1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qapi/error.h" 28 #include "cpu.h" 29 #include "hw/irq.h" 30 #include "hw/sysbus.h" 31 #include "migration/vmstate.h" 32 #include "hw/pci/pci.h" 33 #include "hw/pci/msi.h" 34 #include "hw/pci/msix.h" 35 #include "hw/pci/pci_host.h" 36 #include "hw/ppc/spapr.h" 37 #include "hw/pci-host/spapr.h" 38 #include "exec/address-spaces.h" 39 #include "exec/ram_addr.h" 40 #include <libfdt.h> 41 #include "trace.h" 42 #include "qemu/error-report.h" 43 #include "qemu/module.h" 44 #include "qapi/qmp/qerror.h" 45 #include "hw/ppc/fdt.h" 46 #include "hw/pci/pci_bridge.h" 47 #include "hw/pci/pci_bus.h" 48 #include "hw/pci/pci_ids.h" 49 #include "hw/ppc/spapr_drc.h" 50 #include "hw/qdev-properties.h" 51 #include "sysemu/device_tree.h" 52 #include "sysemu/kvm.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/numa.h" 55 56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 57 #define RTAS_QUERY_FN 0 58 #define RTAS_CHANGE_FN 1 59 #define RTAS_RESET_FN 2 60 #define RTAS_CHANGE_MSI_FN 3 61 #define RTAS_CHANGE_MSIX_FN 4 62 63 /* Interrupt types to return on RTAS_CHANGE_* */ 64 #define RTAS_TYPE_MSI 1 65 #define RTAS_TYPE_MSIX 2 66 67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid) 68 { 69 SpaprPhbState *sphb; 70 71 QLIST_FOREACH(sphb, &spapr->phbs, list) { 72 if (sphb->buid != buid) { 73 continue; 74 } 75 return sphb; 76 } 77 78 return NULL; 79 } 80 81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid, 82 uint32_t config_addr) 83 { 84 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid); 85 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 86 int bus_num = (config_addr >> 16) & 0xFF; 87 int devfn = (config_addr >> 8) & 0xFF; 88 89 if (!phb) { 90 return NULL; 91 } 92 93 return pci_find_device(phb->bus, bus_num, devfn); 94 } 95 96 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 97 { 98 /* This handles the encoding of extended config space addresses */ 99 return ((arg >> 20) & 0xf00) | (arg & 0xff); 100 } 101 102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid, 103 uint32_t addr, uint32_t size, 104 target_ulong rets) 105 { 106 PCIDevice *pci_dev; 107 uint32_t val; 108 109 if ((size != 1) && (size != 2) && (size != 4)) { 110 /* access must be 1, 2 or 4 bytes */ 111 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 112 return; 113 } 114 115 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 116 addr = rtas_pci_cfgaddr(addr); 117 118 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 119 /* Access must be to a valid device, within bounds and 120 * naturally aligned */ 121 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 122 return; 123 } 124 125 val = pci_host_config_read_common(pci_dev, addr, 126 pci_config_size(pci_dev), size); 127 128 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 129 rtas_st(rets, 1, val); 130 } 131 132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 133 uint32_t token, uint32_t nargs, 134 target_ulong args, 135 uint32_t nret, target_ulong rets) 136 { 137 uint64_t buid; 138 uint32_t size, addr; 139 140 if ((nargs != 4) || (nret != 2)) { 141 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 142 return; 143 } 144 145 buid = rtas_ldq(args, 1); 146 size = rtas_ld(args, 3); 147 addr = rtas_ld(args, 0); 148 149 finish_read_pci_config(spapr, buid, addr, size, rets); 150 } 151 152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 153 uint32_t token, uint32_t nargs, 154 target_ulong args, 155 uint32_t nret, target_ulong rets) 156 { 157 uint32_t size, addr; 158 159 if ((nargs != 2) || (nret != 2)) { 160 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 161 return; 162 } 163 164 size = rtas_ld(args, 1); 165 addr = rtas_ld(args, 0); 166 167 finish_read_pci_config(spapr, 0, addr, size, rets); 168 } 169 170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid, 171 uint32_t addr, uint32_t size, 172 uint32_t val, target_ulong rets) 173 { 174 PCIDevice *pci_dev; 175 176 if ((size != 1) && (size != 2) && (size != 4)) { 177 /* access must be 1, 2 or 4 bytes */ 178 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 179 return; 180 } 181 182 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 183 addr = rtas_pci_cfgaddr(addr); 184 185 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 186 /* Access must be to a valid device, within bounds and 187 * naturally aligned */ 188 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 189 return; 190 } 191 192 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 193 val, size); 194 195 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 196 } 197 198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 199 uint32_t token, uint32_t nargs, 200 target_ulong args, 201 uint32_t nret, target_ulong rets) 202 { 203 uint64_t buid; 204 uint32_t val, size, addr; 205 206 if ((nargs != 5) || (nret != 1)) { 207 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 208 return; 209 } 210 211 buid = rtas_ldq(args, 1); 212 val = rtas_ld(args, 4); 213 size = rtas_ld(args, 3); 214 addr = rtas_ld(args, 0); 215 216 finish_write_pci_config(spapr, buid, addr, size, val, rets); 217 } 218 219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 220 uint32_t token, uint32_t nargs, 221 target_ulong args, 222 uint32_t nret, target_ulong rets) 223 { 224 uint32_t val, size, addr; 225 226 if ((nargs != 3) || (nret != 1)) { 227 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 228 return; 229 } 230 231 232 val = rtas_ld(args, 2); 233 size = rtas_ld(args, 1); 234 addr = rtas_ld(args, 0); 235 236 finish_write_pci_config(spapr, 0, addr, size, val, rets); 237 } 238 239 /* 240 * Set MSI/MSIX message data. 241 * This is required for msi_notify()/msix_notify() which 242 * will write at the addresses via spapr_msi_write(). 243 * 244 * If hwaddr == 0, all entries will have .data == first_irq i.e. 245 * table will be reset. 246 */ 247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 248 unsigned first_irq, unsigned req_num) 249 { 250 unsigned i; 251 MSIMessage msg = { .address = addr, .data = first_irq }; 252 253 if (!msix) { 254 msi_set_message(pdev, msg); 255 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 256 return; 257 } 258 259 for (i = 0; i < req_num; ++i) { 260 msix_set_message(pdev, i, msg); 261 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 262 if (addr) { 263 ++msg.data; 264 } 265 } 266 } 267 268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr, 269 uint32_t token, uint32_t nargs, 270 target_ulong args, uint32_t nret, 271 target_ulong rets) 272 { 273 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 274 uint32_t config_addr = rtas_ld(args, 0); 275 uint64_t buid = rtas_ldq(args, 1); 276 unsigned int func = rtas_ld(args, 3); 277 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 278 unsigned int seq_num = rtas_ld(args, 5); 279 unsigned int ret_intr_type; 280 unsigned int irq, max_irqs = 0; 281 SpaprPhbState *phb = NULL; 282 PCIDevice *pdev = NULL; 283 SpaprPciMsi *msi; 284 int *config_addr_key; 285 Error *err = NULL; 286 int i; 287 288 /* Fins SpaprPhbState */ 289 phb = spapr_pci_find_phb(spapr, buid); 290 if (phb) { 291 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 292 } 293 if (!phb || !pdev) { 294 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 295 return; 296 } 297 298 switch (func) { 299 case RTAS_CHANGE_FN: 300 if (msi_present(pdev)) { 301 ret_intr_type = RTAS_TYPE_MSI; 302 } else if (msix_present(pdev)) { 303 ret_intr_type = RTAS_TYPE_MSIX; 304 } else { 305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 306 return; 307 } 308 break; 309 case RTAS_CHANGE_MSI_FN: 310 if (msi_present(pdev)) { 311 ret_intr_type = RTAS_TYPE_MSI; 312 } else { 313 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 314 return; 315 } 316 break; 317 case RTAS_CHANGE_MSIX_FN: 318 if (msix_present(pdev)) { 319 ret_intr_type = RTAS_TYPE_MSIX; 320 } else { 321 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 322 return; 323 } 324 break; 325 default: 326 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 327 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 328 return; 329 } 330 331 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 332 333 /* Releasing MSIs */ 334 if (!req_num) { 335 if (!msi) { 336 trace_spapr_pci_msi("Releasing wrong config", config_addr); 337 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 338 return; 339 } 340 341 if (msi_present(pdev)) { 342 spapr_msi_setmsg(pdev, 0, false, 0, 0); 343 } 344 if (msix_present(pdev)) { 345 spapr_msi_setmsg(pdev, 0, true, 0, 0); 346 } 347 g_hash_table_remove(phb->msi, &config_addr); 348 349 trace_spapr_pci_msi("Released MSIs", config_addr); 350 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 351 rtas_st(rets, 1, 0); 352 return; 353 } 354 355 /* Enabling MSI */ 356 357 /* Check if the device supports as many IRQs as requested */ 358 if (ret_intr_type == RTAS_TYPE_MSI) { 359 max_irqs = msi_nr_vectors_allocated(pdev); 360 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 361 max_irqs = pdev->msix_entries_nr; 362 } 363 if (!max_irqs) { 364 error_report("Requested interrupt type %d is not enabled for device %x", 365 ret_intr_type, config_addr); 366 rtas_st(rets, 0, -1); /* Hardware error */ 367 return; 368 } 369 /* Correct the number if the guest asked for too many */ 370 if (req_num > max_irqs) { 371 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 372 req_num = max_irqs; 373 irq = 0; /* to avoid misleading trace */ 374 goto out; 375 } 376 377 /* Allocate MSIs */ 378 if (smc->legacy_irq_allocation) { 379 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 380 &err); 381 } else { 382 irq = spapr_irq_msi_alloc(spapr, req_num, 383 ret_intr_type == RTAS_TYPE_MSI, &err); 384 } 385 if (err) { 386 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 387 config_addr); 388 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 389 return; 390 } 391 392 for (i = 0; i < req_num; i++) { 393 spapr_irq_claim(spapr, irq + i, false, &err); 394 if (err) { 395 if (i) { 396 spapr_irq_free(spapr, irq, i); 397 } 398 if (!smc->legacy_irq_allocation) { 399 spapr_irq_msi_free(spapr, irq, req_num); 400 } 401 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 402 config_addr); 403 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 404 return; 405 } 406 } 407 408 /* Release previous MSIs */ 409 if (msi) { 410 g_hash_table_remove(phb->msi, &config_addr); 411 } 412 413 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 414 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 415 irq, req_num); 416 417 /* Add MSI device to cache */ 418 msi = g_new(SpaprPciMsi, 1); 419 msi->first_irq = irq; 420 msi->num = req_num; 421 config_addr_key = g_new(int, 1); 422 *config_addr_key = config_addr; 423 g_hash_table_insert(phb->msi, config_addr_key, msi); 424 425 out: 426 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 427 rtas_st(rets, 1, req_num); 428 rtas_st(rets, 2, ++seq_num); 429 if (nret > 3) { 430 rtas_st(rets, 3, ret_intr_type); 431 } 432 433 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 434 } 435 436 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 437 SpaprMachineState *spapr, 438 uint32_t token, 439 uint32_t nargs, 440 target_ulong args, 441 uint32_t nret, 442 target_ulong rets) 443 { 444 uint32_t config_addr = rtas_ld(args, 0); 445 uint64_t buid = rtas_ldq(args, 1); 446 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 447 SpaprPhbState *phb = NULL; 448 PCIDevice *pdev = NULL; 449 SpaprPciMsi *msi; 450 451 /* Find SpaprPhbState */ 452 phb = spapr_pci_find_phb(spapr, buid); 453 if (phb) { 454 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 455 } 456 if (!phb || !pdev) { 457 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 458 return; 459 } 460 461 /* Find device descriptor and start IRQ */ 462 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 463 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 464 trace_spapr_pci_msi("Failed to return vector", config_addr); 465 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 466 return; 467 } 468 intr_src_num = msi->first_irq + ioa_intr_num; 469 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 470 intr_src_num); 471 472 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 473 rtas_st(rets, 1, intr_src_num); 474 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 475 } 476 477 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 478 SpaprMachineState *spapr, 479 uint32_t token, uint32_t nargs, 480 target_ulong args, uint32_t nret, 481 target_ulong rets) 482 { 483 SpaprPhbState *sphb; 484 uint32_t addr, option; 485 uint64_t buid; 486 int ret; 487 488 if ((nargs != 4) || (nret != 1)) { 489 goto param_error_exit; 490 } 491 492 buid = rtas_ldq(args, 1); 493 addr = rtas_ld(args, 0); 494 option = rtas_ld(args, 3); 495 496 sphb = spapr_pci_find_phb(spapr, buid); 497 if (!sphb) { 498 goto param_error_exit; 499 } 500 501 if (!spapr_phb_eeh_available(sphb)) { 502 goto param_error_exit; 503 } 504 505 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 506 rtas_st(rets, 0, ret); 507 return; 508 509 param_error_exit: 510 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 511 } 512 513 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 514 SpaprMachineState *spapr, 515 uint32_t token, uint32_t nargs, 516 target_ulong args, uint32_t nret, 517 target_ulong rets) 518 { 519 SpaprPhbState *sphb; 520 PCIDevice *pdev; 521 uint32_t addr, option; 522 uint64_t buid; 523 524 if ((nargs != 4) || (nret != 2)) { 525 goto param_error_exit; 526 } 527 528 buid = rtas_ldq(args, 1); 529 sphb = spapr_pci_find_phb(spapr, buid); 530 if (!sphb) { 531 goto param_error_exit; 532 } 533 534 if (!spapr_phb_eeh_available(sphb)) { 535 goto param_error_exit; 536 } 537 538 /* 539 * We always have PE address of form "00BB0001". "BB" 540 * represents the bus number of PE's primary bus. 541 */ 542 option = rtas_ld(args, 3); 543 switch (option) { 544 case RTAS_GET_PE_ADDR: 545 addr = rtas_ld(args, 0); 546 pdev = spapr_pci_find_dev(spapr, buid, addr); 547 if (!pdev) { 548 goto param_error_exit; 549 } 550 551 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 552 break; 553 case RTAS_GET_PE_MODE: 554 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 555 break; 556 default: 557 goto param_error_exit; 558 } 559 560 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 561 return; 562 563 param_error_exit: 564 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 565 } 566 567 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 568 SpaprMachineState *spapr, 569 uint32_t token, uint32_t nargs, 570 target_ulong args, uint32_t nret, 571 target_ulong rets) 572 { 573 SpaprPhbState *sphb; 574 uint64_t buid; 575 int state, ret; 576 577 if ((nargs != 3) || (nret != 4 && nret != 5)) { 578 goto param_error_exit; 579 } 580 581 buid = rtas_ldq(args, 1); 582 sphb = spapr_pci_find_phb(spapr, buid); 583 if (!sphb) { 584 goto param_error_exit; 585 } 586 587 if (!spapr_phb_eeh_available(sphb)) { 588 goto param_error_exit; 589 } 590 591 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 592 rtas_st(rets, 0, ret); 593 if (ret != RTAS_OUT_SUCCESS) { 594 return; 595 } 596 597 rtas_st(rets, 1, state); 598 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 599 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 600 if (nret >= 5) { 601 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 602 } 603 return; 604 605 param_error_exit: 606 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 607 } 608 609 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 610 SpaprMachineState *spapr, 611 uint32_t token, uint32_t nargs, 612 target_ulong args, uint32_t nret, 613 target_ulong rets) 614 { 615 SpaprPhbState *sphb; 616 uint32_t option; 617 uint64_t buid; 618 int ret; 619 620 if ((nargs != 4) || (nret != 1)) { 621 goto param_error_exit; 622 } 623 624 buid = rtas_ldq(args, 1); 625 option = rtas_ld(args, 3); 626 sphb = spapr_pci_find_phb(spapr, buid); 627 if (!sphb) { 628 goto param_error_exit; 629 } 630 631 if (!spapr_phb_eeh_available(sphb)) { 632 goto param_error_exit; 633 } 634 635 ret = spapr_phb_vfio_eeh_reset(sphb, option); 636 rtas_st(rets, 0, ret); 637 return; 638 639 param_error_exit: 640 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 641 } 642 643 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 644 SpaprMachineState *spapr, 645 uint32_t token, uint32_t nargs, 646 target_ulong args, uint32_t nret, 647 target_ulong rets) 648 { 649 SpaprPhbState *sphb; 650 uint64_t buid; 651 int ret; 652 653 if ((nargs != 3) || (nret != 1)) { 654 goto param_error_exit; 655 } 656 657 buid = rtas_ldq(args, 1); 658 sphb = spapr_pci_find_phb(spapr, buid); 659 if (!sphb) { 660 goto param_error_exit; 661 } 662 663 if (!spapr_phb_eeh_available(sphb)) { 664 goto param_error_exit; 665 } 666 667 ret = spapr_phb_vfio_eeh_configure(sphb); 668 rtas_st(rets, 0, ret); 669 return; 670 671 param_error_exit: 672 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 673 } 674 675 /* To support it later */ 676 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 677 SpaprMachineState *spapr, 678 uint32_t token, uint32_t nargs, 679 target_ulong args, uint32_t nret, 680 target_ulong rets) 681 { 682 SpaprPhbState *sphb; 683 int option; 684 uint64_t buid; 685 686 if ((nargs != 8) || (nret != 1)) { 687 goto param_error_exit; 688 } 689 690 buid = rtas_ldq(args, 1); 691 sphb = spapr_pci_find_phb(spapr, buid); 692 if (!sphb) { 693 goto param_error_exit; 694 } 695 696 if (!spapr_phb_eeh_available(sphb)) { 697 goto param_error_exit; 698 } 699 700 option = rtas_ld(args, 7); 701 switch (option) { 702 case RTAS_SLOT_TEMP_ERR_LOG: 703 case RTAS_SLOT_PERM_ERR_LOG: 704 break; 705 default: 706 goto param_error_exit; 707 } 708 709 /* We don't have error log yet */ 710 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 711 return; 712 713 param_error_exit: 714 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 715 } 716 717 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 718 { 719 /* 720 * Here we use the number returned by pci_swizzle_map_irq_fn to find a 721 * corresponding qemu_irq. 722 */ 723 SpaprPhbState *phb = opaque; 724 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 725 726 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 727 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level); 728 } 729 730 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 731 { 732 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 733 PCIINTxRoute route; 734 735 route.mode = PCI_INTX_ENABLED; 736 route.irq = sphb->lsi_table[pin].irq; 737 738 return route; 739 } 740 741 /* 742 * MSI/MSIX memory region implementation. 743 * The handler handles both MSI and MSIX. 744 * The vector number is encoded in least bits in data. 745 */ 746 static void spapr_msi_write(void *opaque, hwaddr addr, 747 uint64_t data, unsigned size) 748 { 749 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 750 uint32_t irq = data; 751 752 trace_spapr_pci_msi_write(addr, data, irq); 753 754 qemu_irq_pulse(spapr_qirq(spapr, irq)); 755 } 756 757 static const MemoryRegionOps spapr_msi_ops = { 758 /* There is no .read as the read result is undefined by PCI spec */ 759 .read = NULL, 760 .write = spapr_msi_write, 761 .endianness = DEVICE_LITTLE_ENDIAN 762 }; 763 764 /* 765 * PHB PCI device 766 */ 767 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 768 { 769 SpaprPhbState *phb = opaque; 770 771 return &phb->iommu_as; 772 } 773 774 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 775 { 776 char *path = NULL, *buf = NULL, *host = NULL; 777 778 /* Get the PCI VFIO host id */ 779 host = object_property_get_str(OBJECT(pdev), "host", NULL); 780 if (!host) { 781 goto err_out; 782 } 783 784 /* Construct the path of the file that will give us the DT location */ 785 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 786 g_free(host); 787 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 788 goto err_out; 789 } 790 g_free(path); 791 792 /* Construct and read from host device tree the loc-code */ 793 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 794 g_free(buf); 795 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 796 goto err_out; 797 } 798 return buf; 799 800 err_out: 801 g_free(path); 802 return NULL; 803 } 804 805 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 806 { 807 char *buf; 808 const char *devtype = "qemu"; 809 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 810 811 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 812 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 813 if (buf) { 814 return buf; 815 } 816 devtype = "vfio"; 817 } 818 /* 819 * For emulated devices and VFIO-failure case, make up 820 * the loc-code. 821 */ 822 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 823 devtype, pdev->name, sphb->index, busnr, 824 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 825 return buf; 826 } 827 828 /* Macros to operate with address in OF binding to PCI */ 829 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 830 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 831 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 832 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 833 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 834 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 835 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 836 #define b_fff(x) b_x((x), 8, 3) /* function number */ 837 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 838 839 /* for 'reg' OF properties */ 840 #define RESOURCE_CELLS_SIZE 2 841 #define RESOURCE_CELLS_ADDRESS 3 842 843 typedef struct ResourceFields { 844 uint32_t phys_hi; 845 uint32_t phys_mid; 846 uint32_t phys_lo; 847 uint32_t size_hi; 848 uint32_t size_lo; 849 } QEMU_PACKED ResourceFields; 850 851 typedef struct ResourceProps { 852 ResourceFields reg[8]; 853 uint32_t reg_len; 854 } ResourceProps; 855 856 /* fill in the 'reg' OF properties for 857 * a PCI device. 'reg' describes resource requirements for a 858 * device's IO/MEM regions. 859 * 860 * the property is an array of ('phys-addr', 'size') pairs describing 861 * the addressable regions of the PCI device, where 'phys-addr' is a 862 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 863 * (phys.hi, phys.mid, phys.lo), and 'size' is a 864 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 865 * 866 * phys.hi = 0xYYXXXXZZ, where: 867 * 0xYY = npt000ss 868 * ||| | 869 * ||| +-- space code 870 * ||| | 871 * ||| + 00 if configuration space 872 * ||| + 01 if IO region, 873 * ||| + 10 if 32-bit MEM region 874 * ||| + 11 if 64-bit MEM region 875 * ||| 876 * ||+------ for non-relocatable IO: 1 if aliased 877 * || for relocatable IO: 1 if below 64KB 878 * || for MEM: 1 if below 1MB 879 * |+------- 1 if region is prefetchable 880 * +-------- 1 if region is non-relocatable 881 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 882 * bits respectively 883 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 884 * to the region 885 * 886 * phys.mid and phys.lo correspond respectively to the hi/lo portions 887 * of the actual address of the region. 888 * 889 * note also that addresses defined in this property are, at least 890 * for PAPR guests, relative to the PHBs IO/MEM windows, and 891 * correspond directly to the addresses in the BARs. 892 * 893 * in accordance with PCI Bus Binding to Open Firmware, 894 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 895 * Appendix C. 896 */ 897 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 898 { 899 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 900 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 901 b_ddddd(PCI_SLOT(d->devfn)) | 902 b_fff(PCI_FUNC(d->devfn))); 903 ResourceFields *reg; 904 int i, reg_idx = 0; 905 906 /* config space region */ 907 reg = &rp->reg[reg_idx++]; 908 reg->phys_hi = cpu_to_be32(dev_id); 909 reg->phys_mid = 0; 910 reg->phys_lo = 0; 911 reg->size_hi = 0; 912 reg->size_lo = 0; 913 914 for (i = 0; i < PCI_NUM_REGIONS; i++) { 915 if (!d->io_regions[i].size) { 916 continue; 917 } 918 919 reg = &rp->reg[reg_idx++]; 920 921 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 922 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 923 reg->phys_hi |= cpu_to_be32(b_ss(1)); 924 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 925 reg->phys_hi |= cpu_to_be32(b_ss(3)); 926 } else { 927 reg->phys_hi |= cpu_to_be32(b_ss(2)); 928 } 929 reg->phys_mid = 0; 930 reg->phys_lo = 0; 931 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 932 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 933 } 934 935 rp->reg_len = reg_idx * sizeof(ResourceFields); 936 } 937 938 typedef struct PCIClass PCIClass; 939 typedef struct PCISubClass PCISubClass; 940 typedef struct PCIIFace PCIIFace; 941 942 struct PCIIFace { 943 int iface; 944 const char *name; 945 }; 946 947 struct PCISubClass { 948 int subclass; 949 const char *name; 950 const PCIIFace *iface; 951 }; 952 953 struct PCIClass { 954 const char *name; 955 const PCISubClass *subc; 956 }; 957 958 static const PCISubClass undef_subclass[] = { 959 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 960 { 0xFF, NULL, NULL }, 961 }; 962 963 static const PCISubClass mass_subclass[] = { 964 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 965 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 966 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 967 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 968 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 969 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 970 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 971 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 972 { 0xFF, NULL, NULL }, 973 }; 974 975 static const PCISubClass net_subclass[] = { 976 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 977 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 978 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 979 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 980 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 981 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 982 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 983 { 0xFF, NULL, NULL }, 984 }; 985 986 static const PCISubClass displ_subclass[] = { 987 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 988 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 989 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 990 { 0xFF, NULL, NULL }, 991 }; 992 993 static const PCISubClass media_subclass[] = { 994 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 995 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 996 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 997 { 0xFF, NULL, NULL }, 998 }; 999 1000 static const PCISubClass mem_subclass[] = { 1001 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1002 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1003 { 0xFF, NULL, NULL }, 1004 }; 1005 1006 static const PCISubClass bridg_subclass[] = { 1007 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1008 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1009 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1010 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1011 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1012 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1013 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1014 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1015 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1016 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1017 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1018 { 0xFF, NULL, NULL }, 1019 }; 1020 1021 static const PCISubClass comm_subclass[] = { 1022 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1023 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1024 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1025 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1026 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1027 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1028 { 0xFF, NULL, NULL, }, 1029 }; 1030 1031 static const PCIIFace pic_iface[] = { 1032 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1033 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1034 { 0xFF, NULL }, 1035 }; 1036 1037 static const PCISubClass sys_subclass[] = { 1038 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1039 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1040 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1041 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1042 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1043 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1044 { 0xFF, NULL, NULL }, 1045 }; 1046 1047 static const PCISubClass inp_subclass[] = { 1048 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1049 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1050 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1051 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1052 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1053 { 0xFF, NULL, NULL }, 1054 }; 1055 1056 static const PCISubClass dock_subclass[] = { 1057 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1058 { 0xFF, NULL, NULL }, 1059 }; 1060 1061 static const PCISubClass cpu_subclass[] = { 1062 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1063 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1064 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1065 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1066 { 0xFF, NULL, NULL }, 1067 }; 1068 1069 static const PCIIFace usb_iface[] = { 1070 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1071 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1072 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1073 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1074 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1075 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1076 { 0xFF, NULL }, 1077 }; 1078 1079 static const PCISubClass ser_subclass[] = { 1080 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1081 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1082 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1083 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1084 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1085 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1086 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1087 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1088 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1089 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1090 { 0xFF, NULL, NULL }, 1091 }; 1092 1093 static const PCISubClass wrl_subclass[] = { 1094 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1095 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1096 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1097 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1098 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1099 { 0xFF, NULL, NULL }, 1100 }; 1101 1102 static const PCISubClass sat_subclass[] = { 1103 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1104 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1105 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1106 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1107 { 0xFF, NULL, NULL }, 1108 }; 1109 1110 static const PCISubClass crypt_subclass[] = { 1111 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1112 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1113 "entertainment-encryption", NULL }, 1114 { 0xFF, NULL, NULL }, 1115 }; 1116 1117 static const PCISubClass spc_subclass[] = { 1118 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1119 { PCI_CLASS_SP_PERF, "counter", NULL }, 1120 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1121 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1122 { 0xFF, NULL, NULL }, 1123 }; 1124 1125 static const PCIClass pci_classes[] = { 1126 { "legacy-device", undef_subclass }, 1127 { "mass-storage", mass_subclass }, 1128 { "network", net_subclass }, 1129 { "display", displ_subclass, }, 1130 { "multimedia-device", media_subclass }, 1131 { "memory-controller", mem_subclass }, 1132 { "unknown-bridge", bridg_subclass }, 1133 { "communication-controller", comm_subclass}, 1134 { "system-peripheral", sys_subclass }, 1135 { "input-controller", inp_subclass }, 1136 { "docking-station", dock_subclass }, 1137 { "cpu", cpu_subclass }, 1138 { "serial-bus", ser_subclass }, 1139 { "wireless-controller", wrl_subclass }, 1140 { "intelligent-io", NULL }, 1141 { "satellite-device", sat_subclass }, 1142 { "encryption", crypt_subclass }, 1143 { "data-processing-controller", spc_subclass }, 1144 }; 1145 1146 static const char *dt_name_from_class(uint8_t class, uint8_t subclass, 1147 uint8_t iface) 1148 { 1149 const PCIClass *pclass; 1150 const PCISubClass *psubclass; 1151 const PCIIFace *piface; 1152 const char *name; 1153 1154 if (class >= ARRAY_SIZE(pci_classes)) { 1155 return "pci"; 1156 } 1157 1158 pclass = pci_classes + class; 1159 name = pclass->name; 1160 1161 if (pclass->subc == NULL) { 1162 return name; 1163 } 1164 1165 psubclass = pclass->subc; 1166 while ((psubclass->subclass & 0xff) != 0xff) { 1167 if ((psubclass->subclass & 0xff) == subclass) { 1168 name = psubclass->name; 1169 break; 1170 } 1171 psubclass++; 1172 } 1173 1174 piface = psubclass->iface; 1175 if (piface == NULL) { 1176 return name; 1177 } 1178 while ((piface->iface & 0xff) != 0xff) { 1179 if ((piface->iface & 0xff) == iface) { 1180 name = piface->name; 1181 break; 1182 } 1183 piface++; 1184 } 1185 1186 return name; 1187 } 1188 1189 /* 1190 * DRC helper functions 1191 */ 1192 1193 static uint32_t drc_id_from_devfn(SpaprPhbState *phb, 1194 uint8_t chassis, int32_t devfn) 1195 { 1196 return (phb->index << 16) | (chassis << 8) | devfn; 1197 } 1198 1199 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb, 1200 uint8_t chassis, int32_t devfn) 1201 { 1202 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1203 drc_id_from_devfn(phb, chassis, devfn)); 1204 } 1205 1206 static uint8_t chassis_from_bus(PCIBus *bus) 1207 { 1208 if (pci_bus_is_root(bus)) { 1209 return 0; 1210 } else { 1211 PCIDevice *bridge = pci_bridge_get_device(bus); 1212 1213 return object_property_get_uint(OBJECT(bridge), "chassis_nr", 1214 &error_abort); 1215 } 1216 } 1217 1218 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev) 1219 { 1220 uint8_t chassis = chassis_from_bus(pci_get_bus(dev)); 1221 1222 return drc_from_devfn(phb, chassis, dev->devfn); 1223 } 1224 1225 static void add_drcs(SpaprPhbState *phb, PCIBus *bus) 1226 { 1227 Object *owner; 1228 int i; 1229 uint8_t chassis; 1230 1231 if (!phb->dr_enabled) { 1232 return; 1233 } 1234 1235 chassis = chassis_from_bus(bus); 1236 1237 if (pci_bus_is_root(bus)) { 1238 owner = OBJECT(phb); 1239 } else { 1240 owner = OBJECT(pci_bridge_get_device(bus)); 1241 } 1242 1243 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) { 1244 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI, 1245 drc_id_from_devfn(phb, chassis, i)); 1246 } 1247 } 1248 1249 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus) 1250 { 1251 int i; 1252 uint8_t chassis; 1253 1254 if (!phb->dr_enabled) { 1255 return; 1256 } 1257 1258 chassis = chassis_from_bus(bus); 1259 1260 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) { 1261 SpaprDrc *drc = drc_from_devfn(phb, chassis, i); 1262 1263 if (drc) { 1264 object_unparent(OBJECT(drc)); 1265 } 1266 } 1267 } 1268 1269 typedef struct PciWalkFdt { 1270 void *fdt; 1271 int offset; 1272 SpaprPhbState *sphb; 1273 int err; 1274 } PciWalkFdt; 1275 1276 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1277 void *fdt, int parent_offset); 1278 1279 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev, 1280 void *opaque) 1281 { 1282 PciWalkFdt *p = opaque; 1283 int err; 1284 1285 if (p->err) { 1286 /* Something's already broken, don't keep going */ 1287 return; 1288 } 1289 1290 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset); 1291 if (err < 0) { 1292 p->err = err; 1293 } 1294 } 1295 1296 /* Augment PCI device node with bridge specific information */ 1297 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus, 1298 void *fdt, int offset) 1299 { 1300 Object *owner; 1301 PciWalkFdt cbinfo = { 1302 .fdt = fdt, 1303 .offset = offset, 1304 .sphb = sphb, 1305 .err = 0, 1306 }; 1307 int ret; 1308 1309 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1310 RESOURCE_CELLS_ADDRESS)); 1311 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1312 RESOURCE_CELLS_SIZE)); 1313 1314 assert(bus); 1315 pci_for_each_device_reverse(bus, pci_bus_num(bus), 1316 spapr_dt_pci_device_cb, &cbinfo); 1317 if (cbinfo.err) { 1318 return cbinfo.err; 1319 } 1320 1321 if (pci_bus_is_root(bus)) { 1322 owner = OBJECT(sphb); 1323 } else { 1324 owner = OBJECT(pci_bridge_get_device(bus)); 1325 } 1326 1327 ret = spapr_dt_drc(fdt, offset, owner, 1328 SPAPR_DR_CONNECTOR_TYPE_PCI); 1329 if (ret) { 1330 return ret; 1331 } 1332 1333 return offset; 1334 } 1335 1336 /* create OF node for pci device and required OF DT properties */ 1337 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1338 void *fdt, int parent_offset) 1339 { 1340 int offset; 1341 const gchar *basename; 1342 gchar *nodename; 1343 int slot = PCI_SLOT(dev->devfn); 1344 int func = PCI_FUNC(dev->devfn); 1345 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev); 1346 ResourceProps rp; 1347 SpaprDrc *drc = drc_from_dev(sphb, dev); 1348 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2); 1349 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2); 1350 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1); 1351 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1352 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1); 1353 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2); 1354 uint32_t subsystem_vendor_id = 1355 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2); 1356 uint32_t cache_line_size = 1357 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1); 1358 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1359 gchar *loc_code; 1360 1361 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1362 ccode & 0xff); 1363 1364 if (func != 0) { 1365 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func); 1366 } else { 1367 nodename = g_strdup_printf("%s@%x", basename, slot); 1368 } 1369 1370 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename)); 1371 1372 g_free(nodename); 1373 1374 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1375 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id)); 1376 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id)); 1377 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id)); 1378 1379 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1380 if (irq_pin) { 1381 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin)); 1382 } 1383 1384 if (subsystem_id) { 1385 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id)); 1386 } 1387 1388 if (subsystem_vendor_id) { 1389 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1390 subsystem_vendor_id)); 1391 } 1392 1393 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size)); 1394 1395 1396 /* the following fdt cells are masked off the pci status register */ 1397 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1398 PCI_STATUS_DEVSEL_MASK & pci_status)); 1399 1400 if (pci_status & PCI_STATUS_FAST_BACK) { 1401 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1402 } 1403 if (pci_status & PCI_STATUS_66MHZ) { 1404 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1405 } 1406 if (pci_status & PCI_STATUS_UDF) { 1407 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1408 } 1409 1410 loc_code = spapr_phb_get_loc_code(sphb, dev); 1411 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code)); 1412 g_free(loc_code); 1413 1414 if (drc) { 1415 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", 1416 spapr_drc_index(drc))); 1417 } 1418 1419 if (msi_present(dev)) { 1420 uint32_t max_msi = msi_nr_vectors_allocated(dev); 1421 if (max_msi) { 1422 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1423 } 1424 } 1425 if (msix_present(dev)) { 1426 uint32_t max_msix = dev->msix_entries_nr; 1427 if (max_msix) { 1428 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1429 } 1430 } 1431 1432 populate_resource_props(dev, &rp); 1433 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1434 1435 if (sphb->pcie_ecs && pci_is_express(dev)) { 1436 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1437 } 1438 1439 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb); 1440 1441 if (!pc->is_bridge) { 1442 /* Properties only for non-bridges */ 1443 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1); 1444 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1); 1445 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant)); 1446 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency)); 1447 return offset; 1448 } else { 1449 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev)); 1450 1451 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset); 1452 } 1453 } 1454 1455 /* Callback to be called during DRC release. */ 1456 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1457 { 1458 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1459 1460 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1461 object_unparent(OBJECT(dev)); 1462 } 1463 1464 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 1465 void *fdt, int *fdt_start_offset, Error **errp) 1466 { 1467 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev); 1468 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler); 1469 PCIDevice *pdev = PCI_DEVICE(drc->dev); 1470 1471 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0); 1472 return 0; 1473 } 1474 1475 static void spapr_pci_bridge_plug(SpaprPhbState *phb, 1476 PCIBridge *bridge) 1477 { 1478 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1479 1480 add_drcs(phb, bus); 1481 } 1482 1483 static void spapr_pci_plug(HotplugHandler *plug_handler, 1484 DeviceState *plugged_dev, Error **errp) 1485 { 1486 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1487 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1488 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1489 SpaprDrc *drc = drc_from_dev(phb, pdev); 1490 Error *local_err = NULL; 1491 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1492 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1493 1494 /* if DR is disabled we don't need to do anything in the case of 1495 * hotplug or coldplug callbacks 1496 */ 1497 if (!phb->dr_enabled) { 1498 /* if this is a hotplug operation initiated by the user 1499 * we need to let them know it's not enabled 1500 */ 1501 if (plugged_dev->hotplugged) { 1502 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1503 object_get_typename(OBJECT(phb))); 1504 } 1505 goto out; 1506 } 1507 1508 g_assert(drc); 1509 1510 if (pc->is_bridge) { 1511 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev)); 1512 } 1513 1514 /* Following the QEMU convention used for PCIe multifunction 1515 * hotplug, we do not allow functions to be hotplugged to a 1516 * slot that already has function 0 present 1517 */ 1518 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1519 PCI_FUNC(pdev->devfn) != 0) { 1520 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1521 " additional functions can no longer be exposed to guest.", 1522 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1523 goto out; 1524 } 1525 1526 spapr_drc_attach(drc, DEVICE(pdev), &local_err); 1527 if (local_err) { 1528 goto out; 1529 } 1530 1531 /* If this is function 0, signal hotplug for all the device functions. 1532 * Otherwise defer sending the hotplug event. 1533 */ 1534 if (!spapr_drc_hotplugged(plugged_dev)) { 1535 spapr_drc_reset(drc); 1536 } else if (PCI_FUNC(pdev->devfn) == 0) { 1537 int i; 1538 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1539 1540 for (i = 0; i < 8; i++) { 1541 SpaprDrc *func_drc; 1542 SpaprDrcClass *func_drck; 1543 SpaprDREntitySense state; 1544 1545 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1546 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1547 state = func_drck->dr_entity_sense(func_drc); 1548 1549 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1550 spapr_hotplug_req_add_by_index(func_drc); 1551 } 1552 } 1553 } 1554 1555 out: 1556 error_propagate(errp, local_err); 1557 } 1558 1559 static void spapr_pci_bridge_unplug(SpaprPhbState *phb, 1560 PCIBridge *bridge) 1561 { 1562 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1563 1564 remove_drcs(phb, bus); 1565 } 1566 1567 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1568 DeviceState *plugged_dev, Error **errp) 1569 { 1570 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1571 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1572 1573 /* some version guests do not wait for completion of a device 1574 * cleanup (generally done asynchronously by the kernel) before 1575 * signaling to QEMU that the device is safe, but instead sleep 1576 * for some 'safe' period of time. unfortunately on a busy host 1577 * this sleep isn't guaranteed to be long enough, resulting in 1578 * bad things like IRQ lines being left asserted during final 1579 * device removal. to deal with this we call reset just prior 1580 * to finalizing the device, which will put the device back into 1581 * an 'idle' state, as the device cleanup code expects. 1582 */ 1583 pci_device_reset(PCI_DEVICE(plugged_dev)); 1584 1585 if (pc->is_bridge) { 1586 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev)); 1587 return; 1588 } 1589 1590 qdev_unrealize(plugged_dev); 1591 } 1592 1593 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1594 DeviceState *plugged_dev, Error **errp) 1595 { 1596 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1597 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1598 SpaprDrc *drc = drc_from_dev(phb, pdev); 1599 1600 if (!phb->dr_enabled) { 1601 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1602 object_get_typename(OBJECT(phb))); 1603 return; 1604 } 1605 1606 g_assert(drc); 1607 g_assert(drc->dev == plugged_dev); 1608 1609 if (!spapr_drc_unplug_requested(drc)) { 1610 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1611 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1612 SpaprDrc *func_drc; 1613 SpaprDrcClass *func_drck; 1614 SpaprDREntitySense state; 1615 int i; 1616 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1617 1618 if (pc->is_bridge) { 1619 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported"); 1620 return; 1621 } 1622 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) { 1623 error_setg(errp, "PCI: Cannot unplug NVLink2 devices"); 1624 return; 1625 } 1626 1627 /* ensure any other present functions are pending unplug */ 1628 if (PCI_FUNC(pdev->devfn) == 0) { 1629 for (i = 1; i < 8; i++) { 1630 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1631 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1632 state = func_drck->dr_entity_sense(func_drc); 1633 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1634 && !spapr_drc_unplug_requested(func_drc)) { 1635 /* 1636 * Attempting to remove function 0 of a multifunction 1637 * device will will cascade into removing all child 1638 * functions, even if their unplug weren't requested 1639 * beforehand. 1640 */ 1641 spapr_drc_detach(func_drc); 1642 } 1643 } 1644 } 1645 1646 spapr_drc_detach(drc); 1647 1648 /* if this isn't func 0, defer unplug event. otherwise signal removal 1649 * for all present functions 1650 */ 1651 if (PCI_FUNC(pdev->devfn) == 0) { 1652 for (i = 7; i >= 0; i--) { 1653 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1654 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1655 state = func_drck->dr_entity_sense(func_drc); 1656 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1657 spapr_hotplug_req_remove_by_index(func_drc); 1658 } 1659 } 1660 } 1661 } 1662 } 1663 1664 static void spapr_phb_finalizefn(Object *obj) 1665 { 1666 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj); 1667 1668 g_free(sphb->dtbusname); 1669 sphb->dtbusname = NULL; 1670 } 1671 1672 static void spapr_phb_unrealize(DeviceState *dev) 1673 { 1674 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1675 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1676 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1677 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb); 1678 SpaprTceTable *tcet; 1679 int i; 1680 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1681 1682 spapr_phb_nvgpu_free(sphb); 1683 1684 if (sphb->msi) { 1685 g_hash_table_unref(sphb->msi); 1686 sphb->msi = NULL; 1687 } 1688 1689 /* 1690 * Remove IO/MMIO subregions and aliases, rest should get cleaned 1691 * via PHB's unrealize->object_finalize 1692 */ 1693 for (i = windows_supported - 1; i >= 0; i--) { 1694 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1695 if (tcet) { 1696 memory_region_del_subregion(&sphb->iommu_root, 1697 spapr_tce_get_iommu(tcet)); 1698 } 1699 } 1700 1701 remove_drcs(sphb, phb->bus); 1702 1703 for (i = PCI_NUM_PINS - 1; i >= 0; i--) { 1704 if (sphb->lsi_table[i].irq) { 1705 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1); 1706 sphb->lsi_table[i].irq = 0; 1707 } 1708 } 1709 1710 QLIST_REMOVE(sphb, list); 1711 1712 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow); 1713 1714 /* 1715 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have 1716 * unmapped all sections. Remove the listeners now, before destroying the 1717 * address space. 1718 */ 1719 address_space_remove_listeners(&sphb->iommu_as); 1720 address_space_destroy(&sphb->iommu_as); 1721 1722 qbus_set_hotplug_handler(BUS(phb->bus), NULL, &error_abort); 1723 pci_unregister_root_bus(phb->bus); 1724 1725 memory_region_del_subregion(get_system_memory(), &sphb->iowindow); 1726 if (sphb->mem64_win_pciaddr != (hwaddr)-1) { 1727 memory_region_del_subregion(get_system_memory(), &sphb->mem64window); 1728 } 1729 memory_region_del_subregion(get_system_memory(), &sphb->mem32window); 1730 } 1731 1732 static void spapr_phb_destroy_msi(gpointer opaque) 1733 { 1734 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1735 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1736 SpaprPciMsi *msi = opaque; 1737 1738 if (!smc->legacy_irq_allocation) { 1739 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 1740 } 1741 spapr_irq_free(spapr, msi->first_irq, msi->num); 1742 g_free(msi); 1743 } 1744 1745 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1746 { 1747 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1748 * tries to add a sPAPR PHB to a non-pseries machine. 1749 */ 1750 SpaprMachineState *spapr = 1751 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 1752 TYPE_SPAPR_MACHINE); 1753 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1754 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1755 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1756 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1757 MachineState *ms = MACHINE(spapr); 1758 char *namebuf; 1759 int i; 1760 PCIBus *bus; 1761 uint64_t msi_window_size = 4096; 1762 SpaprTceTable *tcet; 1763 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1764 Error *local_err = NULL; 1765 1766 if (!spapr) { 1767 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1768 return; 1769 } 1770 1771 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */ 1772 1773 if (sphb->mem64_win_size != 0) { 1774 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1775 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1776 " (max 2 GiB)", sphb->mem_win_size); 1777 return; 1778 } 1779 1780 /* 64-bit window defaults to identity mapping */ 1781 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1782 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1783 /* 1784 * For compatibility with old configuration, if no 64-bit MMIO 1785 * window is specified, but the ordinary (32-bit) memory 1786 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1787 * window, with a 64-bit MMIO window following on immediately 1788 * afterwards 1789 */ 1790 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1791 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1792 sphb->mem64_win_pciaddr = 1793 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1794 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1795 } 1796 1797 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1798 SpaprPhbState *s; 1799 1800 error_setg(errp, "PCI host bridges must have unique indexes"); 1801 error_append_hint(errp, "The following indexes are already in use:"); 1802 QLIST_FOREACH(s, &spapr->phbs, list) { 1803 error_append_hint(errp, " %d", s->index); 1804 } 1805 error_append_hint(errp, "\nTry another value for the index property\n"); 1806 return; 1807 } 1808 1809 if (sphb->numa_node != -1 && 1810 (sphb->numa_node >= MAX_NODES || 1811 !ms->numa_state->nodes[sphb->numa_node].present)) { 1812 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1813 return; 1814 } 1815 1816 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1817 1818 /* Initialize memory regions */ 1819 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1820 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1821 g_free(namebuf); 1822 1823 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1824 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1825 namebuf, &sphb->memspace, 1826 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1827 g_free(namebuf); 1828 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1829 &sphb->mem32window); 1830 1831 if (sphb->mem64_win_size != 0) { 1832 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1833 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1834 namebuf, &sphb->memspace, 1835 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1836 g_free(namebuf); 1837 1838 memory_region_add_subregion(get_system_memory(), 1839 sphb->mem64_win_addr, 1840 &sphb->mem64window); 1841 } 1842 1843 /* Initialize IO regions */ 1844 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1845 memory_region_init(&sphb->iospace, OBJECT(sphb), 1846 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1847 g_free(namebuf); 1848 1849 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1850 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1851 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1852 g_free(namebuf); 1853 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1854 &sphb->iowindow); 1855 1856 bus = pci_register_root_bus(dev, NULL, 1857 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb, 1858 &sphb->memspace, &sphb->iospace, 1859 PCI_DEVFN(0, 0), PCI_NUM_PINS, 1860 TYPE_PCI_BUS); 1861 1862 /* 1863 * Despite resembling a vanilla PCI bus in most ways, the PAPR 1864 * para-virtualized PCI bus *does* permit PCI-E extended config 1865 * space access 1866 */ 1867 if (sphb->pcie_ecs) { 1868 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1869 } 1870 phb->bus = bus; 1871 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL); 1872 1873 /* 1874 * Initialize PHB address space. 1875 * By default there will be at least one subregion for default 1876 * 32bit DMA window. 1877 * Later the guest might want to create another DMA window 1878 * which will become another memory subregion. 1879 */ 1880 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1881 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1882 namebuf, UINT64_MAX); 1883 g_free(namebuf); 1884 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1885 sphb->dtbusname); 1886 1887 /* 1888 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1889 * we need to allocate some memory to catch those writes coming 1890 * from msi_notify()/msix_notify(). 1891 * As MSIMessage:addr is going to be the same and MSIMessage:data 1892 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1893 * be used. 1894 * 1895 * For KVM we want to ensure that this memory is a full page so that 1896 * our memory slot is of page size granularity. 1897 */ 1898 if (kvm_enabled()) { 1899 msi_window_size = qemu_real_host_page_size; 1900 } 1901 1902 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1903 "msi", msi_window_size); 1904 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1905 &sphb->msiwindow); 1906 1907 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1908 1909 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1910 1911 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1912 1913 /* Initialize the LSI table */ 1914 for (i = 0; i < PCI_NUM_PINS; i++) { 1915 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1916 1917 if (smc->legacy_irq_allocation) { 1918 irq = spapr_irq_findone(spapr, &local_err); 1919 if (local_err) { 1920 error_propagate_prepend(errp, local_err, 1921 "can't allocate LSIs: "); 1922 /* 1923 * Older machines will never support PHB hotplug, ie, this is an 1924 * init only path and QEMU will terminate. No need to rollback. 1925 */ 1926 return; 1927 } 1928 } 1929 1930 spapr_irq_claim(spapr, irq, true, &local_err); 1931 if (local_err) { 1932 error_propagate_prepend(errp, local_err, "can't allocate LSIs: "); 1933 goto unrealize; 1934 } 1935 1936 sphb->lsi_table[i].irq = irq; 1937 } 1938 1939 /* allocate connectors for child PCI devices */ 1940 add_drcs(sphb, phb->bus); 1941 1942 /* DMA setup */ 1943 for (i = 0; i < windows_supported; ++i) { 1944 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1945 if (!tcet) { 1946 error_setg(errp, "Creating window#%d failed for %s", 1947 i, sphb->dtbusname); 1948 goto unrealize; 1949 } 1950 memory_region_add_subregion(&sphb->iommu_root, 0, 1951 spapr_tce_get_iommu(tcet)); 1952 } 1953 1954 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, 1955 spapr_phb_destroy_msi); 1956 return; 1957 1958 unrealize: 1959 spapr_phb_unrealize(dev); 1960 } 1961 1962 static int spapr_phb_children_reset(Object *child, void *opaque) 1963 { 1964 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1965 1966 if (dev) { 1967 device_legacy_reset(dev); 1968 } 1969 1970 return 0; 1971 } 1972 1973 void spapr_phb_dma_reset(SpaprPhbState *sphb) 1974 { 1975 int i; 1976 SpaprTceTable *tcet; 1977 1978 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1979 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1980 1981 if (tcet && tcet->nb_table) { 1982 spapr_tce_table_disable(tcet); 1983 } 1984 } 1985 1986 /* Register default 32bit DMA window */ 1987 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1988 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1989 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1990 } 1991 1992 static void spapr_phb_reset(DeviceState *qdev) 1993 { 1994 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1995 Error *err = NULL; 1996 1997 spapr_phb_dma_reset(sphb); 1998 spapr_phb_nvgpu_free(sphb); 1999 spapr_phb_nvgpu_setup(sphb, &err); 2000 if (err) { 2001 error_report_err(err); 2002 } 2003 2004 /* Reset the IOMMU state */ 2005 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 2006 2007 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 2008 spapr_phb_vfio_reset(qdev); 2009 } 2010 2011 g_hash_table_remove_all(sphb->msi); 2012 } 2013 2014 static Property spapr_phb_properties[] = { 2015 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1), 2016 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size, 2017 SPAPR_PCI_MEM32_WIN_SIZE), 2018 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size, 2019 SPAPR_PCI_MEM64_WIN_SIZE), 2020 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size, 2021 SPAPR_PCI_IO_WIN_SIZE), 2022 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled, 2023 true), 2024 /* Default DMA window is 0..1GB */ 2025 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0), 2026 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000), 2027 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr, 2028 0x800000000000000ULL), 2029 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true), 2030 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask, 2031 (1ULL << 12) | (1ULL << 16) 2032 | (1ULL << 21) | (1ULL << 24)), 2033 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1), 2034 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState, 2035 pre_2_8_migration, false), 2036 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState, 2037 pcie_ecs, true), 2038 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0), 2039 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0), 2040 DEFINE_PROP_END_OF_LIST(), 2041 }; 2042 2043 static const VMStateDescription vmstate_spapr_pci_lsi = { 2044 .name = "spapr_pci/lsi", 2045 .version_id = 1, 2046 .minimum_version_id = 1, 2047 .fields = (VMStateField[]) { 2048 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL), 2049 2050 VMSTATE_END_OF_LIST() 2051 }, 2052 }; 2053 2054 static const VMStateDescription vmstate_spapr_pci_msi = { 2055 .name = "spapr_pci/msi", 2056 .version_id = 1, 2057 .minimum_version_id = 1, 2058 .fields = (VMStateField []) { 2059 VMSTATE_UINT32(key, SpaprPciMsiMig), 2060 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig), 2061 VMSTATE_UINT32(value.num, SpaprPciMsiMig), 2062 VMSTATE_END_OF_LIST() 2063 }, 2064 }; 2065 2066 static int spapr_pci_pre_save(void *opaque) 2067 { 2068 SpaprPhbState *sphb = opaque; 2069 GHashTableIter iter; 2070 gpointer key, value; 2071 int i; 2072 2073 if (sphb->pre_2_8_migration) { 2074 sphb->mig_liobn = sphb->dma_liobn[0]; 2075 sphb->mig_mem_win_addr = sphb->mem_win_addr; 2076 sphb->mig_mem_win_size = sphb->mem_win_size; 2077 sphb->mig_io_win_addr = sphb->io_win_addr; 2078 sphb->mig_io_win_size = sphb->io_win_size; 2079 2080 if ((sphb->mem64_win_size != 0) 2081 && (sphb->mem64_win_addr 2082 == (sphb->mem_win_addr + sphb->mem_win_size))) { 2083 sphb->mig_mem_win_size += sphb->mem64_win_size; 2084 } 2085 } 2086 2087 g_free(sphb->msi_devs); 2088 sphb->msi_devs = NULL; 2089 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 2090 if (!sphb->msi_devs_num) { 2091 return 0; 2092 } 2093 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num); 2094 2095 g_hash_table_iter_init(&iter, sphb->msi); 2096 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 2097 sphb->msi_devs[i].key = *(uint32_t *) key; 2098 sphb->msi_devs[i].value = *(SpaprPciMsi *) value; 2099 } 2100 2101 return 0; 2102 } 2103 2104 static int spapr_pci_post_load(void *opaque, int version_id) 2105 { 2106 SpaprPhbState *sphb = opaque; 2107 gpointer key, value; 2108 int i; 2109 2110 for (i = 0; i < sphb->msi_devs_num; ++i) { 2111 key = g_memdup(&sphb->msi_devs[i].key, 2112 sizeof(sphb->msi_devs[i].key)); 2113 value = g_memdup(&sphb->msi_devs[i].value, 2114 sizeof(sphb->msi_devs[i].value)); 2115 g_hash_table_insert(sphb->msi, key, value); 2116 } 2117 g_free(sphb->msi_devs); 2118 sphb->msi_devs = NULL; 2119 sphb->msi_devs_num = 0; 2120 2121 return 0; 2122 } 2123 2124 static bool pre_2_8_migration(void *opaque, int version_id) 2125 { 2126 SpaprPhbState *sphb = opaque; 2127 2128 return sphb->pre_2_8_migration; 2129 } 2130 2131 static const VMStateDescription vmstate_spapr_pci = { 2132 .name = "spapr_pci", 2133 .version_id = 2, 2134 .minimum_version_id = 2, 2135 .pre_save = spapr_pci_pre_save, 2136 .post_load = spapr_pci_post_load, 2137 .fields = (VMStateField[]) { 2138 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL), 2139 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration), 2140 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration), 2141 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration), 2142 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration), 2143 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration), 2144 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0, 2145 vmstate_spapr_pci_lsi, SpaprPciLsi), 2146 VMSTATE_INT32(msi_devs_num, SpaprPhbState), 2147 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0, 2148 vmstate_spapr_pci_msi, SpaprPciMsiMig), 2149 VMSTATE_END_OF_LIST() 2150 }, 2151 }; 2152 2153 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 2154 PCIBus *rootbus) 2155 { 2156 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 2157 2158 return sphb->dtbusname; 2159 } 2160 2161 static void spapr_phb_class_init(ObjectClass *klass, void *data) 2162 { 2163 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 2164 DeviceClass *dc = DEVICE_CLASS(klass); 2165 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 2166 2167 hc->root_bus_path = spapr_phb_root_bus_path; 2168 dc->realize = spapr_phb_realize; 2169 dc->unrealize = spapr_phb_unrealize; 2170 device_class_set_props(dc, spapr_phb_properties); 2171 dc->reset = spapr_phb_reset; 2172 dc->vmsd = &vmstate_spapr_pci; 2173 /* Supported by TYPE_SPAPR_MACHINE */ 2174 dc->user_creatable = true; 2175 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 2176 hp->plug = spapr_pci_plug; 2177 hp->unplug = spapr_pci_unplug; 2178 hp->unplug_request = spapr_pci_unplug_request; 2179 } 2180 2181 static const TypeInfo spapr_phb_info = { 2182 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 2183 .parent = TYPE_PCI_HOST_BRIDGE, 2184 .instance_size = sizeof(SpaprPhbState), 2185 .instance_finalize = spapr_phb_finalizefn, 2186 .class_init = spapr_phb_class_init, 2187 .interfaces = (InterfaceInfo[]) { 2188 { TYPE_HOTPLUG_HANDLER }, 2189 { } 2190 } 2191 }; 2192 2193 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2194 void *opaque) 2195 { 2196 unsigned int *bus_no = opaque; 2197 PCIBus *sec_bus = NULL; 2198 2199 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2200 PCI_HEADER_TYPE_BRIDGE)) { 2201 return; 2202 } 2203 2204 (*bus_no)++; 2205 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2206 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2207 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2208 2209 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2210 if (!sec_bus) { 2211 return; 2212 } 2213 2214 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2215 spapr_phb_pci_enumerate_bridge, bus_no); 2216 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2217 } 2218 2219 static void spapr_phb_pci_enumerate(SpaprPhbState *phb) 2220 { 2221 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2222 unsigned int bus_no = 0; 2223 2224 pci_for_each_device(bus, pci_bus_num(bus), 2225 spapr_phb_pci_enumerate_bridge, 2226 &bus_no); 2227 2228 } 2229 2230 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb, 2231 uint32_t intc_phandle, void *fdt, int *node_offset) 2232 { 2233 int bus_off, i, j, ret; 2234 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2235 struct { 2236 uint32_t hi; 2237 uint64_t child; 2238 uint64_t parent; 2239 uint64_t size; 2240 } QEMU_PACKED ranges[] = { 2241 { 2242 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2243 cpu_to_be64(phb->io_win_addr), 2244 cpu_to_be64(memory_region_size(&phb->iospace)), 2245 }, 2246 { 2247 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2248 cpu_to_be64(phb->mem_win_addr), 2249 cpu_to_be64(phb->mem_win_size), 2250 }, 2251 { 2252 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2253 cpu_to_be64(phb->mem64_win_addr), 2254 cpu_to_be64(phb->mem64_win_size), 2255 }, 2256 }; 2257 const unsigned sizeof_ranges = 2258 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2259 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2260 uint32_t interrupt_map_mask[] = { 2261 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2262 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2263 uint32_t ddw_applicable[] = { 2264 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2265 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2266 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2267 }; 2268 uint32_t ddw_extensions[] = { 2269 cpu_to_be32(1), 2270 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2271 }; 2272 uint32_t associativity[] = {cpu_to_be32(0x4), 2273 cpu_to_be32(0x0), 2274 cpu_to_be32(0x0), 2275 cpu_to_be32(0x0), 2276 cpu_to_be32(phb->numa_node)}; 2277 SpaprTceTable *tcet; 2278 SpaprDrc *drc; 2279 Error *err = NULL; 2280 2281 /* Start populating the FDT */ 2282 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname)); 2283 if (node_offset) { 2284 *node_offset = bus_off; 2285 } 2286 2287 /* Write PHB properties */ 2288 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2289 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2290 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2291 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2292 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2293 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2294 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2295 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2296 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", 2297 spapr_irq_nr_msis(spapr))); 2298 2299 /* Dynamic DMA window */ 2300 if (phb->ddw_enabled) { 2301 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2302 sizeof(ddw_applicable))); 2303 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2304 &ddw_extensions, sizeof(ddw_extensions))); 2305 } 2306 2307 /* Advertise NUMA via ibm,associativity */ 2308 if (phb->numa_node != -1) { 2309 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2310 sizeof(associativity))); 2311 } 2312 2313 /* Build the interrupt-map, this must matches what is done 2314 * in pci_swizzle_map_irq_fn 2315 */ 2316 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2317 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2318 for (i = 0; i < PCI_SLOT_MAX; i++) { 2319 for (j = 0; j < PCI_NUM_PINS; j++) { 2320 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2321 int lsi_num = pci_swizzle(i, j); 2322 2323 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2324 irqmap[1] = 0; 2325 irqmap[2] = 0; 2326 irqmap[3] = cpu_to_be32(j+1); 2327 irqmap[4] = cpu_to_be32(intc_phandle); 2328 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2329 } 2330 } 2331 /* Write interrupt map */ 2332 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2333 sizeof(interrupt_map))); 2334 2335 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2336 if (!tcet) { 2337 return -1; 2338 } 2339 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2340 tcet->liobn, tcet->bus_offset, 2341 tcet->nb_table << tcet->page_shift); 2342 2343 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index); 2344 if (drc) { 2345 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc)); 2346 2347 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index, 2348 sizeof(drc_index))); 2349 } 2350 2351 /* Walk the bridges and program the bus numbers*/ 2352 spapr_phb_pci_enumerate(phb); 2353 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2354 2355 /* Walk the bridge and subordinate buses */ 2356 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off); 2357 if (ret < 0) { 2358 return ret; 2359 } 2360 2361 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err); 2362 if (err) { 2363 error_report_err(err); 2364 } 2365 spapr_phb_nvgpu_ram_populate_dt(phb, fdt); 2366 2367 return 0; 2368 } 2369 2370 void spapr_pci_rtas_init(void) 2371 { 2372 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2373 rtas_read_pci_config); 2374 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2375 rtas_write_pci_config); 2376 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2377 rtas_ibm_read_pci_config); 2378 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2379 rtas_ibm_write_pci_config); 2380 if (msi_nonbroken) { 2381 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2382 "ibm,query-interrupt-source-number", 2383 rtas_ibm_query_interrupt_source_number); 2384 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2385 rtas_ibm_change_msi); 2386 } 2387 2388 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2389 "ibm,set-eeh-option", 2390 rtas_ibm_set_eeh_option); 2391 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2392 "ibm,get-config-addr-info2", 2393 rtas_ibm_get_config_addr_info2); 2394 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2395 "ibm,read-slot-reset-state2", 2396 rtas_ibm_read_slot_reset_state2); 2397 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2398 "ibm,set-slot-reset", 2399 rtas_ibm_set_slot_reset); 2400 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2401 "ibm,configure-pe", 2402 rtas_ibm_configure_pe); 2403 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2404 "ibm,slot-error-detail", 2405 rtas_ibm_slot_error_detail); 2406 } 2407 2408 static void spapr_pci_register_types(void) 2409 { 2410 type_register_static(&spapr_phb_info); 2411 } 2412 2413 type_init(spapr_pci_register_types) 2414 2415 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2416 { 2417 bool be = *(bool *)opaque; 2418 2419 if (object_dynamic_cast(OBJECT(dev), "VGA") 2420 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2421 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2422 &error_abort); 2423 } 2424 return 0; 2425 } 2426 2427 void spapr_pci_switch_vga(bool big_endian) 2428 { 2429 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2430 SpaprPhbState *sphb; 2431 2432 /* 2433 * For backward compatibility with existing guests, we switch 2434 * the endianness of the VGA controller when changing the guest 2435 * interrupt mode 2436 */ 2437 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2438 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2439 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2440 &big_endian); 2441 } 2442 } 2443