0;
1750 }
1751 
1752 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1753 {
1754     int i;
1755     sPAPRTCETable *tcet;
1756 
1757     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1758         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1759 
1760         if (tcet && tcet->nb_table) {
1761             spapr_tce_table_disable(tcet);
1762         }
1763     }
1764 
1765     /* Register default 32bit DMA window */
1766     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1767     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1768                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1769 }
1770 
1771 static void spapr_phb_reset(DeviceState *qdev)
1772 {
1773     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1774 
1775     spapr_phb_dma_reset(sphb);
1776 
1777     /* Reset the IOMMU state */
1778     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1779 
1780     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1781         spapr_phb_vfio_reset(qdev);
1782     }
1783 }
1784 
1785 static Property spapr_phb_properties[] = {
1786     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1787     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1788                        SPAPR_PCI_MEM32_WIN_SIZE),
1789     DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1790                        SPAPR_PCI_MEM64_WIN_SIZE),
1791     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1792                        SPAPR_PCI_IO_WIN_SIZE),
1793     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1794                      true),
1795     /* Default DMA window is 0..1GB */
1796     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1797     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1798     DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1799                        0x800000000000000ULL),
1800     DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1801     DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1802                        (1ULL << 12) | (1ULL << 16)),
1803     DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1804     DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1805                      pre_2_8_migration, false),
1806     DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1807                      pcie_ecs, true),
1808     DEFINE_PROP_END_OF_LIST(),
1809 };
1810 
1811 static const VMStateDescription vmstate_spapr_pci_lsi = {
1812     .name = "spapr_pci/lsi",
1813     .version_id = 1,
1814     .minimum_version_id = 1,
1815     .fields = (VMStateField[]) {
1816         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1817 
1818         VMSTATE_END_OF_LIST()
1819     },
1820 };
1821 
1822 static const VMStateDescription vmstate_spapr_pci_msi = {
1823     .name = "spapr_pci/msi",
1824     .version_id = 1,
1825     .minimum_version_id = 1,
1826     .fields = (VMStateField []) {
1827         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1828         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1829         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1830         VMSTATE_END_OF_LIST()
1831     },
1832 };
1833 
1834 static int spapr_pci_pre_save(void *opaque)
1835 {
1836     sPAPRPHBState *sphb = opaque;
1837     GHashTableIter iter;
1838     gpointer key, value;
1839     int i;
1840 
1841     if (sphb->pre_2_8_migration) {
1842         sphb->mig_liobn = sphb->dma_liobn[0];
1843         sphb->mig_mem_win_addr = sphb->mem_win_addr;
1844         sphb->mig_mem_win_size = sphb->mem_win_size;
1845         sphb->mig_io_win_addr = sphb->io_win_addr;
1846         sphb->mig_io_win_size = sphb->io_win_size;
1847 
1848         if ((sphb->mem64_win_size != 0)
1849             && (sphb->mem64_win_addr
1850                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1851             sphb->mig_mem_win_size += sphb->mem64_win_size;
1852         }
1853     }
1854 
1855     g_free(sphb->msi_devs);
1856     sphb->msi_devs = NULL;
1857     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1858     if (!sphb->msi_devs_num) {
1859         return 0;
1860     }
1861     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1862 
1863     g_hash_table_iter_init(&iter, sphb->msi);
1864     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1865         sphb->msi_devs[i].key = *(uint32_t *) key;
1866         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1867     }
1868 
1869     return 0;
1870 }
1871 
1872 static int spapr_pci_post_load(void *opaque, int version_id)
1873 {
1874     sPAPRPHBState *sphb = opaque;
1875     gpointer key, value;
1876     int i;
1877 
1878     for (i = 0; i < sphb->msi_devs_num; ++i) {
1879         key = g_memdup(&sphb->msi_devs[i].key,
1880                        sizeof(sphb->msi_devs[i].key));
1881         value = g_memdup(&sphb->msi_devs[i].value,
1882                          sizeof(sphb->msi_devs[i].value));
1883         g_hash_table_insert(sphb->msi, key, value);
1884     }
1885     g_free(sphb->msi_devs);
1886     sphb->msi_devs = NULL;
1887     sphb->msi_devs_num = 0;
1888 
1889     return 0;
1890 }
1891 
1892 static bool pre_2_8_migration(void *opaque, int version_id)
1893 {
1894     sPAPRPHBState *sphb = opaque;
1895 
1896     return sphb->pre_2_8_migration;
1897 }
1898 
1899 static const VMStateDescription vmstate_spapr_pci = {
1900     .name = "spapr_pci",
1901     .version_id = 2,
1902     .minimum_version_id = 2,
1903     .pre_save = spapr_pci_pre_save,
1904     .post_load = spapr_pci_post_load,
1905     .fields = (VMStateField[]) {
1906         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1907         VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1908         VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1909         VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1910         VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1911         VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1912         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1913                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1914         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1915         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1916                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1917         VMSTATE_END_OF_LIST()
1918     },
1919 };
1920 
1921 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1922                                            PCIBus *rootbus)
1923 {
1924     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1925 
1926     return sphb->dtbusname;
1927 }
1928 
1929 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1930 {
1931     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1932     DeviceClass *dc = DEVICE_CLASS(klass);
1933     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1934 
1935     hc->root_bus_path = spapr_phb_root_bus_path;
1936     dc->realize = spapr_phb_realize;
1937     dc->props = spapr_phb_properties;
1938     dc->reset = spapr_phb_reset;
1939     dc->vmsd = &vmstate_spapr_pci;
1940     /* Supported by TYPE_SPAPR_MACHINE */
1941     dc->user_creatable = true;
1942     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1943     hp->plug = spapr_pci_plug;
1944     hp->unplug_request = spapr_pci_unplug_request;
1945 }
1946 
1947 static const TypeInfo spapr_phb_info = {
1948     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1949     .parent        = TYPE_PCI_HOST_BRIDGE,
1950     .instance_size = sizeof(sPAPRPHBState),
1951     .class_init    = spapr_phb_class_init,
1952     .interfaces    = (InterfaceInfo[]) {
1953         { TYPE_HOTPLUG_HANDLER },
1954         { }
1955     }
1956 };
1957 
1958 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1959 {
1960     DeviceState *dev;
1961 
1962     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1963     qdev_prop_set_uint32(dev, "index", index);
1964     qdev_init_nofail(dev);
1965 
1966     return PCI_HOST_BRIDGE(dev);
1967 }
1968 
1969 typedef struct sPAPRFDT {
1970     void *fdt;
1971     int node_off;
1972     sPAPRPHBState *sphb;
1973 } sPAPRFDT;
1974 
1975 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1976                                           void *opaque)
1977 {
1978     PCIBus *sec_bus;
1979     sPAPRFDT *p = opaque;
1980     int offset;
1981     sPAPRFDT s_fdt;
1982 
1983     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1984     if (!offset) {
1985         error_report("Failed to create pci child device tree node");
1986         return;
1987     }
1988 
1989     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1990          PCI_HEADER_TYPE_BRIDGE)) {
1991         return;
1992     }
1993 
1994     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1995     if (!sec_bus) {
1996         return;
1997     }
1998 
1999     s_fdt.fdt = p->fdt;
2000     s_fdt.node_off = offset;
2001     s_fdt.sphb = p->sphb;
2002     pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2003                                 spapr_populate_pci_devices_dt,
2004                                 &s_fdt);
2005 }
2006 
2007 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2008                                            void *opaque)
2009 {
2010     unsigned int *bus_no = opaque;
2011     unsigned int primary = *bus_no;
2012     unsigned int subordinate = 0xff;
2013     PCIBus *sec_bus = NULL;
2014 
2015     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2016          PCI_HEADER_TYPE_BRIDGE)) {
2017         return;
2018     }
2019 
2020     (*bus_no)++;
2021     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2022     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2023     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2024 
2025     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2026     if (!sec_bus) {
2027         return;
2028     }
2029 
2030     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2031     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2032                         spapr_phb_pci_enumerate_bridge, bus_no);
2033     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2034 }
2035 
2036 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2037 {
2038     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2039     unsigned int bus_no = 0;
2040 
2041     pci_for_each_device(bus, pci_bus_num(bus),
2042                         spapr_phb_pci_enumerate_bridge,
2043                         &bus_no);
2044 
2045 }
2046 
2047 int spapr_populate_pci_dt(sPAPRPHBState *phb,
2048                           uint32_t xics_phandle,
2049                           void *fdt)
2050 {
2051     int bus_off, i, j, ret;
2052     gchar *nodename;
2053     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2054     struct {
2055         uint32_t hi;
2056         uint64_t child;
2057         uint64_t parent;
2058         uint64_t size;
2059     } QEMU_PACKED ranges[] = {
2060         {
2061             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2062             cpu_to_be64(phb->io_win_addr),
2063             cpu_to_be64(memory_region_size(&phb->iospace)),
2064         },
2065         {
2066             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2067             cpu_to_be64(phb->mem_win_addr),
2068             cpu_to_be64(phb->mem_win_size),
2069         },
2070         {
2071             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2072             cpu_to_be64(phb->mem64_win_addr),
2073             cpu_to_be64(phb->mem64_win_size),
2074         },
2075     };
2076     const unsigned sizeof_ranges =
2077         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2078     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2079     uint32_t interrupt_map_mask[] = {
2080         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2081     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2082     uint32_t ddw_applicable[] = {
2083         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2084         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2085         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2086     };
2087     uint32_t ddw_extensions[] = {
2088         cpu_to_be32(1),
2089         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2090     };
2091     uint32_t associativity[] = {cpu_to_be32(0x4),
2092                                 cpu_to_be32(0x0),
2093                                 cpu_to_be32(0x0),
2094                                 cpu_to_be32(0x0),
2095                                 cpu_to_be32(phb->numa_node)};
2096     sPAPRTCETable *tcet;
2097     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2098     sPAPRFDT s_fdt;
2099 
2100     /* Start populating the FDT */
2101     nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2102     _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2103     g_free(nodename);
2104 
2105     /* Write PHB properties */
2106     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2107     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2108     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2109     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2110     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2111     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2112     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2113     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2114     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2115     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2116     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2117 
2118     /* Dynamic DMA window */
2119     if (phb->ddw_enabled) {
2120         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2121                          sizeof(ddw_applicable)));
2122         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2123                          &ddw_extensions, sizeof(ddw_extensions)));
2124     }
2125 
2126     /* Advertise NUMA via ibm,associativity */
2127     if (phb->numa_node != -1) {
2128         _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2129                          sizeof(associativity)));
2130     }
2131 
2132     /* Build the interrupt-map, this must matches what is done
2133      * in pci_spapr_map_irq
2134      */
2135     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2136                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
2137     for (i = 0; i < PCI_SLOT_MAX; i++) {
2138         for (j = 0; j < PCI_NUM_PINS; j++) {
2139             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2140             int lsi_num = pci_spapr_swizzle(i, j);
2141 
2142             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2143             irqmap[1] = 0;
2144             irqmap[2] = 0;
2145             irqmap[3] = cpu_to_be32(j+1);
2146             irqmap[4] = cpu_to_be32(xics_phandle);
2147             spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2148         }
2149     }
2150     /* Write interrupt map */
2151     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2152                      sizeof(interrupt_map)));
2153 
2154     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2155     if (!tcet) {
2156         return -1;
2157     }
2158     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2159                  tcet->liobn, tcet->bus_offset,
2160                  tcet->nb_table << tcet->page_shift);
2161 
2162     /* Walk the bridges and program the bus numbers*/
2163     spapr_phb_pci_enumerate(phb);
2164     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2165 
2166     /* Populate tree nodes with PCI devices attached */
2167     s_fdt.fdt = fdt;
2168     s_fdt.node_off = bus_off;
2169     s_fdt.sphb = phb;
2170     pci_for_each_device_reverse(bus, pci_bus_num(bus),
2171                                 spapr_populate_pci_devices_dt,
2172                                 &s_fdt);
2173 
2174     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2175                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
2176     if (ret) {
2177         return ret;
2178     }
2179 
2180     return 0;
2181 }
2182 
2183 void spapr_pci_rtas_init(void)
2184 {
2185     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2186                         rtas_read_pci_config);
2187     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2188                         rtas_write_pci_config);
2189     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2190                         rtas_ibm_read_pci_config);
2191     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2192                         rtas_ibm_write_pci_config);
2193     if (msi_nonbroken) {
2194         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2195                             "ibm,query-interrupt-source-number",
2196                             rtas_ibm_query_interrupt_source_number);
2197         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2198                             rtas_ibm_change_msi);
2199     }
2200 
2201     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2202                         "ibm,set-eeh-option",
2203                         rtas_ibm_set_eeh_option);
2204     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2205                         "ibm,get-config-addr-info2",
2206                         rtas_ibm_get_config_addr_info2);
2207     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2208                         "ibm,read-slot-reset-state2",
2209                         rtas_ibm_read_slot_reset_state2);
2210     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2211                         "ibm,set-slot-reset",
2212                         rtas_ibm_set_slot_reset);
2213     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2214                         "ibm,configure-pe",
2215                         rtas_ibm_configure_pe);
2216     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2217                         "ibm,slot-error-detail",
2218                         rtas_ibm_slot_error_detail);
2219 }
2220 
2221 static void spapr_pci_register_types(void)
2222 {
2223     type_register_static(&spapr_phb_info);
2224 }
2225 
2226 type_init(spapr_pci_register_types)
2227 
2228 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2229 {
2230     bool be = *(bool *)opaque;
2231 
2232     if (object_dynamic_cast(OBJECT(dev), "VGA")
2233         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2234         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2235                                  &error_abort);
2236     }
2237     return 0;
2238 }
2239 
2240 void spapr_pci_switch_vga(bool big_endian)
2241 {
2242     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2243     sPAPRPHBState *sphb;
2244 
2245     /*
2246      * For backward compatibility with existing guests, we switch
2247      * the endianness of the VGA controller when changing the guest
2248      * interrupt mode
2249      */
2250     QLIST_FOREACH(sphb, &spapr->phbs, list) {
2251         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2252         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2253                            &big_endian);
2254     }
2255 }
2256